Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6b3e9ccb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b3e9ccb
编写于
9月 21, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pass unit test for margin_rank_loss_op
上级
2f122561
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
45 addition
and
45 deletion
+45
-45
paddle/operators/margin_rank_loss_op.cc
paddle/operators/margin_rank_loss_op.cc
+24
-25
paddle/operators/margin_rank_loss_op.cu
paddle/operators/margin_rank_loss_op.cu
+6
-4
paddle/operators/margin_rank_loss_op.h
paddle/operators/margin_rank_loss_op.h
+5
-5
python/paddle/v2/framework/tests/test_margin_rank_loss_op.py
python/paddle/v2/framework/tests/test_margin_rank_loss_op.py
+10
-11
未找到文件。
paddle/operators/margin_rank_loss_op.cc
浏览文件 @
6b3e9ccb
...
@@ -19,11 +19,7 @@ namespace operators {
...
@@ -19,11 +19,7 @@ namespace operators {
class
MarginRankLossOp
:
public
framework
::
OperatorWithKernel
{
class
MarginRankLossOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
MarginRankLossOp
(
const
std
::
string
&
type
,
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
...
@@ -35,13 +31,11 @@ class MarginRankLossOp : public framework::OperatorWithKernel {
...
@@ -35,13 +31,11 @@ class MarginRankLossOp : public framework::OperatorWithKernel {
auto
label_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
dims
();
auto
label_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
dims
();
auto
x1_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
)
->
dims
();
auto
x1_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
)
->
dims
();
auto
x2_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X2"
)
->
dims
();
auto
x2_dims
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X2"
)
->
dims
();
PADDLE_ENFORCE
((
label_dims
.
size
()
==
1
)
&&
(
x1_dims
.
size
()
==
1
)
&&
PADDLE_ENFORCE
((
label_dims
==
x1_dims
)
&&
(
x1_dims
==
x2_dims
)
&&
(
x2_dims
.
size
()
==
1
),
(
label_dims
.
size
()
==
2
)
&&
(
label_dims
[
1
]
==
1
),
"The rank of all inputs must be 1."
);
"All inputs must be vector with the same size"
);
PADDLE_ENFORCE
((
label_dims
==
x1_dims
)
&&
(
x1_dims
==
x2_dims
),
"All inputs must have the same size"
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
label_dims
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
)
->
Resize
(
label_dims
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
)
->
Resize
(
label_dims
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
)
->
Resize
(
label_dims
);
}
}
};
};
...
@@ -51,18 +45,27 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -51,18 +45,27 @@ class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
MarginRankLossOpMaker
(
framework
::
OpProto
*
proto
,
MarginRankLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Label"
,
"The label indicating X1 ranked higher than X2 or not."
);
AddInput
(
"X1"
,
"The first input of MarginRankLossOp, row vector."
);
AddInput
(
"X1"
,
"The first input of MarginRankLossOp."
);
AddInput
(
"X2"
,
"The second input of MarginRankLossOp, row vector."
);
AddInput
(
"X2"
,
"The second input of MarginRankLossOp"
);
AddInput
(
"Label"
,
AddAttr
<
AttrType
>
(
"margin"
,
"Margin for MarginRankLossOp"
).
SetDefault
(
0
);
"The label indicating X1 ranked higher than X2 "
AddOutput
(
"Out"
,
"The output loss of MarginRankLoss operator"
);
"or not, row vector."
);
AddAttr
<
AttrType
>
(
"margin"
,
"Margin for MarginRankLossOp, scalar."
)
.
SetDefault
(
0
);
AddOutput
(
"Activated"
,
AddOutput
(
"Activated"
,
"Intermediate tensor to indicate "
"Intermediate tensor to indicate
whether each element of
"
"
whether
Output(Out) is activated"
)
"Output(Out) is activated"
)
.
AsIntermediate
();
.
AsIntermediate
();
AddComment
(
R"DOC(MarginRankLoss operator
AddOutput
(
"Out"
,
"The output loss of MarginRankLoss operator"
);
AddComment
(
R"DOC(
MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`}
and `Label` with attribuute `margin`, where `Label == 1` indicating X1 is
ranked higher than `X2`, otherwise `Label == -1`. The loss turns out
loss(X1, X2, Label) = max(0, -Label * (X1-X2) + margin)
loss(x1, x2, y) = max(0, -label * (x1-x2) + margin)
For batch input, `X1`, `X2` and `Label` all have the same size batch_size x 1.
)DOC"
);
)DOC"
);
}
}
...
@@ -70,11 +73,7 @@ loss(x1, x2, y) = max(0, -label * (x1-x2) + margin)
...
@@ -70,11 +73,7 @@ loss(x1, x2, y) = max(0, -label * (x1-x2) + margin)
class
MarginRankLossGradOp
:
public
framework
::
OperatorWithKernel
{
class
MarginRankLossGradOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
MarginRankLossGradOp
(
const
std
::
string
&
type
,
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
...
...
paddle/operators/margin_rank_loss_op.cu
浏览文件 @
6b3e9ccb
...
@@ -14,9 +14,11 @@
...
@@ -14,9 +14,11 @@
#include "paddle/operators/margin_rank_loss_op.h"
#include "paddle/operators/margin_rank_loss_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
REGISTER_OP_GPU_KERNEL
(
margin_rank_loss
,
margin_rank_loss
,
paddle
::
operator
s
::
MarginRankLossKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
op
s
::
MarginRankLossKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
margin_rank_loss_grad
,
REGISTER_OP_GPU_KERNEL
(
paddle
::
operators
::
MarginRankLossGradKernel
<
margin_rank_loss_grad
,
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
MarginRankLossGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/margin_rank_loss_op.h
浏览文件 @
6b3e9ccb
...
@@ -46,8 +46,8 @@ template <typename Place, typename T, typename AttrType = T>
...
@@ -46,8 +46,8 @@ template <typename Place, typename T, typename AttrType = T>
class
MarginRankLossKernel
:
public
framework
::
OpKernel
{
class
MarginRankLossKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Out"
);
auto
*
out_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
act_t
=
ctx
.
Output
<
framework
::
LoD
Tensor
>
(
"Activated"
);
auto
*
act_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Activated"
);
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
);
auto
*
x1_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X1"
);
...
@@ -65,8 +65,8 @@ class MarginRankLossKernel : public framework::OpKernel {
...
@@ -65,8 +65,8 @@ class MarginRankLossKernel : public framework::OpKernel {
auto
x2
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x2_t
);
auto
x2
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
x2_t
);
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
act
.
device
(
dev
)
=
(
-
label
*
(
x1
-
x2
)
+
margin
).
unaryExpr
(
Heaviside
<
T
>
());
out
.
device
(
dev
)
=
(
-
label
*
(
x1
-
x2
)
+
margin
).
unaryExpr
(
ReLU
<
T
>
());
out
.
device
(
dev
)
=
(
-
label
*
(
x1
-
x2
)
+
margin
).
unaryExpr
(
ReLU
<
T
>
());
act
.
device
(
dev
)
=
out
.
unaryExpr
(
Heaviside
<
T
>
());
}
}
};
};
...
@@ -78,15 +78,15 @@ class MarginRankLossGradKernel : public framework::OpKernel {
...
@@ -78,15 +78,15 @@ class MarginRankLossGradKernel : public framework::OpKernel {
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X1"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X1"
));
auto
*
d_x2_t
=
auto
*
d_x2_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X2"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X2"
));
auto
*
act_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Activated"
);
auto
*
act_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Activated"
);
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
label_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
d_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_out_t
);
auto
d_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_out_t
);
auto
act
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
act_t
);
auto
act
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
act_t
);
auto
label
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
label_t
);
auto
label
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
label_t
);
auto
&
dev
=
ctx
.
GetEigenDevice
<
Place
>
();
// compute d_x1
// compute d_x1
if
(
d_x1_t
)
{
if
(
d_x1_t
)
{
...
...
python/paddle/v2/framework/tests/test_margin_rank_loss_op.py
浏览文件 @
6b3e9ccb
...
@@ -8,23 +8,23 @@ class TestMarginRankLossOp(OpTest):
...
@@ -8,23 +8,23 @@ class TestMarginRankLossOp(OpTest):
self
.
op_type
=
"margin_rank_loss"
self
.
op_type
=
"margin_rank_loss"
batch_size
=
5
batch_size
=
5
margin
=
0.1
margin
=
0.1
# labels_{i} = {0, 1.0} or {0, 0.5, 1.0}
# labels_{i} = {-1, 1}
label
=
np
.
random
.
randint
(
0
,
2
,
size
=
(
batch_size
,
)).
astype
(
"float32"
)
label
=
2
*
np
.
random
.
randint
(
x1
=
np
.
random
.
random
((
batch_size
,
)).
astype
(
"float32"
)
0
,
2
,
size
=
(
batch_size
,
1
)).
astype
(
"float32"
)
-
1
x2
=
np
.
random
.
random
((
batch_size
,
)).
astype
(
"float32"
)
x1
=
np
.
random
.
random
((
batch_size
,
1
)).
astype
(
"float32"
)
x2
=
np
.
random
.
random
((
batch_size
,
1
)).
astype
(
"float32"
)
# loss = max(0, -label * (x1 - x2) + margin)
# loss = max(0, -label * (x1 - x2) + margin)
loss
=
[
loss
=
-
label
*
(
x1
-
x2
)
+
margin
max
(
0
,
-
label
[
i
]
*
(
x1
[
i
]
-
x2
[
i
])
+
margin
)
loss
=
np
.
where
(
loss
>
0
,
loss
,
0
)
for
i
in
range
(
batch_size
)
act
=
np
.
where
(
loss
>
0
,
1.
,
0.
)
]
self
.
attrs
=
{
'margin'
:
margin
}
self
.
attrs
=
{
'margin'
:
margin
}
self
.
inputs
=
{
'Label'
:
label
,
'X1'
:
x1
,
'X2'
:
x2
}
self
.
inputs
=
{
'Label'
:
label
,
'X1'
:
x1
,
'X2'
:
x2
}
self
.
outputs
=
{
'Out'
:
loss
}
self
.
outputs
=
{
'
Activated'
:
act
,
'
Out'
:
loss
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
"""
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
"X1"
,
"X2"
],
"Out"
)
self
.
check_grad
([
"X1"
,
"X2"
],
"Out"
)
...
@@ -33,7 +33,6 @@ class TestMarginRankLossOp(OpTest):
...
@@ -33,7 +33,6 @@ class TestMarginRankLossOp(OpTest):
def
test_check_grad_ignore_x2
(
self
):
def
test_check_grad_ignore_x2
(
self
):
self
.
check_grad
([
"X1"
],
"Out"
,
no_grad_set
=
set
(
'X2'
))
self
.
check_grad
([
"X1"
],
"Out"
,
no_grad_set
=
set
(
'X2'
))
"""
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录