Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6b61a096
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2312
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b61a096
编写于
1月 07, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optional padding mode, namely ceil or floor, ceil by default.
上级
c8817a19
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
1614 addition
and
1600 deletion
+1614
-1600
paddle/function/PadOp.cpp
paddle/function/PadOp.cpp
+8
-8
paddle/function/PadOpTest.cpp
paddle/function/PadOpTest.cpp
+25
-23
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+1545
-1548
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+16
-20
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+20
-1
未找到文件。
paddle/function/PadOp.cpp
浏览文件 @
6b61a096
...
...
@@ -73,10 +73,6 @@ void PadGrad<DEVICE_TYPE_CPU>(real* inGrad,
}
}
/**
* \param inputs[0] input value.
* \param outputs[0] output value.
*/
template
<
DeviceType
Device
>
class
PadFunc
:
public
FunctionBase
{
public:
...
...
@@ -89,6 +85,10 @@ public:
padw1_
=
config
.
get
<
int
>
(
"padw1"
);
}
/**
* \param inputs[0] input value.
* \param outputs[0] output value.
*/
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
...
...
@@ -124,10 +124,6 @@ private:
int
padw1_
;
};
/**
* \param inputs[0] input grad.
* \param outputs[0] output grad.
*/
template
<
DeviceType
Device
>
class
PadGradFunc
:
public
FunctionBase
{
public:
...
...
@@ -140,6 +136,10 @@ public:
padw1_
=
config
.
get
<
int
>
(
"padw1"
);
}
/**
* \param inputs[0] output grad.
* \param inouts[0] input grad.
*/
void
calc
(
const
Arguments
&
inputs
,
const
Arguments
&
outputs
,
const
Arguments
&
inouts
)
override
{
...
...
paddle/function/PadOpTest.cpp
浏览文件 @
6b61a096
...
...
@@ -43,28 +43,30 @@ TEST(Pad, real) {
}
}
// TEST(PadGrad, real) {
// for (size_t numSamples : {5, 32}) {
// for (size_t channels : {1, 5, 32}) {
// for (size_t imgSizeH : {5, 33, 100}) {
// for (size_t imgSizeW : {5, 32, 96}) {
// VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
// << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
//
// FunctionCompare compare("PadGrad",
// FuncConfig()
// .set("padc0", 2).set("padc1", 3)
// .set("padh0", 1).set("padh1", 2)
// .set("padw0", 3).set("padw1", 2));
// Dims inDims{numSamples, channels, imgSizeH, imgSizeW};
// Dims outDims{numSamples, channels + 5, imgSizeH + 3, imgSizeW + 5};
// compare.cmpWithArg({Tensor(nullptr, inDims)},
// {Tensor(nullptr, outDims)},
// {});
// }
// }
// }
// }
//}
TEST
(
PadGrad
,
real
)
{
for
(
size_t
numSamples
:
{
5
,
32
})
{
for
(
size_t
channels
:
{
1
,
5
,
32
})
{
for
(
size_t
imgSizeH
:
{
5
,
33
,
100
})
{
for
(
size_t
imgSizeW
:
{
5
,
32
,
96
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" channels="
<<
channels
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
;
FunctionCompare
compare
(
"PadGrad"
,
FuncConfig
()
.
set
(
"padc0"
,
2
)
.
set
(
"padc1"
,
3
)
.
set
(
"padh0"
,
1
)
.
set
(
"padh1"
,
2
)
.
set
(
"padw0"
,
3
)
.
set
(
"padw1"
,
2
));
Dims
inDims
{
numSamples
,
channels
,
imgSizeH
,
imgSizeW
};
Dims
outDims
{
numSamples
,
channels
+
5
,
imgSizeH
+
3
,
imgSizeW
+
5
};
compare
.
cmpWithArg
(
{
Tensor
(
nullptr
,
inDims
)},
{},
{
Tensor
(
nullptr
,
outDims
)});
}
}
}
}
}
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
6b61a096
...
...
@@ -32,1554 +32,1551 @@ DECLARE_double(checkgrad_eps);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_bool
(
prev_batch_state
);
// TEST(Operator, dot_mul) {
// TestConfig config;
// config.layerConfig.set_size(10);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
// operatorConf.set_type("dot_mul");
// operatorConf.set_dotmul_scale(-1);
//
// testOperatorGrad(config, operatorConf, 100, false, false);
// }
//
// TEST(Projection, context) {
// for (auto contextStart : {-5, -3, -1, 0, 3}) {
// for (auto contextLength : {1, 2, 5, 7}) {
// for (auto batchSize : {1, 2, 5, 20, 50}) {
// for (auto trainablePadding : {false, true}) {
// LOG(INFO) << " contextStart=" << contextStart
// << " contextLength=" << contextLength
// << " batchSize=" << batchSize
// << " trainablePadding=" << trainablePadding;
// ProjectionConfig conf;
// conf.set_type("context");
// conf.set_input_size(10);
// conf.set_context_start(contextStart);
// conf.set_context_length(contextLength);
// conf.set_trainable_padding(trainablePadding);
// conf.set_output_size(conf.context_length() * conf.input_size());
// int pad =
// std::max(0, -conf.context_start()) +
// std::max(0, conf.context_start() + conf.context_length() - 1);
// for (auto useGpu : {false, true}) {
// testProjectionGrad(
// conf,
// INPUT_SEQUENCE_DATA,
// trainablePadding ? conf.input_size() * pad : 0,
// batchSize,
// useGpu,
// contextStart + contextLength <= 1); // = testState
// }
// }
// }
// }
// }
// }
//
// TEST(Projection, trans_fc) {
// ProjectionConfig conf;
// conf.set_type("trans_fc");
// conf.set_input_size(50);
// conf.set_output_size(20);
// for (auto useGpu : {false, true}) {
// testProjectionGrad(conf,
// INPUT_DATA,
// /* parameterSize */ 1000,
// /* batchSize */ 100,
// useGpu);
// }
// }
//
// TEST(Projection, fc) {
// ProjectionConfig conf;
// conf.set_type("fc");
// conf.set_input_size(10);
// conf.set_output_size(20);
// for (auto useGpu : {false, true}) {
// testProjectionGrad(conf,
// INPUT_DATA,
// /* parameterSize */ 200,
// /* batchSize */ 100,
// useGpu);
// }
// }
//
// TEST(Projection, dot_mul) {
// ProjectionConfig conf;
// conf.set_type("dot_mul");
// conf.set_input_size(20);
// conf.set_output_size(20);
// for (auto useGpu : {false, true}) {
// testProjectionGrad(conf,
// INPUT_DATA,
// /* parameterSize */ 20,
// /* batchSize */ 100,
// useGpu);
// }
// }
//
// TEST(Projection, table) {
// ProjectionConfig conf;
// conf.set_type("table");
// conf.set_input_size(10);
// conf.set_output_size(20);
// for (auto useGpu : {false, true}) {
// testProjectionGrad(conf,
// INPUT_LABEL,
// /* parameterSize */ 200,
// /* batchSize */ 100,
// useGpu);
// }
// }
//
// TEST(Projection, identity) {
// ProjectionConfig conf;
// conf.set_type("identity");
// conf.set_input_size(10);
// conf.set_output_size(10);
// for (auto useGpu : {false, true}) {
// testProjectionGrad(conf,
// INPUT_DATA,
// /* parameterSize */ 0,
// /* batchSize */ 100,
// useGpu);
// }
// }
//
// TEST(Projection, scaling) {
// ProjectionConfig conf;
// conf.set_type("scaling");
// conf.set_input_size(10);
// conf.set_output_size(10);
// for (auto useGpu : {false}) {
// testProjectionGrad(conf,
// INPUT_DATA,
// /* parameterSize */ 1,
// /* batchSize */ 100,
// useGpu);
// }
// }
//
// void testProjectionConv(size_t groups) {
// const int NUM_FILTERS = 18;
// const int FILTER_SIZE = 2;
// const int FILTER_SIZE_Y = 3;
// const int CHANNELS = 3;
// const int IMAGE_SIZE = 16;
//
// ProjectionConfig conf;
// conf.set_type("conv");
// conf.set_num_filters(NUM_FILTERS);
//
// ConvConfig* conv = conf.mutable_conv_conf();
// conv->set_filter_size(FILTER_SIZE);
// conv->set_filter_size_y(FILTER_SIZE_Y);
// conv->set_channels(CHANNELS);
// conv->set_padding(0);
// conv->set_padding_y(1);
// conv->set_stride(2);
// conv->set_stride_y(2);
// conv->set_groups(groups);
// conv->set_filter_channels(conv->channels() / conv->groups());
// conv->set_img_size(IMAGE_SIZE);
// int output_x = outputSize(conv->img_size(),
// conv->filter_size(),
// conv->padding(),
// conv->stride(),
// /* caffeMode */ true);
// int output_y = outputSize(conv->img_size(),
// conv->filter_size_y(),
// conv->padding_y(),
// conv->stride_y(),
// /* caffeMode */ true);
// conv->set_output_x(output_x);
// conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS);
// conf.set_output_size(output_x * output_y * NUM_FILTERS);
//
// testProjectionGrad(conf,
// INPUT_DATA,
// /* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE
// *
// FILTER_SIZE_Y / groups,
// /* batchSize */ 100,
// true,
// false,
// NUM_FILTERS,
// true);
// }
//
// #ifndef PADDLE_ONLY_CPU
// TEST(Projection, conv) {
// testProjectionConv(1);
// testProjectionConv(3);
// }
// #endif
//
// TEST(Layer, BilinearInterpLayer) {
// TestConfig config;
// config.layerConfig.set_type("bilinear_interp");
// config.biasSize = 0;
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
//
// LayerInputConfig* input = config.layerConfig.add_inputs();
// BilinearInterpConfig* bilinear = input->mutable_bilinear_interp_conf();
// ImageConfig* image = bilinear->mutable_image_conf();
// image->set_img_size(32);
// image->set_img_size_y(32);
// image->set_channels(4);
//
// for (auto useGpu : {false, true}) {
// for (auto outSize : {32, 64}) {
// bilinear->set_out_size_x(outSize);
// bilinear->set_out_size_y(outSize);
// testLayerGrad(config, "bilinear_interp", 10, false, useGpu);
// }
// }
// }
//
// TEST(Layer, concat) {
// TestConfig config;
// config.biasSize = 0;
// config.layerConfig.set_type("concat");
// config.layerConfig.set_size(15);
// config.layerConfig.set_active_type("sigmoid");
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "concat", 100, false, useGpu);
// }
// }
//
// TEST(Layer, AddtoLayer) {
// TestConfig config;
// config.biasSize = 0;
// config.layerConfig.set_type("addto");
// config.layerConfig.set_size(10);
// config.layerConfig.set_active_type("sigmoid");
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "addto", 100, false, useGpu);
// }
// }
//
// TEST(Layer, CRFLayer) {
// TestConfig config;
// config.layerConfig.set_type("crf");
// config.layerConfig.set_size(10);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 120});
// config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// // Not support GPU now
// testLayerGrad(config,
// "crf",
// 100,
// /* trans */ false,
// /* useGpu */ false,
// false /*useWeight*/,
// 0.03 /*epsilon*/);
// }
//
// TEST(Layer, CTCLayer) {
// TestConfig config;
// config.layerConfig.set_type("ctc");
// config.layerConfig.set_norm_by_times(false);
// config.layerConfig.set_size(10);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
// config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "ctc", 100, /* trans */ false, /* useGpu */
// useGpu);
// }
// }
//
// TEST(Layer, cosSimLayer) {
// TestConfig config;
// config.layerConfig.set_type("cos");
// config.layerConfig.set_size(1);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 50, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "cos", 100, false, useGpu);
// }
// }
//
// TEST(Layer, CosSimVecMatLayer) {
// TestConfig config;
// config.layerConfig.set_type("cos_vm");
// config.layerConfig.set_size(5); // output size
// config.layerConfig.set_cos_scale(2.0);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 0});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "cos_vm", 100, false, useGpu);
// }
// }
//
// void testConvLayer(const string& type, bool trans, bool useGpu) {
// TestConfig config;
// config.biasSize = 16;
// config.layerConfig.set_type(type);
// config.layerConfig.set_num_filters(16);
// config.layerConfig.set_partial_sum(1);
// config.layerConfig.set_shared_biases(true);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 384, 288});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// ConvConfig* conv = input->mutable_conv_conf();
// conv->set_filter_size(2);
// conv->set_filter_size_y(3);
// conv->set_channels(3);
// conv->set_padding(0);
// conv->set_padding_y(1);
// conv->set_stride(2);
// conv->set_stride_y(2);
// conv->set_groups(1);
// conv->set_filter_channels(conv->channels() / conv->groups());
// conv->set_img_size(16);
// conv->set_img_size_y(8);
// conv->set_output_x(outputSize(conv->img_size(),
// conv->filter_size(),
// conv->padding(),
// conv->stride(),
// /* caffeMode */ true));
// conv->set_output_y(outputSize(conv->img_size_y(),
// conv->filter_size_y(),
// conv->padding_y(),
// conv->stride_y(),
// /* caffeMode */ true));
// config.layerConfig.set_size(conv->output_x() * conv->output_y() *
// config.layerConfig.num_filters());
//
// testLayerGrad(config, "conv", 100, trans, useGpu);
// // Use small batch_size and useWeight=true to test biasGrad
// testLayerGrad(config, "conv", 2, trans, useGpu, true, 0.02);
// }
//
// TEST(Layer, convLayer) {
// testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false);
// #ifndef PADDLE_ONLY_CPU
// testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true);
// testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true);
// #endif
// }
//
// void testConvTransLayer(const string& type, bool trans, bool useGpu) {
// TestConfig config;
// config.biasSize = 3;
// config.layerConfig.set_type(type);
// config.layerConfig.set_num_filters(3);
// config.layerConfig.set_partial_sum(1);
// config.layerConfig.set_shared_biases(true);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 288});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// ConvConfig* conv = input->mutable_conv_conf();
// conv->set_filter_size(2);
// conv->set_filter_size_y(3);
// conv->set_channels(16);
// conv->set_padding(0);
// conv->set_padding_y(1);
// conv->set_stride(2);
// conv->set_stride_y(2);
// conv->set_groups(1);
// conv->set_filter_channels(3 / conv->groups());
// conv->set_img_size(16);
// conv->set_output_x(outputSize(conv->img_size(),
// conv->filter_size(),
// conv->padding(),
// conv->stride(),
// /* caffeMode */ true));
//
// config.layerConfig.set_size(conv->img_size() * conv->img_size() *
// config.layerConfig.num_filters());
//
// testLayerGrad(config, "convTrans", 100, trans, useGpu);
// // Use small batch_size and useWeight=true to test biasGrad
// testLayerGrad(config, "convTrans", 2, trans, useGpu, true, 0.02);
// }
//
// TEST(Layer, convTransLayer) {
// for (auto useGpu : {false, true}) {
// testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu);
// }
// }
//
// TEST(Layer, blockExpandLayer) {
// TestConfig config;
// config.biasSize = 0;
// config.layerConfig.set_type("blockexpand");
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 6144, 0});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// BlockExpandConfig* blockExpand = input->mutable_block_expand_conf();
// blockExpand->set_img_size_x(64);
// blockExpand->set_img_size_y(32);
// blockExpand->set_channels(3);
// blockExpand->set_padding_x(0);
// blockExpand->set_padding_y(0);
// blockExpand->set_block_x(4);
// blockExpand->set_block_y(32);
// blockExpand->set_stride_x(2);
// blockExpand->set_stride_y(2);
// blockExpand->set_output_x(outputSize(blockExpand->img_size_x(),
// blockExpand->block_x(),
// blockExpand->padding_x(),
// blockExpand->stride_x(),
// /* caffeMode */ false));
// blockExpand->set_output_y(outputSize(blockExpand->img_size_y(),
// blockExpand->block_y(),
// blockExpand->padding_y(),
// blockExpand->stride_y(),
// /* caffeMode */ false));
// config.layerConfig.set_size(blockExpand->block_x() * blockExpand->block_y()
// *
// blockExpand->channels());
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "blockexpand", 100, false, useGpu);
// }
// }
//
// TEST(Layer, maxoutLayer) {
// TestConfig config;
// config.biasSize = 0;
// config.layerConfig.set_type("maxout");
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// MaxOutConfig* maxout = input->mutable_maxout_conf();
// ImageConfig* image = maxout->mutable_image_conf();
//
// image->set_img_size(32);
// image->set_img_size_y(32);
// image->set_channels(4);
// maxout->set_groups(2);
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "maxout", 10, false, useGpu);
// }
// }
// void testFcLayer(string format, size_t nnz) {
// TestConfig config;
// config.biasSize = 4096;
// config.layerConfig.set_type("fc");
// config.layerConfig.set_size(4096);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_drop_rate(0.1);
//
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_0", 8192, nnz, ParaSparse(format)});
// config.layerConfig.add_inputs();
//
// LOG(INFO) << config.inputDefs[0].sparse.sparse << " "
// << config.inputDefs[0].sparse.format;
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config,
// "fc",
// 100,
// /* trans */ false,
// useGpu,
// /* weight */ true);
// }
// }
//
// TEST(Layer, fcLayer) {
// testFcLayer("", 4096 * 4096 * 2);
// testFcLayer("csc", 4096 * 40);
// testFcLayer("csr", 4096 * 40);
// }
//
// TEST(Layer, SelectiveFullyConnectedLayer) {
// TestConfig config;
// size_t nin = 16;
// size_t nout = 256;
// config.layerConfig.set_type("selective_fc");
// config.layerConfig.set_size(nout);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_has_selected_colums(true);
// config.layerConfig.set_selective_fc_pass_generation(false);
// config.biasSize = nout;
//
// config.inputDefs.push_back({INPUT_DATA, "input0", nin, nin * nout});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back(
// {INPUT_SPARSE_NON_VALUE_DATA, "index", nout, 0, ParaSparse("csr",
// true)});
// config.layerConfig.add_inputs();
//
// testLayerGrad(config,
// "selective_fc",
// 100,
// /* trans= */ false,
// /* useGup= */ false,
// false);
// #ifndef PADDLE_ONLY_CPU
// testLayerGrad(config,
// "selective_fc",
// 100,
// /* trans= */ false,
// /* useGup= */ true,
// false);
// #endif
// }
//
// TEST(Layer, DataNormLayer) {
// TestConfig config;
// config.layerConfig.set_type("data_norm");
// config.layerConfig.set_size(20);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 100});
// config.inputDefs.back().isStatic = true;
// config.layerConfig.add_inputs();
//
// for (auto strategy : {"z-score", "min-max", "decimal-scaling"}) {
// config.layerConfig.set_data_norm_strategy(strategy);
// // The parameters are static, so not support GPU now
// testLayerGrad(config,
// "data_norm",
// 200,
// /* trans */ false,
// /* useGpu */ false);
// }
// }
//
// TEST(Layer, hsigmoidLayer) {
// TestConfig config;
// config.layerConfig.set_type("hsigmoid");
// config.layerConfig.set_num_classes(5);
// config.layerConfig.set_size(1);
// config.biasSize = config.layerConfig.num_classes() - 1;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 200});
// config.inputDefs.push_back({INPUT_LABEL, "layer_1", 5, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// // Not support GPU now
// testLayerGrad(config, "hsigmoid", 100, /* trans */ false, /* useGpu */
// false);
// }
//
// TEST(Layer, multi_cross) {
// TestConfig config;
// config.layerConfig.set_type("multi-class-cross-entropy");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(
// config, "multi-class-cross-entropy", 100, /* trans */ false, useGpu);
// }
// }
//
// TEST(Layer, multi_binary_label_sparse_mat) {
// TestConfig config;
// config.layerConfig.set_type("multi_binary_label_cross_entropy");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50,
// 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config,
// "multi_binary_label_cross_entropy",
// 100,
// /* trans */ false,
// useGpu);
// }
// }
//
// TEST(layer, multi_binary_label_id) {
// TestConfig config;
// config.layerConfig.set_type("multi_binary_label_cross_entropy");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config,
// "multi_binary_label_cross_entropy",
// 100,
// /* trans */ false,
// useGpu);
// }
// }
//
// TEST(Layer, multi_cross_with_selfnorm) {
// TestConfig config;
// config.layerConfig.set_type("multi_class_cross_entropy_with_selfnorm");
// config.layerConfig.set_softmax_selfnorm_alpha(0.1);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// // Not support GPU now
// testLayerGrad(config,
// "multi_class_cross_entropy_with_selfnorm",
// 100,
// /* trans */ false,
// /* useGpu */ false);
// }
//
// TEST(Layer, multi_cross_soft) {
// TestConfig config;
// config.layerConfig.set_type("soft_binary_class_cross_entropy");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config,
// "soft_binary_class_cross_entropy",
// 100,
// /* trans */ false,
// useGpu);
// }
// }
//
// TEST(Layer, square_error) {
// TestConfig config;
// config.layerConfig.set_type("square_error");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
// }
// }
//
// TEST(Layer, sparse_square_error) {
// TestConfig config;
// config.layerConfig.set_type("square_error");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50,
// 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// // "GpuSparseMatrix" as label is not supported
// testLayerGrad(config,
// "square_error",
// 100,
// /* trans */ false,
// /* useGpu */ false);
// }
//
// TEST(Layer, sparse_float_square_error) {
// TestConfig config;
// config.layerConfig.set_type("square_error");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
// config.inputDefs.push_back({INPUT_SPARSE_FLOAT_VALUE_DATA, "layer_1", 50,
// 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// // "GpuSparseMatrix" as label is not supported
// testLayerGrad(config,
// "square_error",
// 100,
// /* trans */ false,
// /* useGpu */ false);
// }
//
// TEST(Layer, square_error_weighted) {
// TestConfig config;
// config.layerConfig.set_type("square_error");
// config.biasSize = 0;
// config.testAccumulate = false;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
// }
// }
//
// TEST(Layer, huber_two_class) {
// TestConfig config;
// config.layerConfig.set_type("huber");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.inputDefs.push_back({INPUT_LABEL, "layer_1", 2, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "huber", 100, /* trans */ false, useGpu);
// }
// }
//
// void testExpandLayer(string trans_type, bool hasSubseq) {
// TestConfig config;
// config.layerConfig.set_type("expand");
//
// config.inputDefs.push_back(
// {trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA,
// "layer_0",
// 10,
// 0});
// config.inputDefs.push_back(
// {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
// "layer_1",
// 10,
// 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.set_trans_type(trans_type);
// LOG(INFO) << " trans_type=" << trans_type << " hasSubseq=" << hasSubseq;
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "expand", 30, false, useGpu);
// }
// }
//
// TEST(Layer, ExpandLayer) {
// testExpandLayer("non-seq", false); // non-seq expand to seq
// testExpandLayer("non-seq", true); // non-seq expand to hasSubseq
// testExpandLayer("seq", true); // seq expand to hasSubseq
// }
//
// void testDegradeLayer(bool hasSubseq, string layer_type, string trans_type) {
// TestConfig config;
// config.layerConfig.set_type(layer_type);
// config.layerConfig.set_size(10);
// config.biasSize = 0;
//
// config.inputDefs.push_back(
// {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
// "layer_0",
// 10,
// 0});
// config.layerConfig.add_inputs();
// config.layerConfig.set_trans_type(trans_type);
//
// auto testDegradeLayerGrad = [](TestConfig& config, string layer_type) {
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, layer_type, 100, false, useGpu);
// }
// };
//
// if (layer_type == "average") {
// for (auto strategy : {"average", "sum", "squarerootn"}) {
// LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
// << " average_strategy=" << strategy;
// config.layerConfig.set_average_strategy(strategy);
// testDegradeLayerGrad(config, layer_type);
// }
// } else {
// LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type;
// testDegradeLayerGrad(config, layer_type);
// }
// }
//
// TEST(Layer, MaxLayer) {
// testDegradeLayer(false, "max", "non-seq"); // seq max to non-seq
// testDegradeLayer(true, "max", "non-seq"); // hasSubseq max to non-seq
// testDegradeLayer(true, "max", "seq"); // hasSubseq max to seq
// }
//
// TEST(Layer, SequenceLastInstanceLayer) {
// testDegradeLayer(false,
// "seqlastins",
// "non-seq"); // seq seqlastins to non-seq
// testDegradeLayer(true,
// "seqlastins",
// "non-seq"); // hasSubseq seqlastins to non-seq
// testDegradeLayer(true, "seqlastins", "seq"); // hasSubseq seqlastins to
// seq
// }
//
// TEST(Layer, AverageLayer) {
// testDegradeLayer(false, "average", "non-seq"); // seq average to non-seq
// testDegradeLayer(true, "average", "non-seq"); // hasSubseq average to
// non-seq
// testDegradeLayer(true, "average", "seq"); // hasSubseq average to seq
// }
//
// TEST(Layer, SequenceConcatLayer) {
// TestConfig config;
// config.layerConfig.set_type("seqconcat");
// config.layerConfig.set_size(10);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "seqconcat", 100, false, useGpu);
// }
// }
//
// TEST(Layer, SequenceReshapeLayer) {
// TestConfig config;
// config.layerConfig.set_type("seqreshape");
// config.layerConfig.set_size(10);
//
// config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 100, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "seqreshape", 100, false, useGpu);
// }
// }
//
// TEST(Layer, ConvShiftLayer) {
// TestConfig config;
// config.layerConfig.set_type("conv_shift");
// config.layerConfig.set_size(10);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 3, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// // Not support GPU now
// testLayerGrad(config, "conv_shift", 100, false, false);
// }
//
// TEST(Layer, PowerLayer) {
// TestConfig config;
// config.layerConfig.set_type("power");
// config.layerConfig.set_size(10);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "power", 100, false, useGpu);
// }
// }
//
// TEST(Layer, ConvexCombinationLayer) {
// TestConfig config;
// config.layerConfig.set_type("convex_comb");
// config.layerConfig.set_size(20);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "convex_comb", 100, false, useGpu);
// }
// }
//
// TEST(Layer, InterpolationLayer) {
// TestConfig config;
// config.layerConfig.set_type("interpolation");
// config.layerConfig.set_size(10);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_2", 10, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "interpolation", 100, false, useGpu);
// }
// }
//
// TEST(Layer, OuterProdLayer) {
// TestConfig config;
// config.layerConfig.set_type("out_prod");
// config.layerConfig.set_size(100);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "out_prod", 100, false, useGpu);
// }
// }
//
// TEST(Layer, SlopeInterceptLayer) {
// TestConfig config;
// config.layerConfig.set_type("slope_intercept");
// config.layerConfig.set_size(10);
// config.layerConfig.set_slope(1.0);
// config.layerConfig.set_intercept(0.1);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "slope_intercept", 100, false, useGpu);
// }
// }
//
// TEST(Layer, ScalingLayer) {
// TestConfig config;
// config.layerConfig.set_type("scaling");
// config.layerConfig.set_size(10);
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.layerConfig.add_inputs();
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "scaling", 100, false, useGpu);
// }
// }
//
// void testNormLayer(const string& normType, bool trans, bool useGpu) {
// TestConfig config;
// config.layerConfig.set_type("norm");
// config.layerConfig.set_active_type("relu");
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1568, 0});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// NormConfig* norm = input->mutable_norm_conf();
// norm->set_norm_type(normType);
// norm->set_channels(16);
// norm->set_size(5);
// norm->set_scale(0.001);
// norm->set_pow(0.75);
// norm->set_blocked(0);
// norm->set_img_size(14);
// norm->set_img_size_y(7);
// norm->set_output_x(norm->img_size());
// norm->set_output_y(norm->img_size_y());
// if (norm->norm_type() == "cmrnorm" ||
// norm->norm_type() == "cmrnorm-projection") {
// norm->set_scale(norm->scale() / norm->size());
// } else {
// norm->set_scale(norm->scale() / (norm->size() * norm->size()));
// }
//
// config.layerConfig.set_size(norm->output_x() * norm->output_y() *
// norm->channels());
// config.biasSize = 0;
//
// testLayerGrad(config, "norm", 100, trans, useGpu);
// }
//
// TEST(Layer, NormLayer) {
// testNormLayer("cmrnorm-projection", /* trans= */ false, /* useGpu= */
// true);
// testNormLayer("cmrnorm-projection", /* trans= */ false, /* useGpu= */
// false);
// }
//
// void setPoolConfig(TestConfig* config,
// PoolConfig* pool,
// const string& poolType) {
// (*config).biasSize = 0;
// (*config).layerConfig.set_type("pool");
// (*config).layerConfig.set_num_filters(16);
//
// int kw = 3, kh = 3;
// int pw = 0, ph = 0;
// int sw = 2, sh = 2;
// pool->set_pool_type(poolType);
// pool->set_channels(16);
// pool->set_size_x(kw);
// pool->set_size_y(kh);
// pool->set_start(0);
// pool->set_padding(pw);
// pool->set_padding_y(ph);
// pool->set_stride(sw);
// pool->set_stride_y(sh);
//
// int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
// int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
// pool->set_output_x(ow);
// pool->set_output_y(oh);
// }
//
// void testPoolLayer(const string& poolType, bool trans, bool useGpu) {
// TestConfig config;
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// PoolConfig* pool = input->mutable_pool_conf();
//
// pool->set_img_size(14);
// pool->set_img_size_y(14);
// setPoolConfig(&config, pool, poolType);
// config.layerConfig.set_size(pool->output_x() * pool->output_y() *
// pool->channels());
//
// testLayerGrad(config, "pool", 100, trans, useGpu);
// }
//
// #ifndef PADDLE_ONLY_CPU
// void testPoolLayer2(const string& poolType, bool trans, bool useGpu) {
// TestConfig config;
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// PoolConfig* pool = input->mutable_pool_conf();
//
// pool->set_size_y(4);
// pool->set_stride_y(3);
// pool->set_img_size(10);
// pool->set_img_size_y(20);
// setPoolConfig(&config, pool, poolType);
// pool->set_output_y((pool->img_size_y() - pool->start() - pool->size_y()) /
// ((float)pool->stride_y()) +
// 1.5);
// config.layerConfig.set_size(pool->output_x() * pool->output_y() *
// pool->channels());
//
// testLayerGrad(config, "pool", 100, trans, useGpu);
// }
// #endif
//
// TEST(Layer, PoolLayer) {
// testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false);
// testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false);
//
// #ifndef PADDLE_ONLY_CPU
// testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true);
// testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true);
// testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
// testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
// testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
// testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
// #endif
// }
//
// void testSppLayer(const string& poolType,
// const int pyramidHeight,
// bool trans,
// bool useGpu) {
// TestConfig config;
// config.layerConfig.set_type("spp");
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
// LayerInputConfig* input = config.layerConfig.add_inputs();
// SppConfig* sppConfig = input->mutable_spp_conf();
// sppConfig->set_pool_type(poolType);
// sppConfig->set_pyramid_height(pyramidHeight);
// ImageConfig* imageConfig = sppConfig->mutable_image_conf();
// imageConfig->set_channels(16);
// imageConfig->set_img_size(10);
// imageConfig->set_img_size_y(20);
// int outputSize = (std::pow(4, sppConfig->pyramid_height()) - 1) / (4 - 1);
// config.layerConfig.set_size(outputSize * imageConfig->channels());
// testLayerGrad(config, "spp", 100, trans, useGpu);
// }
//
// TEST(Layer, SpatialPyramidPoolLayer) {
// for (auto useGpu : {false, true}) {
// for (auto pyramidHeight : {1, 2, 3}) {
// testSppLayer("avg-projection", pyramidHeight, false, useGpu);
// testSppLayer("max-projection", pyramidHeight, false, useGpu);
// }
// }
// }
//
// TEST(Layer, rankCostLayer) {
// TestConfig config;
// config.layerConfig.set_type("rank-cost");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "rank-cost", 100, false, useGpu);
// }
// }
//
// TEST(Layer, sumCostLayer) {
// TestConfig config;
// config.layerConfig.set_type("sum_cost");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "sum_cost", 100, false, useGpu);
// }
// }
//
// TEST(Layer, weightedRankCostLayer) {
// TestConfig config;
// config.layerConfig.set_type("rank-cost");
// config.biasSize = 0;
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
// config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_3", 1, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "weighted-rank-cost", 100, false, useGpu);
// }
// }
//
// TEST(Layer, TensorLayer) {
// TestConfig config;
// config.layerConfig.set_type("tensor");
// config.layerConfig.set_size(10);
// config.layerConfig.set_active_type("sigmoid");
// config.biasSize = config.layerConfig.size();
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 250});
// config.inputDefs.push_back({INPUT_DATA, "layer_1", 5, 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "tensor", 100, false, useGpu);
// }
// }
//
// TEST(Layer, RecurrentLayer) {
// TestConfig config;
// config.layerConfig.set_type("recurrent");
// config.layerConfig.set_size(4);
// config.layerConfig.set_active_type("tanh");
// config.biasSize = 4;
//
// config.inputDefs.push_back(
// {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 4, /* paraSize= */ 16});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// for (auto reversed : {false, true}) {
// config.layerConfig.set_reversed(reversed);
// config.testState = !reversed;
// testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu);
// }
// }
// }
//
// TEST(Layer, LstmLayer) {
// TestConfig config;
// config.layerConfig.set_type("lstmemory");
// config.layerConfig.set_size(4);
// config.layerConfig.set_active_type("tanh");
// config.layerConfig.set_active_state_type("sigmoid");
// config.layerConfig.set_active_gate_type("sigmoid");
// config.biasSize = 28;
//
// config.inputDefs.push_back(
// {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 64});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// for (auto reversed : {false, true}) {
// config.layerConfig.set_reversed(reversed);
// config.testState = !reversed;
// testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu);
// }
// }
// for (auto useGpu : {true}) {
// config.testBatchState = true;
// config.layerConfig.set_reversed(false);
// testLayerGrad(config, "lstmemory", 10, /* trans= */ false, useGpu);
// }
// }
//
// TEST(Layer, MDLstmLayer) {
// TestConfig config;
// config.layerConfig.set_type("mdlstmemory");
// config.layerConfig.set_size(4);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_active_state_type("sigmoid");
// config.layerConfig.set_active_gate_type("sigmoid");
// config.biasSize = 4 * 9;
//
// config.inputDefs.push_back(
// {INPUT_SEQUENCE_MDIM_DATA, "layer_0", 4 * 5, 4 * 4 * 5});
// config.layerConfig.add_inputs();
// config.layerConfig.add_directions(true);
// config.layerConfig.add_directions(true);
//
// for (auto useGpu : {false, true}) {
// for (int i = 0; i < 2; i++) {
// for (int j = 0; j < 2; j++) {
// config.layerConfig.set_directions(0, bool(i));
// config.layerConfig.set_directions(1, bool(j));
// testLayerGrad(config, "mdlstmemory", 100, false, useGpu);
// }
// }
// }
// }
//
// TEST(Layer, ParameterReluLayer) {
// auto testParameterReluLayer = [&](size_t inputSize, size_t channels) {
// TestConfig config;
// config.layerConfig.set_type("prelu");
// config.inputDefs.push_back({INPUT_DATA, "layer_0", inputSize, channels});
// config.layerConfig.add_inputs();
// config.layerConfig.set_size(inputSize);
// config.layerConfig.set_partial_sum(inputSize /
// channels); // size of feature map
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "prelu", 100, false, useGpu);
// }
// };
//
// testParameterReluLayer(192, 1);
// testParameterReluLayer(192, 3);
// testParameterReluLayer(192, 192);
// }
//
// TEST(Layer, ResizeLayer) {
// TestConfig config;
// config.biasSize = 0;
// config.layerConfig.set_type("resize");
// config.layerConfig.set_size(64);
//
// config.inputDefs.push_back({INPUT_DATA, "layer_0", 16, 0});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "resize", 100, false, useGpu);
// }
// }
//
// TEST(Layer, NCELayer) {
// TestConfig config;
// size_t numClasses = 4;
// config.layerConfig.set_type("nce");
// config.layerConfig.set_size(1);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_num_classes(numClasses);
// config.biasSize = numClasses;
//
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 16 *
// numClasses});
// config.inputDefs.push_back(
// {INPUT_LABEL, "label", /* dim= */ numClasses, /* paraSize= */ 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto withWeight : {false, true}) {
// if (withWeight) {
// config.inputDefs.push_back(
// {INPUT_DATA_TARGET, "weight", /* dim= */ 1, /* paraSize= */ 0});
// config.layerConfig.add_inputs();
// }
//
// for (auto isIdLabel : {false, true}) {
// config.inputDefs[1] = {
// isIdLabel ? INPUT_LABEL : INPUT_SPARSE_NON_VALUE_DATA,
// "label",
// /* dim= */ numClasses,
// /* paraSize= */ 0};
//
// for (auto withDist : {false, true}) {
// config.layerConfig.clear_neg_sampling_dist();
// if (withDist) {
// double sum = 0;
// for (size_t i = 0; i < numClasses; ++i) {
// real p = rand(); // NOLINT use rand_r
// config.layerConfig.add_neg_sampling_dist(p);
// sum += p;
// }
// for (size_t i = 0; i < numClasses; ++i) {
// real p = config.layerConfig.neg_sampling_dist(i) / sum;
// config.layerConfig.set_neg_sampling_dist(i, p);
// }
// }
// LOG(INFO) << "NCELayer "
// << " isIdLabel=" << isIdLabel << " withWeight=" <<
// withWeight
// << " withDist=" << withDist;
// // Not support GPU now
// testLayerGrad(config,
// "nce",
// 100,
// /* trans= */ false,
// /* useGpu */ false);
// }
// }
// }
// }
//
// TEST(Layer, GatedRecurrentLayer) {
// TestConfig config;
// config.layerConfig.set_type("gated_recurrent");
// config.layerConfig.set_size(4);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_active_gate_type("sigmoid");
// config.biasSize = 12;
//
// config.inputDefs.push_back(
// {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// for (auto reversed : {false, true}) {
// config.layerConfig.set_reversed(reversed);
// config.testState = !reversed;
// testLayerGrad(config, "gated_recurrent", 100, /* trans= */ false,
// useGpu);
// }
// }
// }
//
// TEST(Layer, GruStepLayer) {
// TestConfig config;
// config.layerConfig.set_type("gru_step");
// config.layerConfig.set_size(4);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_active_gate_type("sigmoid");
// config.biasSize = 12;
//
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "gruStep", 100, /* trans= */ false, useGpu);
// }
// }
//
// TEST(Layer, LstmStepLayer) {
// TestConfig config;
// config.layerConfig.set_type("lstm_step");
// config.layerConfig.set_size(4);
// config.layerConfig.set_active_type("sigmoid");
// config.layerConfig.set_active_state_type("sigmoid");
// config.layerConfig.set_active_gate_type("sigmoid");
// config.biasSize = 12;
// config.testAccumulate = false;
//
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 0});
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "lstmStep", 100, /* trans= */ false, useGpu);
// }
// }
//
// void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
// TestConfig config;
// const int CHANNELS = 10;
// const int IMG_SIZE = 16;
// const int IMG_SIZE_Y = 8;
// size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y;
// config.layerConfig.set_type(type);
// config.layerConfig.set_size(size);
// config.layerConfig.set_active_type("sigmoid");
// config.biasSize = CHANNELS;
// config.inputDefs.push_back({INPUT_DATA,
// "layer_0",
// /* dim= */ size,
// /* paraSize= */ CHANNELS});
//
// config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1,
// CHANNELS});
// config.inputDefs.back().isStatic = true;
// config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1,
// CHANNELS});
// config.inputDefs.back().isStatic = true;
//
// LayerInputConfig* input = config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// ImageConfig* img_conf = input->mutable_image_conf();
// img_conf->set_channels(CHANNELS);
// img_conf->set_img_size(IMG_SIZE);
// img_conf->set_img_size_y(IMG_SIZE_Y);
//
// testLayerGrad(config,
// "batch_norm",
// 64,
// /* trans= */ trans,
// useGpu,
// /* useWeight */ true);
// }
//
// TEST(Layer, BatchNormalizationLayer) {
// testBatchNormLayer("batch_norm", false, false);
// #ifndef PADDLE_ONLY_CPU
// testBatchNormLayer("batch_norm", false, true);
// if (hl_get_cudnn_lib_version() >= int(4000)) {
// testBatchNormLayer("cudnn_batch_norm", false, true);
// }
// #endif
// }
//
// TEST(Operator, conv) {
// TestConfig config;
// const int NUM_FILTERS = 16;
// const int FILTER_SIZE = 2;
// const int FILTER_SIZE_Y = 3;
// const int CHANNELS = 3;
// const int IMAGE_SIZE = 16;
// const int IMAGE_SIZE_Y = 8;
// OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
// operatorConf.set_type("conv");
// ConvConfig* conv = operatorConf.mutable_conv_conf();
// operatorConf.set_num_filters(NUM_FILTERS);
// conv->set_filter_size(FILTER_SIZE);
// conv->set_filter_size_y(FILTER_SIZE_Y);
// conv->set_channels(CHANNELS);
// conv->set_padding(0);
// conv->set_padding_y(1);
// conv->set_stride(2);
// conv->set_stride_y(2);
// conv->set_groups(1);
// conv->set_filter_channels(conv->channels() / conv->groups());
// conv->set_img_size(IMAGE_SIZE);
// conv->set_img_size_y(IMAGE_SIZE_Y);
// conv->set_output_x(outputSize(conv->img_size(),
// conv->filter_size(),
// conv->padding(),
// conv->stride(),
// /* caffeMode */ true));
// conv->set_output_y(outputSize(conv->img_size_y(),
// conv->filter_size_y(),
// conv->padding_y(),
// conv->stride_y(),
// /* caffeMode */ true));
// config.layerConfig.set_size(conv->output_x() * conv->output_y() *
// NUM_FILTERS);
//
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE_Y * CHANNELS, 0});
// config.inputDefs.push_back(
// {INPUT_DATA,
// "layer_1",
// FILTER_SIZE * FILTER_SIZE_Y * CHANNELS * NUM_FILTERS,
// 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// testOperatorGrad(config, operatorConf, 100, /*useGpu*/ true, false);
// }
//
// TEST(Layer, FeatureMapExpandLayer) {
// TestConfig config;
// config.layerConfig.set_type("featmap_expand");
// const int CHANNELS = 10;
// const int INPUT_SIZE = 100;
// config.layerConfig.set_size(INPUT_SIZE * CHANNELS);
// config.layerConfig.set_num_filters(CHANNELS);
// config.inputDefs.push_back({INPUT_SEQUENCE_DATA,
// "layer_0",
// /* dim= */ INPUT_SIZE,
// /* paraSize= */ 0});
// config.layerConfig.add_inputs();
// for (auto useGpu : {false, true}) {
// testLayerGrad(config,
// "featmap_expand",
// /*batch_size*/ 100,
// /* trans= */ false,
// useGpu,
// /* useWeight */ true);
// }
// }
//
// TEST(Layer, MultiplexLayer) {
// TestConfig config;
// const int LAYER_SIZE = 100;
// config.layerConfig.set_type("multiplex");
// config.layerConfig.set_size(LAYER_SIZE);
//
// config.inputDefs.push_back({INPUT_LABEL, "layer_0", 2, 0});
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_1", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
// config.inputDefs.push_back(
// {INPUT_DATA, "layer_2", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
// config.layerConfig.add_inputs();
//
// for (auto useGpu : {false, true}) {
// testLayerGrad(config, "multiplex", 512, /* trans= */ false, useGpu);
// }
// }
//
TEST
(
Operator
,
dot_mul
)
{
TestConfig
config
;
config
.
layerConfig
.
set_size
(
10
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
OperatorConfig
&
operatorConf
=
*
config
.
layerConfig
.
add_operator_confs
();
operatorConf
.
set_type
(
"dot_mul"
);
operatorConf
.
set_dotmul_scale
(
-
1
);
testOperatorGrad
(
config
,
operatorConf
,
100
,
false
,
false
);
}
TEST
(
Projection
,
context
)
{
for
(
auto
contextStart
:
{
-
5
,
-
3
,
-
1
,
0
,
3
})
{
for
(
auto
contextLength
:
{
1
,
2
,
5
,
7
})
{
for
(
auto
batchSize
:
{
1
,
2
,
5
,
20
,
50
})
{
for
(
auto
trainablePadding
:
{
false
,
true
})
{
LOG
(
INFO
)
<<
" contextStart="
<<
contextStart
<<
" contextLength="
<<
contextLength
<<
" batchSize="
<<
batchSize
<<
" trainablePadding="
<<
trainablePadding
;
ProjectionConfig
conf
;
conf
.
set_type
(
"context"
);
conf
.
set_input_size
(
10
);
conf
.
set_context_start
(
contextStart
);
conf
.
set_context_length
(
contextLength
);
conf
.
set_trainable_padding
(
trainablePadding
);
conf
.
set_output_size
(
conf
.
context_length
()
*
conf
.
input_size
());
int
pad
=
std
::
max
(
0
,
-
conf
.
context_start
())
+
std
::
max
(
0
,
conf
.
context_start
()
+
conf
.
context_length
()
-
1
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testProjectionGrad
(
conf
,
INPUT_SEQUENCE_DATA
,
trainablePadding
?
conf
.
input_size
()
*
pad
:
0
,
batchSize
,
useGpu
,
contextStart
+
contextLength
<=
1
);
// = testState
}
}
}
}
}
}
TEST
(
Projection
,
trans_fc
)
{
ProjectionConfig
conf
;
conf
.
set_type
(
"trans_fc"
);
conf
.
set_input_size
(
50
);
conf
.
set_output_size
(
20
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
1000
,
/* batchSize */
100
,
useGpu
);
}
}
TEST
(
Projection
,
fc
)
{
ProjectionConfig
conf
;
conf
.
set_type
(
"fc"
);
conf
.
set_input_size
(
10
);
conf
.
set_output_size
(
20
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
200
,
/* batchSize */
100
,
useGpu
);
}
}
TEST
(
Projection
,
dot_mul
)
{
ProjectionConfig
conf
;
conf
.
set_type
(
"dot_mul"
);
conf
.
set_input_size
(
20
);
conf
.
set_output_size
(
20
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
20
,
/* batchSize */
100
,
useGpu
);
}
}
TEST
(
Projection
,
table
)
{
ProjectionConfig
conf
;
conf
.
set_type
(
"table"
);
conf
.
set_input_size
(
10
);
conf
.
set_output_size
(
20
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testProjectionGrad
(
conf
,
INPUT_LABEL
,
/* parameterSize */
200
,
/* batchSize */
100
,
useGpu
);
}
}
TEST
(
Projection
,
identity
)
{
ProjectionConfig
conf
;
conf
.
set_type
(
"identity"
);
conf
.
set_input_size
(
10
);
conf
.
set_output_size
(
10
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
0
,
/* batchSize */
100
,
useGpu
);
}
}
TEST
(
Projection
,
scaling
)
{
ProjectionConfig
conf
;
conf
.
set_type
(
"scaling"
);
conf
.
set_input_size
(
10
);
conf
.
set_output_size
(
10
);
for
(
auto
useGpu
:
{
false
})
{
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
1
,
/* batchSize */
100
,
useGpu
);
}
}
void
testProjectionConv
(
size_t
groups
)
{
const
int
NUM_FILTERS
=
18
;
const
int
FILTER_SIZE
=
2
;
const
int
FILTER_SIZE_Y
=
3
;
const
int
CHANNELS
=
3
;
const
int
IMAGE_SIZE
=
16
;
ProjectionConfig
conf
;
conf
.
set_type
(
"conv"
);
conf
.
set_num_filters
(
NUM_FILTERS
);
ConvConfig
*
conv
=
conf
.
mutable_conv_conf
();
conv
->
set_filter_size
(
FILTER_SIZE
);
conv
->
set_filter_size_y
(
FILTER_SIZE_Y
);
conv
->
set_channels
(
CHANNELS
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
groups
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
);
int
output_y
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
conf
.
set_input_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
);
conf
.
set_output_size
(
output_x
*
output_y
*
NUM_FILTERS
);
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
NUM_FILTERS
*
CHANNELS
*
FILTER_SIZE
*
FILTER_SIZE_Y
/
groups
,
/* batchSize */
100
,
true
,
false
,
NUM_FILTERS
,
true
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Projection
,
conv
)
{
testProjectionConv
(
1
);
testProjectionConv
(
3
);
}
#endif
TEST
(
Layer
,
BilinearInterpLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"bilinear_interp"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
4096
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
BilinearInterpConfig
*
bilinear
=
input
->
mutable_bilinear_interp_conf
();
ImageConfig
*
image
=
bilinear
->
mutable_image_conf
();
image
->
set_img_size
(
32
);
image
->
set_img_size_y
(
32
);
image
->
set_channels
(
4
);
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
outSize
:
{
32
,
64
})
{
bilinear
->
set_out_size_x
(
outSize
);
bilinear
->
set_out_size_y
(
outSize
);
testLayerGrad
(
config
,
"bilinear_interp"
,
10
,
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
concat
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
config
.
layerConfig
.
set_type
(
"concat"
);
config
.
layerConfig
.
set_size
(
15
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
5
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"concat"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
AddtoLayer
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
config
.
layerConfig
.
set_type
(
"addto"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"addto"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
CRFLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"crf"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
10
,
120
});
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_LABEL
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// Not support GPU now
testLayerGrad
(
config
,
"crf"
,
100
,
/* trans */
false
,
/* useGpu */
false
,
false
/*useWeight*/
,
0.03
/*epsilon*/
);
}
TEST
(
Layer
,
CTCLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"ctc"
);
config
.
layerConfig
.
set_norm_by_times
(
false
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_LABEL
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"ctc"
,
100
,
/* trans */
false
,
/* useGpu */
useGpu
);
}
}
TEST
(
Layer
,
cosSimLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"cos"
);
config
.
layerConfig
.
set_size
(
1
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
50
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"cos"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
CosSimVecMatLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"cos_vm"
);
config
.
layerConfig
.
set_size
(
5
);
// output size
config
.
layerConfig
.
set_cos_scale
(
2.0
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
20
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
100
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"cos_vm"
,
100
,
false
,
useGpu
);
}
}
void
testConvLayer
(
const
string
&
type
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
biasSize
=
16
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_num_filters
(
16
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
384
,
288
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
3
);
conv
->
set_channels
(
3
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_img_size_y
(
8
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
conv
->
set_output_y
(
outputSize
(
conv
->
img_size_y
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_y
()
*
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"conv"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
TEST
(
Layer
,
convLayer
)
{
testConvLayer
(
"exconv"
,
/* trans= */
false
,
/* useGpu= */
false
);
#ifndef PADDLE_ONLY_CPU
testConvLayer
(
"exconv"
,
/* trans= */
false
,
/* useGpu= */
true
);
testConvLayer
(
"cudnn_conv"
,
/* trans= */
false
,
/* useGpu= */
true
);
#endif
}
void
testConvTransLayer
(
const
string
&
type
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
biasSize
=
3
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_num_filters
(
3
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1024
,
288
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
conv
->
set_filter_size_y
(
3
);
conv
->
set_channels
(
16
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
3
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
img_size
()
*
conv
->
img_size
()
*
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"convTrans"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"convTrans"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
TEST
(
Layer
,
convTransLayer
)
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testConvTransLayer
(
"exconvt"
,
/* trans= */
false
,
/* useGpu= */
useGpu
);
}
}
TEST
(
Layer
,
blockExpandLayer
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
config
.
layerConfig
.
set_type
(
"blockexpand"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
6144
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
BlockExpandConfig
*
blockExpand
=
input
->
mutable_block_expand_conf
();
blockExpand
->
set_img_size_x
(
64
);
blockExpand
->
set_img_size_y
(
32
);
blockExpand
->
set_channels
(
3
);
blockExpand
->
set_padding_x
(
0
);
blockExpand
->
set_padding_y
(
0
);
blockExpand
->
set_block_x
(
4
);
blockExpand
->
set_block_y
(
32
);
blockExpand
->
set_stride_x
(
2
);
blockExpand
->
set_stride_y
(
2
);
blockExpand
->
set_output_x
(
outputSize
(
blockExpand
->
img_size_x
(),
blockExpand
->
block_x
(),
blockExpand
->
padding_x
(),
blockExpand
->
stride_x
(),
/* caffeMode */
false
));
blockExpand
->
set_output_y
(
outputSize
(
blockExpand
->
img_size_y
(),
blockExpand
->
block_y
(),
blockExpand
->
padding_y
(),
blockExpand
->
stride_y
(),
/* caffeMode */
false
));
config
.
layerConfig
.
set_size
(
blockExpand
->
block_x
()
*
blockExpand
->
block_y
()
*
blockExpand
->
channels
());
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"blockexpand"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
maxoutLayer
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
config
.
layerConfig
.
set_type
(
"maxout"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
4096
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
MaxOutConfig
*
maxout
=
input
->
mutable_maxout_conf
();
ImageConfig
*
image
=
maxout
->
mutable_image_conf
();
image
->
set_img_size
(
32
);
image
->
set_img_size_y
(
32
);
image
->
set_channels
(
4
);
maxout
->
set_groups
(
2
);
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"maxout"
,
10
,
false
,
useGpu
);
}
}
void
testFcLayer
(
string
format
,
size_t
nnz
)
{
TestConfig
config
;
config
.
biasSize
=
4096
;
config
.
layerConfig
.
set_type
(
"fc"
);
config
.
layerConfig
.
set_size
(
4096
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_drop_rate
(
0.1
);
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
8192
,
nnz
,
ParaSparse
(
format
)});
config
.
layerConfig
.
add_inputs
();
LOG
(
INFO
)
<<
config
.
inputDefs
[
0
].
sparse
.
sparse
<<
" "
<<
config
.
inputDefs
[
0
].
sparse
.
format
;
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"fc"
,
100
,
/* trans */
false
,
useGpu
,
/* weight */
true
);
}
}
TEST
(
Layer
,
fcLayer
)
{
testFcLayer
(
""
,
4096
*
4096
*
2
);
testFcLayer
(
"csc"
,
4096
*
40
);
testFcLayer
(
"csr"
,
4096
*
40
);
}
TEST
(
Layer
,
SelectiveFullyConnectedLayer
)
{
TestConfig
config
;
size_t
nin
=
16
;
size_t
nout
=
256
;
config
.
layerConfig
.
set_type
(
"selective_fc"
);
config
.
layerConfig
.
set_size
(
nout
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_has_selected_colums
(
true
);
config
.
layerConfig
.
set_selective_fc_pass_generation
(
false
);
config
.
biasSize
=
nout
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"input0"
,
nin
,
nin
*
nout
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
(
{
INPUT_SPARSE_NON_VALUE_DATA
,
"index"
,
nout
,
0
,
ParaSparse
(
"csr"
,
true
)});
config
.
layerConfig
.
add_inputs
();
testLayerGrad
(
config
,
"selective_fc"
,
100
,
/* trans= */
false
,
/* useGup= */
false
,
false
);
#ifndef PADDLE_ONLY_CPU
testLayerGrad
(
config
,
"selective_fc"
,
100
,
/* trans= */
false
,
/* useGup= */
true
,
false
);
#endif
}
TEST
(
Layer
,
DataNormLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"data_norm"
);
config
.
layerConfig
.
set_size
(
20
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
20
,
100
});
config
.
inputDefs
.
back
().
isStatic
=
true
;
config
.
layerConfig
.
add_inputs
();
for
(
auto
strategy
:
{
"z-score"
,
"min-max"
,
"decimal-scaling"
})
{
config
.
layerConfig
.
set_data_norm_strategy
(
strategy
);
// The parameters are static, so not support GPU now
testLayerGrad
(
config
,
"data_norm"
,
200
,
/* trans */
false
,
/* useGpu */
false
);
}
}
TEST
(
Layer
,
hsigmoidLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"hsigmoid"
);
config
.
layerConfig
.
set_num_classes
(
5
);
config
.
layerConfig
.
set_size
(
1
);
config
.
biasSize
=
config
.
layerConfig
.
num_classes
()
-
1
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
200
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"layer_1"
,
5
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// Not support GPU now
testLayerGrad
(
config
,
"hsigmoid"
,
100
,
/* trans */
false
,
/* useGpu */
false
);
}
TEST
(
Layer
,
multi_cross
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"multi-class-cross-entropy"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"multi-class-cross-entropy"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
Layer
,
multi_binary_label_sparse_mat
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"multi_binary_label_cross_entropy"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_SPARSE_NON_VALUE_DATA
,
"layer_1"
,
50
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"multi_binary_label_cross_entropy"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
layer
,
multi_binary_label_id
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"multi_binary_label_cross_entropy"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"multi_binary_label_cross_entropy"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
Layer
,
multi_cross_with_selfnorm
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"multi_class_cross_entropy_with_selfnorm"
);
config
.
layerConfig
.
set_softmax_selfnorm_alpha
(
0.1
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// Not support GPU now
testLayerGrad
(
config
,
"multi_class_cross_entropy_with_selfnorm"
,
100
,
/* trans */
false
,
/* useGpu */
false
);
}
TEST
(
Layer
,
multi_cross_soft
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"soft_binary_class_cross_entropy"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"soft_binary_class_cross_entropy"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
Layer
,
square_error
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"square_error"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"square_error"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
Layer
,
sparse_square_error
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"square_error"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_SPARSE_NON_VALUE_DATA
,
"layer_1"
,
50
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// "GpuSparseMatrix" as label is not supported
testLayerGrad
(
config
,
"square_error"
,
100
,
/* trans */
false
,
/* useGpu */
false
);
}
TEST
(
Layer
,
sparse_float_square_error
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"square_error"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
50
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_SPARSE_FLOAT_VALUE_DATA
,
"layer_1"
,
50
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// "GpuSparseMatrix" as label is not supported
testLayerGrad
(
config
,
"square_error"
,
100
,
/* trans */
false
,
/* useGpu */
false
);
}
TEST
(
Layer
,
square_error_weighted
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"square_error"
);
config
.
biasSize
=
0
;
config
.
testAccumulate
=
false
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_1"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_2"
,
1
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"square_error"
,
100
,
/* trans */
false
,
useGpu
);
}
}
TEST
(
Layer
,
huber_two_class
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"huber"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"layer_1"
,
2
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"huber"
,
100
,
/* trans */
false
,
useGpu
);
}
}
void
testExpandLayer
(
string
trans_type
,
bool
hasSubseq
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"expand"
);
config
.
inputDefs
.
push_back
(
{
trans_type
==
"non-seq"
?
INPUT_DENSE_DIM_DATA
:
INPUT_SEQUENCE_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
(
{
hasSubseq
?
INPUT_HASSUB_SEQUENCE_DATA
:
INPUT_SEQUENCE_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_trans_type
(
trans_type
);
LOG
(
INFO
)
<<
" trans_type="
<<
trans_type
<<
" hasSubseq="
<<
hasSubseq
;
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"expand"
,
30
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
ExpandLayer
)
{
testExpandLayer
(
"non-seq"
,
false
);
// non-seq expand to seq
testExpandLayer
(
"non-seq"
,
true
);
// non-seq expand to hasSubseq
testExpandLayer
(
"seq"
,
true
);
// seq expand to hasSubseq
}
void
testDegradeLayer
(
bool
hasSubseq
,
string
layer_type
,
string
trans_type
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
layer_type
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
(
{
hasSubseq
?
INPUT_HASSUB_SEQUENCE_DATA
:
INPUT_SEQUENCE_DATA
,
"layer_0"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_trans_type
(
trans_type
);
auto
testDegradeLayerGrad
=
[](
TestConfig
&
config
,
string
layer_type
)
{
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
layer_type
,
100
,
false
,
useGpu
);
}
};
if
(
layer_type
==
"average"
)
{
for
(
auto
strategy
:
{
"average"
,
"sum"
,
"squarerootn"
})
{
LOG
(
INFO
)
<<
" hasSubseq="
<<
hasSubseq
<<
" trans_type="
<<
trans_type
<<
" average_strategy="
<<
strategy
;
config
.
layerConfig
.
set_average_strategy
(
strategy
);
testDegradeLayerGrad
(
config
,
layer_type
);
}
}
else
{
LOG
(
INFO
)
<<
" hasSubseq="
<<
hasSubseq
<<
" trans_type="
<<
trans_type
;
testDegradeLayerGrad
(
config
,
layer_type
);
}
}
TEST
(
Layer
,
MaxLayer
)
{
testDegradeLayer
(
false
,
"max"
,
"non-seq"
);
// seq max to non-seq
testDegradeLayer
(
true
,
"max"
,
"non-seq"
);
// hasSubseq max to non-seq
testDegradeLayer
(
true
,
"max"
,
"seq"
);
// hasSubseq max to seq
}
TEST
(
Layer
,
SequenceLastInstanceLayer
)
{
testDegradeLayer
(
false
,
"seqlastins"
,
"non-seq"
);
// seq seqlastins to non-seq
testDegradeLayer
(
true
,
"seqlastins"
,
"non-seq"
);
// hasSubseq seqlastins to non-seq
testDegradeLayer
(
true
,
"seqlastins"
,
"seq"
);
// hasSubseq seqlastins to
seq
}
TEST
(
Layer
,
AverageLayer
)
{
testDegradeLayer
(
false
,
"average"
,
"non-seq"
);
// seq average to non-seq
testDegradeLayer
(
true
,
"average"
,
"non-seq"
);
// hasSubseq average to
non
-
seq
testDegradeLayer
(
true
,
"average"
,
"seq"
);
// hasSubseq average to seq
}
TEST
(
Layer
,
SequenceConcatLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"seqconcat"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"seqconcat"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
SequenceReshapeLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"seqreshape"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
100
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"seqreshape"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
ConvShiftLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"conv_shift"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
3
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
// Not support GPU now
testLayerGrad
(
config
,
"conv_shift"
,
100
,
false
,
false
);
}
TEST
(
Layer
,
PowerLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"power"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"power"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
ConvexCombinationLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"convex_comb"
);
config
.
layerConfig
.
set_size
(
20
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
5
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
100
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"convex_comb"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
InterpolationLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"interpolation"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_2"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"interpolation"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
OuterProdLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"out_prod"
);
config
.
layerConfig
.
set_size
(
100
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"out_prod"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
SlopeInterceptLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"slope_intercept"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
layerConfig
.
set_slope
(
1.0
);
config
.
layerConfig
.
set_intercept
(
0.1
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"slope_intercept"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
ScalingLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"scaling"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
10
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"scaling"
,
100
,
false
,
useGpu
);
}
}
void
testNormLayer
(
const
string
&
normType
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"norm"
);
config
.
layerConfig
.
set_active_type
(
"relu"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1568
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
NormConfig
*
norm
=
input
->
mutable_norm_conf
();
norm
->
set_norm_type
(
normType
);
norm
->
set_channels
(
16
);
norm
->
set_size
(
5
);
norm
->
set_scale
(
0.001
);
norm
->
set_pow
(
0.75
);
norm
->
set_blocked
(
0
);
norm
->
set_img_size
(
14
);
norm
->
set_img_size_y
(
7
);
norm
->
set_output_x
(
norm
->
img_size
());
norm
->
set_output_y
(
norm
->
img_size_y
());
if
(
norm
->
norm_type
()
==
"cmrnorm"
||
norm
->
norm_type
()
==
"cmrnorm-projection"
)
{
norm
->
set_scale
(
norm
->
scale
()
/
norm
->
size
());
}
else
{
norm
->
set_scale
(
norm
->
scale
()
/
(
norm
->
size
()
*
norm
->
size
()));
}
config
.
layerConfig
.
set_size
(
norm
->
output_x
()
*
norm
->
output_y
()
*
norm
->
channels
());
config
.
biasSize
=
0
;
testLayerGrad
(
config
,
"norm"
,
100
,
trans
,
useGpu
);
}
TEST
(
Layer
,
NormLayer
)
{
testNormLayer
(
"cmrnorm-projection"
,
/* trans= */
false
,
/* useGpu= */
true
);
testNormLayer
(
"cmrnorm-projection"
,
/* trans= */
false
,
/* useGpu= */
false
);
}
void
setPoolConfig
(
TestConfig
*
config
,
PoolConfig
*
pool
,
const
string
&
poolType
)
{
(
*
config
).
biasSize
=
0
;
(
*
config
).
layerConfig
.
set_type
(
"pool"
);
(
*
config
).
layerConfig
.
set_num_filters
(
16
);
int
kw
=
3
,
kh
=
3
;
int
pw
=
0
,
ph
=
0
;
int
sw
=
2
,
sh
=
2
;
pool
->
set_pool_type
(
poolType
);
pool
->
set_channels
(
16
);
pool
->
set_size_x
(
kw
);
pool
->
set_size_y
(
kh
);
pool
->
set_start
(
0
);
pool
->
set_padding
(
pw
);
pool
->
set_padding_y
(
ph
);
pool
->
set_stride
(
sw
);
pool
->
set_stride_y
(
sh
);
int
ow
=
outputSize
(
pool
->
img_size
(),
kw
,
pw
,
sw
,
/* caffeMode */
false
);
int
oh
=
outputSize
(
pool
->
img_size_y
(),
kh
,
ph
,
sh
,
/* caffeMode */
false
);
pool
->
set_output_x
(
ow
);
pool
->
set_output_y
(
oh
);
}
void
testPoolLayer
(
const
string
&
poolType
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
3136
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
PoolConfig
*
pool
=
input
->
mutable_pool_conf
();
pool
->
set_img_size
(
14
);
pool
->
set_img_size_y
(
14
);
setPoolConfig
(
&
config
,
pool
,
poolType
);
config
.
layerConfig
.
set_size
(
pool
->
output_x
()
*
pool
->
output_y
()
*
pool
->
channels
());
testLayerGrad
(
config
,
"pool"
,
100
,
trans
,
useGpu
);
}
#ifndef PADDLE_ONLY_CPU
void
testPoolLayer2
(
const
string
&
poolType
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
3200
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
PoolConfig
*
pool
=
input
->
mutable_pool_conf
();
pool
->
set_size_y
(
4
);
pool
->
set_stride_y
(
3
);
pool
->
set_img_size
(
10
);
pool
->
set_img_size_y
(
20
);
setPoolConfig
(
&
config
,
pool
,
poolType
);
pool
->
set_output_y
((
pool
->
img_size_y
()
-
pool
->
start
()
-
pool
->
size_y
())
/
((
float
)
pool
->
stride_y
())
+
1.5
);
config
.
layerConfig
.
set_size
(
pool
->
output_x
()
*
pool
->
output_y
()
*
pool
->
channels
());
testLayerGrad
(
config
,
"pool"
,
100
,
trans
,
useGpu
);
}
#endif
TEST
(
Layer
,
PoolLayer
)
{
testPoolLayer
(
"avg-projection"
,
/* trans= */
false
,
/* useGpu= */
false
);
testPoolLayer
(
"max-projection"
,
/* trans= */
false
,
/* useGpu= */
false
);
#ifndef PADDLE_ONLY_CPU
testPoolLayer
(
"avg-projection"
,
/* trans= */
false
,
/* useGpu= */
true
);
testPoolLayer
(
"max-projection"
,
/* trans= */
false
,
/* useGpu= */
true
);
testPoolLayer
(
"cudnn-max-pool"
,
/* trans= */
false
,
/* useGpu= */
true
);
testPoolLayer
(
"cudnn-avg-pool"
,
/* trans= */
false
,
/* useGpu= */
true
);
testPoolLayer2
(
"cudnn-max-pool"
,
/* trans= */
false
,
/* useGpu= */
true
);
testPoolLayer2
(
"cudnn-avg-pool"
,
/* trans= */
false
,
/* useGpu= */
true
);
#endif
}
void
testSppLayer
(
const
string
&
poolType
,
const
int
pyramidHeight
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"spp"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
3200
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
SppConfig
*
sppConfig
=
input
->
mutable_spp_conf
();
sppConfig
->
set_pool_type
(
poolType
);
sppConfig
->
set_pyramid_height
(
pyramidHeight
);
ImageConfig
*
imageConfig
=
sppConfig
->
mutable_image_conf
();
imageConfig
->
set_channels
(
16
);
imageConfig
->
set_img_size
(
10
);
imageConfig
->
set_img_size_y
(
20
);
int
outputSize
=
(
std
::
pow
(
4
,
sppConfig
->
pyramid_height
())
-
1
)
/
(
4
-
1
);
config
.
layerConfig
.
set_size
(
outputSize
*
imageConfig
->
channels
());
testLayerGrad
(
config
,
"spp"
,
100
,
trans
,
useGpu
);
}
TEST
(
Layer
,
SpatialPyramidPoolLayer
)
{
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
pyramidHeight
:
{
1
,
2
,
3
})
{
testSppLayer
(
"avg-projection"
,
pyramidHeight
,
false
,
useGpu
);
testSppLayer
(
"max-projection"
,
pyramidHeight
,
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
rankCostLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"rank-cost"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_2"
,
1
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"rank-cost"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
sumCostLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"sum_cost"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"sum_cost"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
weightedRankCostLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"rank-cost"
);
config
.
biasSize
=
0
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_2"
,
1
,
0
});
config
.
inputDefs
.
push_back
({
INPUT_DATA_TARGET
,
"layer_3"
,
1
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"weighted-rank-cost"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
TensorLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"tensor"
);
config
.
layerConfig
.
set_size
(
10
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
biasSize
=
config
.
layerConfig
.
size
();
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
5
,
250
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1"
,
5
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"tensor"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
RecurrentLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"recurrent"
);
config
.
layerConfig
.
set_size
(
4
);
config
.
layerConfig
.
set_active_type
(
"tanh"
);
config
.
biasSize
=
4
;
config
.
inputDefs
.
push_back
(
{
INPUT_SEQUENCE_DATA
,
"layer_0"
,
/* dim= */
4
,
/* paraSize= */
16
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
reversed
:
{
false
,
true
})
{
config
.
layerConfig
.
set_reversed
(
reversed
);
config
.
testState
=
!
reversed
;
testLayerGrad
(
config
,
"recurrent"
,
50
,
/* trans= */
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
LstmLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"lstmemory"
);
config
.
layerConfig
.
set_size
(
4
);
config
.
layerConfig
.
set_active_type
(
"tanh"
);
config
.
layerConfig
.
set_active_state_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_gate_type
(
"sigmoid"
);
config
.
biasSize
=
28
;
config
.
inputDefs
.
push_back
(
{
INPUT_SEQUENCE_DATA
,
"layer_0"
,
/* dim= */
16
,
/* paraSize= */
64
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
reversed
:
{
false
,
true
})
{
config
.
layerConfig
.
set_reversed
(
reversed
);
config
.
testState
=
!
reversed
;
testLayerGrad
(
config
,
"lstmemory"
,
100
,
/* trans= */
false
,
useGpu
);
}
}
for
(
auto
useGpu
:
{
true
})
{
config
.
testBatchState
=
true
;
config
.
layerConfig
.
set_reversed
(
false
);
testLayerGrad
(
config
,
"lstmemory"
,
10
,
/* trans= */
false
,
useGpu
);
}
}
TEST
(
Layer
,
MDLstmLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"mdlstmemory"
);
config
.
layerConfig
.
set_size
(
4
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_state_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_gate_type
(
"sigmoid"
);
config
.
biasSize
=
4
*
9
;
config
.
inputDefs
.
push_back
(
{
INPUT_SEQUENCE_MDIM_DATA
,
"layer_0"
,
4
*
5
,
4
*
4
*
5
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_directions
(
true
);
config
.
layerConfig
.
add_directions
(
true
);
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
for
(
int
j
=
0
;
j
<
2
;
j
++
)
{
config
.
layerConfig
.
set_directions
(
0
,
bool
(
i
));
config
.
layerConfig
.
set_directions
(
1
,
bool
(
j
));
testLayerGrad
(
config
,
"mdlstmemory"
,
100
,
false
,
useGpu
);
}
}
}
}
TEST
(
Layer
,
ParameterReluLayer
)
{
auto
testParameterReluLayer
=
[
&
](
size_t
inputSize
,
size_t
channels
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"prelu"
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
inputSize
,
channels
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
set_size
(
inputSize
);
config
.
layerConfig
.
set_partial_sum
(
inputSize
/
channels
);
// size of feature map
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"prelu"
,
100
,
false
,
useGpu
);
}
};
testParameterReluLayer
(
192
,
1
);
testParameterReluLayer
(
192
,
3
);
testParameterReluLayer
(
192
,
192
);
}
TEST
(
Layer
,
ResizeLayer
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
config
.
layerConfig
.
set_type
(
"resize"
);
config
.
layerConfig
.
set_size
(
64
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
16
,
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"resize"
,
100
,
false
,
useGpu
);
}
}
TEST
(
Layer
,
NCELayer
)
{
TestConfig
config
;
size_t
numClasses
=
4
;
config
.
layerConfig
.
set_type
(
"nce"
);
config
.
layerConfig
.
set_size
(
1
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_num_classes
(
numClasses
);
config
.
biasSize
=
numClasses
;
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* dim= */
16
,
/* paraSize= */
16
*
numClasses
});
config
.
inputDefs
.
push_back
(
{
INPUT_LABEL
,
"label"
,
/* dim= */
numClasses
,
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
withWeight
:
{
false
,
true
})
{
if
(
withWeight
)
{
config
.
inputDefs
.
push_back
(
{
INPUT_DATA_TARGET
,
"weight"
,
/* dim= */
1
,
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
}
for
(
auto
isIdLabel
:
{
false
,
true
})
{
config
.
inputDefs
[
1
]
=
{
isIdLabel
?
INPUT_LABEL
:
INPUT_SPARSE_NON_VALUE_DATA
,
"label"
,
/* dim= */
numClasses
,
/* paraSize= */
0
};
for
(
auto
withDist
:
{
false
,
true
})
{
config
.
layerConfig
.
clear_neg_sampling_dist
();
if
(
withDist
)
{
double
sum
=
0
;
for
(
size_t
i
=
0
;
i
<
numClasses
;
++
i
)
{
real
p
=
rand
();
// NOLINT use rand_r
config
.
layerConfig
.
add_neg_sampling_dist
(
p
);
sum
+=
p
;
}
for
(
size_t
i
=
0
;
i
<
numClasses
;
++
i
)
{
real
p
=
config
.
layerConfig
.
neg_sampling_dist
(
i
)
/
sum
;
config
.
layerConfig
.
set_neg_sampling_dist
(
i
,
p
);
}
}
LOG
(
INFO
)
<<
"NCELayer "
<<
" isIdLabel="
<<
isIdLabel
<<
" withWeight="
<<
withWeight
<<
" withDist="
<<
withDist
;
// Not support GPU now
testLayerGrad
(
config
,
"nce"
,
100
,
/* trans= */
false
,
/* useGpu */
false
);
}
}
}
}
TEST
(
Layer
,
GatedRecurrentLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"gated_recurrent"
);
config
.
layerConfig
.
set_size
(
4
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_gate_type
(
"sigmoid"
);
config
.
biasSize
=
12
;
config
.
inputDefs
.
push_back
(
{
INPUT_SEQUENCE_DATA
,
"layer_0"
,
/* dim= */
12
,
/* paraSize= */
48
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
for
(
auto
reversed
:
{
false
,
true
})
{
config
.
layerConfig
.
set_reversed
(
reversed
);
config
.
testState
=
!
reversed
;
testLayerGrad
(
config
,
"gated_recurrent"
,
100
,
/* trans= */
false
,
useGpu
);
}
}
}
TEST
(
Layer
,
GruStepLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"gru_step"
);
config
.
layerConfig
.
set_size
(
4
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_gate_type
(
"sigmoid"
);
config
.
biasSize
=
12
;
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* dim= */
12
,
/* paraSize= */
48
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_1"
,
/* dim= */
4
,
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"gruStep"
,
100
,
/* trans= */
false
,
useGpu
);
}
}
TEST
(
Layer
,
LstmStepLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"lstm_step"
);
config
.
layerConfig
.
set_size
(
4
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_state_type
(
"sigmoid"
);
config
.
layerConfig
.
set_active_gate_type
(
"sigmoid"
);
config
.
biasSize
=
12
;
config
.
testAccumulate
=
false
;
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* dim= */
16
,
/* paraSize= */
0
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_1"
,
/* dim= */
4
,
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"lstmStep"
,
100
,
/* trans= */
false
,
useGpu
);
}
}
void
testBatchNormLayer
(
const
string
&
type
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
const
int
CHANNELS
=
10
;
const
int
IMG_SIZE
=
16
;
const
int
IMG_SIZE_Y
=
8
;
size_t
size
=
CHANNELS
*
IMG_SIZE
*
IMG_SIZE_Y
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_size
(
size
);
config
.
layerConfig
.
set_active_type
(
"sigmoid"
);
config
.
biasSize
=
CHANNELS
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
/* dim= */
size
,
/* paraSize= */
CHANNELS
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_1_running_mean"
,
1
,
CHANNELS
});
config
.
inputDefs
.
back
().
isStatic
=
true
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_2_running_var"
,
1
,
CHANNELS
});
config
.
inputDefs
.
back
().
isStatic
=
true
;
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
ImageConfig
*
img_conf
=
input
->
mutable_image_conf
();
img_conf
->
set_channels
(
CHANNELS
);
img_conf
->
set_img_size
(
IMG_SIZE
);
img_conf
->
set_img_size_y
(
IMG_SIZE_Y
);
testLayerGrad
(
config
,
"batch_norm"
,
64
,
/* trans= */
trans
,
useGpu
,
/* useWeight */
true
);
}
TEST
(
Layer
,
BatchNormalizationLayer
)
{
testBatchNormLayer
(
"batch_norm"
,
false
,
false
);
#ifndef PADDLE_ONLY_CPU
testBatchNormLayer
(
"batch_norm"
,
false
,
true
);
if
(
hl_get_cudnn_lib_version
()
>=
int
(
4000
))
{
testBatchNormLayer
(
"cudnn_batch_norm"
,
false
,
true
);
}
#endif
}
TEST
(
Operator
,
conv
)
{
TestConfig
config
;
const
int
NUM_FILTERS
=
16
;
const
int
FILTER_SIZE
=
2
;
const
int
FILTER_SIZE_Y
=
3
;
const
int
CHANNELS
=
3
;
const
int
IMAGE_SIZE
=
16
;
const
int
IMAGE_SIZE_Y
=
8
;
OperatorConfig
&
operatorConf
=
*
config
.
layerConfig
.
add_operator_confs
();
operatorConf
.
set_type
(
"conv"
);
ConvConfig
*
conv
=
operatorConf
.
mutable_conv_conf
();
operatorConf
.
set_num_filters
(
NUM_FILTERS
);
conv
->
set_filter_size
(
FILTER_SIZE
);
conv
->
set_filter_size_y
(
FILTER_SIZE_Y
);
conv
->
set_channels
(
CHANNELS
);
conv
->
set_padding
(
0
);
conv
->
set_padding_y
(
1
);
conv
->
set_stride
(
2
);
conv
->
set_stride_y
(
2
);
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
conv
->
set_img_size_y
(
IMAGE_SIZE_Y
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
conv
->
set_output_y
(
outputSize
(
conv
->
img_size_y
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_y
()
*
NUM_FILTERS
);
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
IMAGE_SIZE
*
IMAGE_SIZE_Y
*
CHANNELS
,
0
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_1"
,
FILTER_SIZE
*
FILTER_SIZE_Y
*
CHANNELS
*
NUM_FILTERS
,
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
testOperatorGrad
(
config
,
operatorConf
,
100
,
/*useGpu*/
true
,
false
);
}
TEST
(
Layer
,
FeatureMapExpandLayer
)
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"featmap_expand"
);
const
int
CHANNELS
=
10
;
const
int
INPUT_SIZE
=
100
;
config
.
layerConfig
.
set_size
(
INPUT_SIZE
*
CHANNELS
);
config
.
layerConfig
.
set_num_filters
(
CHANNELS
);
config
.
inputDefs
.
push_back
({
INPUT_SEQUENCE_DATA
,
"layer_0"
,
/* dim= */
INPUT_SIZE
,
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"featmap_expand"
,
/*batch_size*/
100
,
/* trans= */
false
,
useGpu
,
/* useWeight */
true
);
}
}
TEST
(
Layer
,
MultiplexLayer
)
{
TestConfig
config
;
const
int
LAYER_SIZE
=
100
;
config
.
layerConfig
.
set_type
(
"multiplex"
);
config
.
layerConfig
.
set_size
(
LAYER_SIZE
);
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"layer_0"
,
2
,
0
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_1"
,
/* dim= */
LAYER_SIZE
,
/* paraSize= */
0
});
config
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_2"
,
/* dim= */
LAYER_SIZE
,
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"multiplex"
,
512
,
/* trans= */
false
,
useGpu
);
}
}
TEST
(
Layer
,
PadLayer
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
6b61a096
...
...
@@ -1109,7 +1109,7 @@ def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
bilinear_conf
.
out_size_y
=
bilinear
.
out_size_y
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
,
ceil_mode
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
,
'cudnn-max-pool'
,
'cudnn-avg-pool'
...
...
@@ -1134,10 +1134,10 @@ def parse_pool(pool, input_layer_name, pool_conf):
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
output_x
=
cnn_output_size
(
pool_conf
.
img_size
,
pool_conf
.
size_x
,
pool_conf
.
padding
,
pool_conf
.
stride
,
Fals
e
)
not
ceil_mod
e
)
pool_conf
.
output_y
=
cnn_output_size
(
pool_conf
.
img_size_y
,
pool_conf
.
size_y
,
pool_conf
.
padding_y
,
pool_conf
.
stride_y
,
Fals
e
)
pool_conf
.
stride_y
,
not
ceil_mod
e
)
def
parse_spp
(
spp
,
input_layer_name
,
spp_conf
):
...
...
@@ -1810,9 +1810,8 @@ class ConvTransLayer(ConvTransLayerBase):
@
config_layer
(
'norm'
)
class
NormLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
device
=
device
)
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
NormLayer
,
self
).
__init__
(
name
,
'norm'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
norm_conf
=
self
.
config
.
inputs
[
input_index
].
norm_conf
...
...
@@ -1824,23 +1823,22 @@ class NormLayer(LayerBase):
@
config_layer
(
'pool'
)
class
PoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
device
=
device
)
def
__init__
(
self
,
name
,
inputs
,
ceil_mode
=
True
,
**
xargs
):
super
(
PoolLayer
,
self
).
__init__
(
name
,
'pool'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
parse_pool
(
self
.
inputs
[
input_index
].
pool
,
input_layer
.
name
,
pool_conf
)
pool_conf
,
ceil_mode
)
self
.
set_cnn_layer
(
name
,
pool_conf
.
output_y
,
pool_conf
.
output_x
,
pool_conf
.
channels
)
@
config_layer
(
'spp'
)
class
SpatialPyramidPoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
SpatialPyramidPoolLayer
,
self
).
__init__
(
name
,
'spp'
,
0
,
inputs
=
inputs
,
device
=
device
)
name
,
'spp'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
spp_conf
=
self
.
config
.
inputs
[
input_index
].
spp_conf
...
...
@@ -1877,7 +1875,6 @@ class BatchNormLayer(LayerBase):
inputs
,
active_type
=
"linear"
,
bias
=
True
,
device
=
None
,
use_global_stats
=
True
,
moving_average_fraction
=
0.9
,
batch_norm_type
=
None
,
...
...
@@ -1919,7 +1916,6 @@ class BatchNormLayer(LayerBase):
0
,
active_type
=
active_type
,
inputs
=
inputs
,
device
=
device
,
**
xargs
)
if
use_global_stats
is
not
None
:
...
...
@@ -1953,9 +1949,9 @@ class BatchNormLayer(LayerBase):
@
config_layer
(
'trans'
)
class
TransLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
TransLayer
,
self
).
__init__
(
name
,
'trans'
,
0
,
inputs
=
inputs
,
device
=
device
)
name
,
'trans'
,
0
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'TransLayer must have one and only one input'
)
...
...
@@ -1964,9 +1960,9 @@ class TransLayer(LayerBase):
@
config_layer
(
'resize'
)
class
ResizeLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
size
,
inputs
,
device
=
None
):
def
__init__
(
self
,
name
,
size
,
inputs
,
**
xargs
):
super
(
ResizeLayer
,
self
).
__init__
(
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
device
=
device
)
name
,
'resize'
,
size
=
size
,
inputs
=
inputs
,
**
xargs
)
config_assert
(
len
(
self
.
inputs
)
==
1
,
'ResizeLayer must have one and only one input'
)
...
...
@@ -1974,9 +1970,9 @@ class ResizeLayer(LayerBase):
@
config_layer
(
'blockexpand'
)
class
BlockExpandLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
super
(
BlockExpandLayer
,
self
).
__init__
(
name
,
'blockexpand'
,
0
,
inputs
=
inputs
,
device
=
device
)
name
,
'blockexpand'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_block_expand
(
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
6b61a096
...
...
@@ -1980,7 +1980,8 @@ def img_pool_layer(input,
layer_attr
=
None
,
pool_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
):
padding_y
=
None
,
ceil_mode
=
True
):
"""
Image pooling Layer.
...
...
@@ -2011,6 +2012,23 @@ def img_pool_layer(input,
:type stride_y: int|None
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(ceil(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(floor(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
:type ceil_mode: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
...
...
@@ -2048,6 +2066,7 @@ def img_pool_layer(input,
stride_y
=
stride_y
,
padding_y
=
padding_y
))
],
ceil_mode
=
ceil_mode
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录