未验证 提交 69e82d83 编写于 作者: R ronnywang 提交者: GitHub

cherry pick 43890 (#43892)

* cherry pick 43890
上级 dc12605d
......@@ -372,7 +372,8 @@ static T PyObjectCast(PyObject *obj) {
} catch (py::cast_error &) {
PADDLE_THROW(platform::errors::InvalidArgument(
"Python object is not type of %s, the real type is %s",
typeid(T).name(), obj->ob_type->tp_name));
typeid(T).name(),
obj->ob_type->tp_name));
}
}
......@@ -431,7 +432,8 @@ static std::vector<std::string> inline GetNameList(
}
static void inline CreateVariableIfNotExit(
const py::handle &py_handle, const framework::Scope &scope,
const py::handle &py_handle,
const framework::Scope &scope,
const framework::Executor *exe = nullptr) {
std::vector<std::string> vec_res;
......@@ -469,8 +471,9 @@ static void inline CreateVariableIfNotExit(
PyObject *py_var_desc =
PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
PADDLE_ENFORCE_NOT_NULL(
py_var_desc, platform::errors::InvalidArgument(
"The var_desc of parameter to set is None"));
py_var_desc,
platform::errors::InvalidArgument(
"The var_desc of parameter to set is None"));
auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
Py_DECREF(py_var_desc);
var = const_cast<framework::Scope *>(&scope)->Var(para_name);
......@@ -505,7 +508,8 @@ static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
}
}
}
PADDLE_ENFORCE_EQ(ops.empty(), true,
PADDLE_ENFORCE_EQ(ops.empty(),
true,
platform::errors::Unimplemented(
"OperatorWithKernel [%s] have only static graph grad "
"maker or have only dygraph grad maker, which is not "
......@@ -527,8 +531,10 @@ static int GetNCCLVersion() {
#endif
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
const PlaceType &place, int64_t batch_size) {
static void TensorCopyFrom(framework::Tensor *dst,
const framework::Tensor &src,
const PlaceType &place,
int64_t batch_size) {
if (batch_size < 0) {
framework::TensorCopy(src, place, dst);
} else {
......@@ -612,9 +618,10 @@ PYBIND11_MODULE(core_noavx, m) {
PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
PADDLE_ENFORCE_NOT_NULL(
dmt, platform::errors::InvalidArgument(
"from_dlpack received an invalid capsule. "
"Note that a DLPack tensor can be consumed only once."));
dmt,
platform::errors::InvalidArgument(
"from_dlpack received an invalid capsule. "
"Note that a DLPack tensor can be consumed only once."));
PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
DLTensor dl = dmt->dl_tensor;
......@@ -632,7 +639,8 @@ PYBIND11_MODULE(core_noavx, m) {
});
m.def("_create_loaded_parameter",
[](const py::handle &vec_var_list, const Scope &scope,
[](const py::handle &vec_var_list,
const Scope &scope,
const Executor *executor) {
CreateVariableIfNotExit(vec_var_list, scope, executor);
});
......@@ -670,11 +678,12 @@ PYBIND11_MODULE(core_noavx, m) {
<< ", sci_mode=" << print_opt.sci_mode;
});
m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
const std::vector<int64_t> &y_dim) {
return phi::vectorize(operators::details::BroadcastTwoDims(
phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
});
m.def(
"broadcast_shape",
[](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
return phi::vectorize(operators::details::BroadcastTwoDims(
phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
});
m.def(
"_append_python_callable_object_and_return_id",
......@@ -685,56 +694,56 @@ PYBIND11_MODULE(core_noavx, m) {
m.def("_get_use_default_grad_op_desc_maker_ops",
[] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });
m.def("_get_all_register_op_kernels",
[](const std::string &lib) {
std::unordered_map<std::string, std::vector<std::string>>
all_kernels_info;
if (lib == "fluid" || lib == "all") {
auto &all_kernels =
paddle::framework::OperatorWithKernel::AllOpKernels();
for (auto &kernel_pair : all_kernels) {
auto op_type = kernel_pair.first;
std::vector<std::string> kernel_types;
for (auto &info_pair : kernel_pair.second) {
paddle::framework::OpKernelType kernel_type = info_pair.first;
kernel_types.emplace_back(
paddle::framework::KernelTypeToString(kernel_type));
}
all_kernels_info.emplace(op_type, kernel_types);
m.def(
"_get_all_register_op_kernels",
[](const std::string &lib) {
std::unordered_map<std::string, std::vector<std::string>>
all_kernels_info;
if (lib == "fluid" || lib == "all") {
auto &all_kernels =
paddle::framework::OperatorWithKernel::AllOpKernels();
for (auto &kernel_pair : all_kernels) {
auto op_type = kernel_pair.first;
std::vector<std::string> kernel_types;
for (auto &info_pair : kernel_pair.second) {
paddle::framework::OpKernelType kernel_type = info_pair.first;
kernel_types.emplace_back(
paddle::framework::KernelTypeToString(kernel_type));
}
all_kernels_info.emplace(op_type, kernel_types);
}
if (lib == "phi" || lib == "all") {
auto phi_kernels = phi::KernelFactory::Instance().kernels();
for (auto &kernel_pair : phi_kernels) {
auto op_type = phi::TransToFluidOpName(kernel_pair.first);
std::vector<std::string> kernel_types;
for (auto &info_pair : kernel_pair.second) {
framework::OpKernelType kernel_type =
framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
auto kernel_type_str =
framework::KernelTypeToString(kernel_type);
if (all_kernels_info.count(op_type)) {
if (std::find(all_kernels_info[op_type].begin(),
all_kernels_info[op_type].end(),
kernel_type_str) ==
all_kernels_info[op_type].end()) {
all_kernels_info[op_type].emplace_back(kernel_type_str);
}
} else {
kernel_types.emplace_back(kernel_type_str);
}
if (lib == "phi" || lib == "all") {
auto phi_kernels = phi::KernelFactory::Instance().kernels();
for (auto &kernel_pair : phi_kernels) {
auto op_type = phi::TransToFluidOpName(kernel_pair.first);
std::vector<std::string> kernel_types;
for (auto &info_pair : kernel_pair.second) {
framework::OpKernelType kernel_type =
framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
auto kernel_type_str = framework::KernelTypeToString(kernel_type);
if (all_kernels_info.count(op_type)) {
if (std::find(all_kernels_info[op_type].begin(),
all_kernels_info[op_type].end(),
kernel_type_str) ==
all_kernels_info[op_type].end()) {
all_kernels_info[op_type].emplace_back(kernel_type_str);
}
}
if (!kernel_types.empty()) {
all_kernels_info.emplace(op_type, kernel_types);
} else {
kernel_types.emplace_back(kernel_type_str);
}
}
if (!kernel_types.empty()) {
all_kernels_info.emplace(op_type, kernel_types);
}
}
}
return all_kernels_info;
},
py::arg("lib") = "all",
R"DOC(
return all_kernels_info;
},
py::arg("lib") = "all",
R"DOC(
Return the registered kernels in paddle.
Args:
......@@ -796,14 +805,22 @@ PYBIND11_MODULE(core_noavx, m) {
self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
}
})
.def("add_attr", [](paddle::CustomOpKernelContext &self,
bool attr) { self.EmplaceBackAttr(attr); })
.def("add_attr", [](paddle::CustomOpKernelContext &self,
int attr) { self.EmplaceBackAttr(attr); })
.def("add_attr", [](paddle::CustomOpKernelContext &self,
float attr) { self.EmplaceBackAttr(attr); })
.def("add_attr", [](paddle::CustomOpKernelContext &self,
int64_t attr) { self.EmplaceBackAttr(attr); })
.def("add_attr",
[](paddle::CustomOpKernelContext &self, bool attr) {
self.EmplaceBackAttr(attr);
})
.def("add_attr",
[](paddle::CustomOpKernelContext &self, int attr) {
self.EmplaceBackAttr(attr);
})
.def("add_attr",
[](paddle::CustomOpKernelContext &self, float attr) {
self.EmplaceBackAttr(attr);
})
.def("add_attr",
[](paddle::CustomOpKernelContext &self, int64_t attr) {
self.EmplaceBackAttr(attr);
})
.def("add_attr",
[](paddle::CustomOpKernelContext &self, const std::string &attr) {
self.EmplaceBackAttr(attr);
......@@ -817,13 +834,14 @@ PYBIND11_MODULE(core_noavx, m) {
.def("add_attr",
[](paddle::CustomOpKernelContext &self,
const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
.def("add_attr", [](paddle::CustomOpKernelContext &self,
const std::vector<std::string> &attr) {
self.EmplaceBackAttr(attr);
});
.def("add_attr",
[](paddle::CustomOpKernelContext &self,
const std::vector<std::string> &attr) {
self.EmplaceBackAttr(attr);
});
py::class_<framework::Tensor> framework_tensor(m, "Tensor",
py::buffer_protocol());
py::class_<framework::Tensor> framework_tensor(
m, "Tensor", py::buffer_protocol());
g_framework_tensor_pytype =
reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
framework_tensor
......@@ -898,70 +916,118 @@ PYBIND11_MODULE(core_noavx, m) {
self.mutable_data<float>(place);
})
.def("_mutable_data",
[](framework::Tensor &self, paddle::platform::CPUPlace &place,
[](framework::Tensor &self,
paddle::platform::CPUPlace &place,
paddle::framework::proto::VarType::Type type) {
return reinterpret_cast<uintptr_t>(
self.mutable_data(place, framework::TransToPhiDataType(type)));
})
.def("_mutable_data",
[](framework::Tensor &self, paddle::platform::XPUPlace &place,
[](framework::Tensor &self,
paddle::platform::XPUPlace &place,
paddle::framework::proto::VarType::Type type) {
return reinterpret_cast<uintptr_t>(
self.mutable_data(place, framework::TransToPhiDataType(type)));
})
.def("_mutable_data",
[](framework::Tensor &self, paddle::platform::CUDAPlace &place,
[](framework::Tensor &self,
paddle::platform::CUDAPlace &place,
paddle::framework::proto::VarType::Type type) {
return reinterpret_cast<uintptr_t>(
self.mutable_data(place, framework::TransToPhiDataType(type)));
})
.def("_mutable_data",
[](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
[](framework::Tensor &self,
paddle::platform::CUDAPinnedPlace &place,
paddle::framework::proto::VarType::Type type) {
return reinterpret_cast<uintptr_t>(
self.mutable_data(place, framework::TransToPhiDataType(type)));
})
.def("_mutable_data",
[](framework::Tensor &self, paddle::platform::MLUPlace &place,
[](framework::Tensor &self,
paddle::platform::MLUPlace &place,
paddle::framework::proto::VarType::Type type) {
return reinterpret_cast<uintptr_t>(
self.mutable_data(place, framework::TransToPhiDataType(type)));
})
.def("_clear", &framework::Tensor::clear)
.def("_mutable_data",
[](framework::Tensor &self, paddle::platform::NPUPlace &place,
[](framework::Tensor &self,
paddle::platform::NPUPlace &place,
paddle::framework::proto::VarType::Type type) {
return reinterpret_cast<uintptr_t>(
self.mutable_data(place, framework::TransToPhiDataType(type)));
})
.def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
.def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
.def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
.def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
.def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
.def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
.def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
.def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
.def("_copy_from",
&TensorCopyFrom<paddle::platform::CPUPlace>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("_copy_from",
&TensorCopyFrom<paddle::platform::XPUPlace>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("_copy_from",
&TensorCopyFrom<paddle::platform::CUDAPlace>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("_copy_from",
&TensorCopyFrom<paddle::platform::NPUPlace>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("_copy_from",
&TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("_copy_from",
&TensorCopyFrom<paddle::platform::MLUPlace>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("_copy_from",
&TensorCopyFrom<paddle::platform::Place>,
py::arg("tensor"),
py::arg("place"),
py::arg("batch_size") = -1)
.def("set",
SetTensorFromPyArray<paddle::platform::CPUPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false)
.def("set",
SetTensorFromPyArray<paddle::platform::XPUPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false)
.def("set",
SetTensorFromPyArray<paddle::platform::CUDAPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false)
.def("set",
SetTensorFromPyArray<paddle::platform::NPUPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false)
.def("set",
SetTensorFromPyArray<paddle::platform::IPUPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false)
.def("set",
SetTensorFromPyArray<paddle::platform::MLUPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false)
.def("set",
SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
py::arg("array"),
py::arg("place"),
py::arg("zero_copy") = false,
R"DOC(
Set the data of Tensor on place with given numpy array.
......@@ -985,9 +1051,10 @@ PYBIND11_MODULE(core_noavx, m) {
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
)DOC")
.def("shape",
[](framework::Tensor &self) { return vectorize(self.dims()); },
R"DOC(
.def(
"shape",
[](framework::Tensor &self) { return vectorize(self.dims()); },
R"DOC(
Return the shape of Tensor.
Returns:
......@@ -1046,25 +1113,26 @@ PYBIND11_MODULE(core_noavx, m) {
ostr << self;
return ostr.str();
}) /* ------ End of original Tensor ------ */
.def(
"__init__",
[](framework::Tensor &instance, const std::vector<std::vector<size_t>>
&recursive_sequence_lengths) {
LoD new_lod;
new_lod.reserve(recursive_sequence_lengths.size());
std::copy(recursive_sequence_lengths.begin(),
recursive_sequence_lengths.end(),
std::back_inserter(new_lod));
LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
PADDLE_ENFORCE_EQ(
CheckLoD(new_offset_lod, -1), true,
platform::errors::InvalidArgument(
"The provided recursive_sequence_lengths info is "
"invalid, "
"the LoD converted by recursive_sequence_lengths is %s",
new_lod));
new (&instance) framework::Tensor(new_offset_lod);
})
.def("__init__",
[](framework::Tensor &instance,
const std::vector<std::vector<size_t>>
&recursive_sequence_lengths) {
LoD new_lod;
new_lod.reserve(recursive_sequence_lengths.size());
std::copy(recursive_sequence_lengths.begin(),
recursive_sequence_lengths.end(),
std::back_inserter(new_lod));
LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
PADDLE_ENFORCE_EQ(
CheckLoD(new_offset_lod, -1),
true,
platform::errors::InvalidArgument(
"The provided recursive_sequence_lengths info is "
"invalid, "
"the LoD converted by recursive_sequence_lengths is %s",
new_lod));
new (&instance) framework::Tensor(new_offset_lod);
})
.def("__init__",
[](framework::Tensor &instance) {
new (&instance) framework::Tensor();
......@@ -1075,20 +1143,23 @@ PYBIND11_MODULE(core_noavx, m) {
// avoid misuse.
// The discussion is here:
// https://github.com/PaddlePaddle/Paddle/issues/10855
.def("set_lod",
[](framework::Tensor &self,
const std::vector<std::vector<size_t>> &lod) {
// the input lod is offset-based level-of-detail info
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
PADDLE_ENFORCE_EQ(
CheckLoD(new_lod, vectorize(self.dims()).front()), true,
platform::errors::InvalidArgument(
"The provided LoD is invalid, the LoD is %s", new_lod));
self.set_lod(new_lod);
},
py::arg("lod"), R"DOC(
.def(
"set_lod",
[](framework::Tensor &self,
const std::vector<std::vector<size_t>> &lod) {
// the input lod is offset-based level-of-detail info
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
PADDLE_ENFORCE_EQ(
CheckLoD(new_lod, vectorize(self.dims()).front()),
true,
platform::errors::InvalidArgument(
"The provided LoD is invalid, the LoD is %s", new_lod));
self.set_lod(new_lod);
},
py::arg("lod"),
R"DOC(
Set LoD of the Tensor.
Args:
......@@ -1108,28 +1179,32 @@ PYBIND11_MODULE(core_noavx, m) {
t.set_lod([[0, 2, 5]])
print(t.lod()) # [[0, 2, 5]]
)DOC")
.def("set_recursive_sequence_lengths",
[](framework::Tensor &self, const std::vector<std::vector<size_t>>
&recursive_sequence_lengths) {
// the input recursive_sequence_lengths is length-based
// level-of-detail info
LoD new_lod;
new_lod.reserve(recursive_sequence_lengths.size());
std::copy(recursive_sequence_lengths.begin(),
recursive_sequence_lengths.end(),
std::back_inserter(new_lod));
LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
PADDLE_ENFORCE_EQ(
CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
platform::errors::InvalidArgument(
"The provided recursive_sequence_lengths info is "
"invalid, "
"the LoD converted by recursive_sequence_lengths is "
"%s",
new_lod));
self.set_lod(new_offset_lod);
},
py::arg("recursive_sequence_lengths"), R"DOC(
.def(
"set_recursive_sequence_lengths",
[](framework::Tensor &self,
const std::vector<std::vector<size_t>>
&recursive_sequence_lengths) {
// the input recursive_sequence_lengths is length-based
// level-of-detail info
LoD new_lod;
new_lod.reserve(recursive_sequence_lengths.size());
std::copy(recursive_sequence_lengths.begin(),
recursive_sequence_lengths.end(),
std::back_inserter(new_lod));
LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
PADDLE_ENFORCE_EQ(
CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
true,
platform::errors::InvalidArgument(
"The provided recursive_sequence_lengths info is "
"invalid, "
"the LoD converted by recursive_sequence_lengths is "
"%s",
new_lod));
self.set_lod(new_offset_lod);
},
py::arg("recursive_sequence_lengths"),
R"DOC(
Set LoD of the Tensor according to recursive sequence lengths.
For example, if recursive_sequence_lengths=[[2, 3]], which means
......@@ -1154,16 +1229,17 @@ PYBIND11_MODULE(core_noavx, m) {
print(t.recursive_sequence_lengths()) # [[2, 3]]
print(t.lod()) # [[0, 2, 5]]
)DOC")
.def("lod",
[](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
// output the offset-based lod info
LoD lod = self.lod();
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return new_lod;
},
R"DOC(
.def(
"lod",
[](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
// output the offset-based lod info
LoD lod = self.lod();
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return new_lod;
},
R"DOC(
Return the LoD of the Tensor.
Returns:
......@@ -1181,16 +1257,17 @@ PYBIND11_MODULE(core_noavx, m) {
print(t.lod()) # [[0, 2, 5]]
)DOC")
// Set above comments of set_lod.
.def("recursive_sequence_lengths",
[](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
// output the length-based lod info
LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return new_lod;
},
R"DOC(
.def(
"recursive_sequence_lengths",
[](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
// output the length-based lod info
LoD lod = phi::ConvertToLengthBasedLoD(self.lod());
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return new_lod;
},
R"DOC(
Return the recursive sequence lengths corresponding to of the LodD
of the Tensor.
......@@ -1208,13 +1285,14 @@ PYBIND11_MODULE(core_noavx, m) {
t.set_recursive_sequence_lengths([[2, 3]])
print(t.recursive_sequence_lengths()) # [[2, 3]]
)DOC")
.def("has_valid_recursive_sequence_lengths",
[](framework::Tensor &self) -> bool {
// Check that the lod info is valid and match the outermost
// dimension of the Tensor data
return CheckLoD(self.lod(), vectorize(self.dims()).front());
},
R"DOC(
.def(
"has_valid_recursive_sequence_lengths",
[](framework::Tensor &self) -> bool {
// Check that the lod info is valid and match the outermost
// dimension of the Tensor data
return CheckLoD(self.lod(), vectorize(self.dims()).front());
},
R"DOC(
Check whether the LoD of the Tensor is valid.
Returns:
......@@ -1594,13 +1672,15 @@ PYBIND11_MODULE(core_noavx, m) {
new (&instance) phi::SelectedRows();
})
.def("__init__",
[](phi::SelectedRows &instance, const std::vector<int64_t> rows,
[](phi::SelectedRows &instance,
const std::vector<int64_t> rows,
const int64_t &height) {
new (&instance) phi::SelectedRows(rows, height);
})
.def("get_tensor",
[](phi::SelectedRows &self) { return self.mutable_value(); },
py::return_value_policy::reference)
.def(
"get_tensor",
[](phi::SelectedRows &self) { return self.mutable_value(); },
py::return_value_policy::reference)
.def("numel",
[](phi::SelectedRows &self) -> int64_t {
return self.value().numel();
......@@ -1642,11 +1722,12 @@ All parameter, weight, gradient are variables in Paddle.
})
.def("get_float",
[](const Variable &var) -> float { return var.Get<float>(); })
.def("get_tensor",
[](Variable &self) -> LoDTensor * {
return self.GetMutable<LoDTensor>();
},
py::return_value_policy::reference)
.def(
"get_tensor",
[](Variable &self) -> LoDTensor * {
return self.GetMutable<LoDTensor>();
},
py::return_value_policy::reference)
.def("get_bytes",
[](Variable &self) {
return py::bytes(*self.GetMutable<std::string>());
......@@ -1655,55 +1736,66 @@ All parameter, weight, gradient are variables in Paddle.
[](Variable &self, Strings str_list) {
*self.GetMutable<Strings>() = str_list;
})
.def("set_vocab", [](Variable &self,
Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
.def("get_string_tensor",
[](Variable &self) { return self.GetMutable<Strings>(); },
py::return_value_policy::reference)
.def("get_map_tensor",
[](Variable &self) { return self.GetMutable<Vocab>(); },
py::return_value_policy::reference)
.def("get_lod_rank_table",
[](Variable &self) { return self.GetMutable<LoDRankTable>(); },
py::return_value_policy::reference)
.def("get_selected_rows",
[](Variable &self) -> phi::SelectedRows * {
return self.GetMutable<phi::SelectedRows>();
},
py::return_value_policy::reference)
.def("get_lod_tensor_array",
[](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
py::return_value_policy::reference)
.def("get_fetch_list",
[](Variable &self) { return self.GetMutable<FetchList>(); },
py::return_value_policy::reference)
.def("set_vocab",
[](Variable &self, Vocab vocab) {
*self.GetMutable<Vocab>() = vocab;
})
.def(
"get_string_tensor",
[](Variable &self) { return self.GetMutable<Strings>(); },
py::return_value_policy::reference)
.def(
"get_map_tensor",
[](Variable &self) { return self.GetMutable<Vocab>(); },
py::return_value_policy::reference)
.def(
"get_lod_rank_table",
[](Variable &self) { return self.GetMutable<LoDRankTable>(); },
py::return_value_policy::reference)
.def(
"get_selected_rows",
[](Variable &self) -> phi::SelectedRows * {
return self.GetMutable<phi::SelectedRows>();
},
py::return_value_policy::reference)
.def(
"get_lod_tensor_array",
[](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
py::return_value_policy::reference)
.def(
"get_fetch_list",
[](Variable &self) { return self.GetMutable<FetchList>(); },
py::return_value_policy::reference)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
.def("get_communicator",
[](Variable &self) -> platform::Communicator * {
return self.GetMutable<platform::Communicator>();
},
py::return_value_policy::reference)
.def(
"get_communicator",
[](Variable &self) -> platform::Communicator * {
return self.GetMutable<platform::Communicator>();
},
py::return_value_policy::reference)
#endif
.def("get_reader",
[](Variable &self) -> framework::ReaderHolder * {
PADDLE_ENFORCE_EQ(
self.IsType<framework::ReaderHolder>(), true,
platform::errors::InvalidArgument(
"The variable is not type of ReaderHolder."));
return self.GetMutable<framework::ReaderHolder>();
},
py::return_value_policy::reference)
.def("get_scope",
[](Variable &self) -> Scope * {
auto scope_vec =
self.GetMutable<std::vector<framework::Scope *>>();
PADDLE_ENFORCE_GT(
scope_vec->size(), 0,
platform::errors::InvalidArgument(
"The size of scope_vec should be greater than 0"));
return scope_vec->front();
},
py::return_value_policy::reference)
.def(
"get_reader",
[](Variable &self) -> framework::ReaderHolder * {
PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
true,
platform::errors::InvalidArgument(
"The variable is not type of ReaderHolder."));
return self.GetMutable<framework::ReaderHolder>();
},
py::return_value_policy::reference)
.def(
"get_scope",
[](Variable &self) -> Scope * {
auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
PADDLE_ENFORCE_GT(
scope_vec->size(),
0,
platform::errors::InvalidArgument(
"The size of scope_vec should be greater than 0"));
return scope_vec->front();
},
py::return_value_policy::reference)
.def("set_scope", [](Variable &self, Scope &scope) {
auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
scope_vec->emplace_back(&scope);
......@@ -1736,12 +1828,13 @@ All parameter, weight, gradient are variables in Paddle.
_Scope
.def("_remove_from_pool",
[](Scope &self) { ScopePool::Instance().Remove(&self); })
.def("var",
[](Scope &self, const std::string &name) -> Variable * {
return self.Var(name);
},
py::arg("name"),
R"DOC(
.def(
"var",
[](Scope &self, const std::string &name) -> Variable * {
return self.Var(name);
},
py::arg("name"),
R"DOC(
Find or create variable named :code:`name` in the current scope.
If the variable named :code:`name` does not exist in the
......@@ -1754,8 +1847,10 @@ All parameter, weight, gradient are variables in Paddle.
Returns:
out (core.Variable): the found or created variable.
)DOC",
py::return_value_policy::reference)
.def("find_var", &Scope::FindVar, py::arg("name"),
py::return_value_policy::reference)
.def("find_var",
&Scope::FindVar,
py::arg("name"),
R"DOC(
Find variable named :code:`name` in the current scope or
its parent scope. Return None if not found.
......@@ -1768,7 +1863,9 @@ All parameter, weight, gradient are variables in Paddle.
)DOC",
py::return_value_policy::reference)
.def("size", &Scope::Size)
.def("erase", &Scope::EraseVars, py::arg("names"),
.def("erase",
&Scope::EraseVars,
py::arg("names"),
R"DOC(
Find variable named :code:`name` in the current scope or
its parent scope. Return None if not found.
......@@ -1780,33 +1877,37 @@ All parameter, weight, gradient are variables in Paddle.
None
)DOC",
py::return_value_policy::reference)
.def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
R"DOC(
.def(
"new_scope",
[](Scope &self) -> Scope * { return &self.NewScope(); },
R"DOC(
Create a new sub-scope of the current scope.
Returns:
out (core._Scope): the created sub-scope.
)DOC",
py::return_value_policy::reference)
.def("drop_kids", &Scope::DropKids,
py::return_value_policy::reference)
.def("drop_kids",
&Scope::DropKids,
R"DOC(
Delete all sub-scopes of the current scope.
)DOC")
.def("_kids", &Scope::kids);
m.def("Scope",
[]() -> Scope * {
auto *s = new Scope();
ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
return s;
},
R"DOC(
m.def(
"Scope",
[]() -> Scope * {
auto *s = new Scope();
ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
return s;
},
R"DOC(
Create a new scope.
Returns:
out (core._Scope): the created scope.
)DOC",
py::return_value_policy::reference);
py::return_value_policy::reference);
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
......@@ -1817,7 +1918,8 @@ All parameter, weight, gradient are variables in Paddle.
if (info.HasOpProtoAndChecker()) {
std::string str;
PADDLE_ENFORCE_EQ(
info.Proto().SerializeToString(&str), true,
info.Proto().SerializeToString(&str),
true,
platform::errors::Fatal(
"Serialize OpProto Error. This could be a bug of Paddle."));
ret_values.emplace_back(str);
......@@ -1838,22 +1940,24 @@ All parameter, weight, gradient are variables in Paddle.
}
return res;
});
m.def(
"get_grad_op_desc", [](const OpDesc &op_desc,
const std::unordered_set<std::string> &no_grad_set,
const std::vector<BlockDesc *> &grad_sub_block) {
std::unordered_map<std::string, std::string> grad_to_var;
std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
grad_sub_block);
std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
std::transform(grad_op_descs.begin(), grad_op_descs.end(),
grad_op_desc_ptrs.begin(),
[](std::unique_ptr<OpDesc> &p) { return p.release(); });
return std::make_pair(grad_op_desc_ptrs, grad_to_var);
});
m.def("get_grad_op_desc",
[](const OpDesc &op_desc,
const std::unordered_set<std::string> &no_grad_set,
const std::vector<BlockDesc *> &grad_sub_block) {
std::unordered_map<std::string, std::string> grad_to_var;
std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(
op_desc, no_grad_set, &grad_to_var, grad_sub_block);
std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
std::transform(
grad_op_descs.begin(),
grad_op_descs.end(),
grad_op_desc_ptrs.begin(),
[](std::unique_ptr<OpDesc> &p) { return p.release(); });
return std::make_pair(grad_op_desc_ptrs, grad_to_var);
});
m.def("has_grad_op_maker", [](const std::string op_type) {
return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
});
......@@ -1866,7 +1970,8 @@ All parameter, weight, gradient are variables in Paddle.
return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
});
m.def("infer_no_need_buffer_slots",
[](const std::string op_type, const framework::VariableNameMap &inputs,
[](const std::string op_type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs) {
auto infer_func = framework::OpInfoMap::Instance()
......@@ -1879,25 +1984,27 @@ All parameter, weight, gradient are variables in Paddle.
return empty;
}
});
m.def("prune", [](const ProgramDesc &origin,
const std::set<std::string> &feeded_var_names,
const std::vector<std::array<size_t, 2>> &targets) {
ProgramDesc prog_with_targets(origin);
for (const auto &t : targets) {
prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
}
proto::ProgramDesc pruned_desc;
auto pruned_origin_block_id_map =
Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
return std::make_tuple(ProgramDesc(pruned_desc),
pruned_origin_block_id_map);
});
m.def("prune_backward",
[](const framework::ProgramDesc &program) {
return PruneBackward(program);
},
R"DOC(
m.def("prune",
[](const ProgramDesc &origin,
const std::set<std::string> &feeded_var_names,
const std::vector<std::array<size_t, 2>> &targets) {
ProgramDesc prog_with_targets(origin);
for (const auto &t : targets) {
prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
}
proto::ProgramDesc pruned_desc;
auto pruned_origin_block_id_map =
Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
return std::make_tuple(ProgramDesc(pruned_desc),
pruned_origin_block_id_map);
});
m.def(
"prune_backward",
[](const framework::ProgramDesc &program) {
return PruneBackward(program);
},
R"DOC(
Prune the backward part of a program, mostly called in
program.clone(for_test=True).
......@@ -2040,12 +2147,12 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
device_types = phi::DeviceManager::GetAllDeviceTypes();
#else
LOG(WARNING) << string::Sprintf(
VLOG(1) << string::Sprintf(
"Cannot use get_all_device_type because you have installed"
"CPU/GPU version PaddlePaddle.\n"
"If you want to use get_all_device_type, please try to install"
"CustomDevice version "
"PaddlePaddle by: pip install paddlepaddle-core\n");
"PaddlePaddle by: pip install paddlepaddle\n");
#endif
return device_types;
});
......@@ -2054,12 +2161,12 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
#else
LOG(WARNING) << string::Sprintf(
VLOG(1) << string::Sprintf(
"Cannot use get_all_custom_device_type because you have installed"
"CPU/GPU version PaddlePaddle.\n"
"If you want to use get_all_custom_device_type, please try to "
"install CustomDevice version "
"PaddlePaddle by: pip install paddlepaddle-core\n");
"PaddlePaddle by: pip install paddlepaddle\n");
#endif
return device_types;
});
......@@ -2068,12 +2175,12 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
devices = phi::DeviceManager::GetAllDeviceList();
#else
LOG(WARNING) << string::Sprintf(
VLOG(1) << string::Sprintf(
"Cannot use get_available_device because you have installed"
"CPU/GPU version PaddlePaddle.\n"
"If you want to use get_available_device, please try to install"
"CustomDevice version "
"PaddlePaddle by: pip install paddlepaddle-core\n");
"PaddlePaddle by: pip install paddlepaddle\n");
#endif
return devices;
});
......@@ -2082,18 +2189,19 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
devices = phi::DeviceManager::GetAllCustomDeviceList();
#else
LOG(WARNING) << string::Sprintf(
VLOG(1) << string::Sprintf(
"Cannot use get_available_custom_device because you have "
"installed"
"CPU/GPU version PaddlePaddle.\n"
"If you want to use get_available_custom_device, please try to "
"install"
"CustomDevice version "
"PaddlePaddle by: pip install paddlepaddle-core\n");
"PaddlePaddle by: pip install paddlepaddle\n");
#endif
return devices;
});
py::class_<platform::CustomPlace>(m, "CustomPlace",
py::class_<platform::CustomPlace>(m,
"CustomPlace",
R"DOC(
CustomPlace is a descriptor of a device.
It represents a custom device on which a tensor will be allocated and a model will run.
......@@ -2105,7 +2213,8 @@ All parameter, weight, gradient are variables in Paddle.
fake_cpu_place = paddle.CustomPlace("FakeCPU", 0)
)DOC")
.def("__init__",
[](platform::CustomPlace &self, const std::string &device_type,
[](platform::CustomPlace &self,
const std::string &device_type,
int dev_id) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
if (UNLIKELY(dev_id < 0)) {
......@@ -2113,7 +2222,8 @@ All parameter, weight, gradient are variables in Paddle.
"Invalid CustomPlace(%s, %d), device id must be 0 "
"or "
"positive integer",
device_type, dev_id);
device_type,
dev_id);
std::exit(-1);
}
......@@ -2134,7 +2244,11 @@ All parameter, weight, gradient are variables in Paddle.
"inside "
"[0, %d), because %s "
"number on your machine is %d",
device_type, dev_id, dev_count, device_type, dev_count);
device_type,
dev_id,
dev_count,
device_type,
dev_count);
std::exit(-1);
}
}
......@@ -2144,7 +2258,8 @@ All parameter, weight, gradient are variables in Paddle.
"Invalid CustomPlace(%s, %d), the device type is "
"not registered "
"as a custom device.",
device_type, dev_id);
device_type,
dev_id);
std::exit(-1);
}
#else
......@@ -2153,7 +2268,7 @@ All parameter, weight, gradient are variables in Paddle.
"version PaddlePaddle.\n"
"If you want to use CustomDevice, please try to install"
"CustomDevice version "
"PaddlePaddle by: pip install paddlepaddle-core\n"
"PaddlePaddle by: pip install paddlepaddle\n"
"If you only have CPU, please change "
"CustomPlace(%s, %d) to be CPUPlace().\n",
device_type, dev_id);
......@@ -2215,7 +2330,8 @@ All parameter, weight, gradient are variables in Paddle.
LOG(ERROR) << string::Sprintf(
"Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
"number on your machine is %d",
dev_id, platform::GetGPUDeviceCount(),
dev_id,
platform::GetGPUDeviceCount(),
platform::GetGPUDeviceCount());
std::exit(-1);
}
......@@ -2281,7 +2397,8 @@ All parameter, weight, gradient are variables in Paddle.
LOG(ERROR) << string::Sprintf(
"Invalid XPUPlace(%d), must inside [0, %d), because XPU "
"number on your machine is %d",
dev_id, platform::GetXPUDeviceCount(),
dev_id,
platform::GetXPUDeviceCount(),
platform::GetXPUDeviceCount());
std::exit(-1);
}
......@@ -2446,7 +2563,8 @@ All parameter, weight, gradient are variables in Paddle.
LOG(ERROR) << string::Sprintf(
"Invalid NPUPlace(%d), must inside [0, %d), because NPU "
"number on your machine is %d",
dev_id, platform::GetNPUDeviceCount(),
dev_id,
platform::GetNPUDeviceCount(),
platform::GetNPUDeviceCount());
std::exit(-1);
}
......@@ -2562,7 +2680,8 @@ All parameter, weight, gradient are variables in Paddle.
LOG(ERROR) << string::Sprintf(
"Invalid MLUPlace(%d), must inside [0, %d), because MLU "
"number on your machine is %d",
dev_id, platform::GetMLUDeviceCount(),
dev_id,
platform::GetMLUDeviceCount(),
platform::GetMLUDeviceCount());
std::exit(-1);
}
......@@ -2635,8 +2754,10 @@ All parameter, weight, gradient are variables in Paddle.
.def("mlu_device_id", [](platform::Place &self) { return self.device; })
.def("custom_device_id",
[](platform::Place &self) { return self.device; })
.def("set_place", [](platform::Place &self,
const platform::Place &other) { self = other; })
.def("set_place",
[](platform::Place &self, const platform::Place &other) {
self = other;
})
.def("set_place",
[](platform::Place &self, const platform::CPUPlace &cpu_place) {
self = cpu_place;
......@@ -2681,7 +2802,8 @@ All parameter, weight, gradient are variables in Paddle.
true,
platform::errors::InvalidArgument(
"Cannot parse user input to OpDesc"));
PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
PADDLE_ENFORCE_EQ(desc.IsInitialized(),
true,
platform::errors::InvalidArgument(
"The provided OpDesc is not "
"initialized, the reason is: %s",
......@@ -2689,37 +2811,43 @@ All parameter, weight, gradient are variables in Paddle.
return OpRegistry::CreateOp(desc);
})
.def("run",
[](OperatorBase &self, const Scope &scope,
[](OperatorBase &self,
const Scope &scope,
const platform::CPUPlace &place) {
pybind11::gil_scoped_release release;
self.Run(scope, place);
})
.def("run",
[](OperatorBase &self, const Scope &scope,
[](OperatorBase &self,
const Scope &scope,
const platform::XPUPlace &place) {
pybind11::gil_scoped_release release;
self.Run(scope, place);
})
.def("run",
[](OperatorBase &self, const Scope &scope,
[](OperatorBase &self,
const Scope &scope,
const platform::NPUPlace &place) {
pybind11::gil_scoped_release release;
self.Run(scope, place);
})
.def("run",
[](OperatorBase &self, const Scope &scope,
[](OperatorBase &self,
const Scope &scope,
const platform::CUDAPlace &place) {
pybind11::gil_scoped_release release;
self.Run(scope, place);
})
.def("run",
[](OperatorBase &self, const Scope &scope,
[](OperatorBase &self,
const Scope &scope,
const platform::CUDAPinnedPlace &place) {
pybind11::gil_scoped_release release;
self.Run(scope, place);
})
.def("run",
[](OperatorBase &self, const Scope &scope,
[](OperatorBase &self,
const Scope &scope,
const platform::MLUPlace &place) {
pybind11::gil_scoped_release release;
self.Run(scope, place);
......@@ -2729,8 +2857,8 @@ All parameter, weight, gradient are variables in Paddle.
.def("outputs",
[](const OperatorBase &op)
-> std::map<std::string, std::vector<std::string>> {
return op.Outputs();
})
return op.Outputs();
})
.def("output_vars",
[](const OperatorBase &op) { return op.OutputVars(true); })
.def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
......@@ -2745,11 +2873,12 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
m, "TrainerBase")
.def("get_worker_scope",
[](TrainerBase &self, int thread_id) -> Scope * {
return self.GetWorkerScope(thread_id);
},
py::return_value_policy::reference)
.def(
"get_worker_scope",
[](TrainerBase &self, int thread_id) -> Scope * {
return self.GetWorkerScope(thread_id);
},
py::return_value_policy::reference)
.def("finalize", &TrainerBase::Finalize)
.def("ResetDataset", &TrainerBase::ResetDataset);
......@@ -2758,13 +2887,17 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<framework::Executor>(m, "Executor")
.def(py::init<const platform::Place &>())
.def("close", &Executor::Close)
.def("run_from_dataset", &Executor::RunFromDataset,
.def("run_from_dataset",
&Executor::RunFromDataset,
py::call_guard<py::gil_scoped_release>())
.def("release_trainer", &Executor::ReleaseTrainer,
.def("release_trainer",
&Executor::ReleaseTrainer,
py::call_guard<py::gil_scoped_release>())
.def("init_for_dataset",
[](Executor &self, const ProgramDesc &prog,
const std::string &trainer_desc, Scope *scope,
[](Executor &self,
const ProgramDesc &prog,
const std::string &trainer_desc,
Scope *scope,
Dataset *dataset) -> std::shared_ptr<TrainerBase> {
pybind11::gil_scoped_release release;
return self.InitForDataset(prog, trainer_desc, scope, dataset);
......@@ -2775,42 +2908,64 @@ All parameter, weight, gradient are variables in Paddle.
self.RunFromDataset(trainer);
})
.def("run_prepared_ctx",
[](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
[](Executor &self,
ExecutorPrepareContext *ctx,
Scope *scope,
std::map<std::string, const LoDTensor *> *feed_targets,
std::map<std::string, FetchType *> *fetch_targets,
bool create_local_scope = true, bool create_vars = true,
bool create_local_scope = true,
bool create_vars = true,
const std::string &feed_holder_name = "feed",
const std::string &fetch_holder_name = "fetch") {
pybind11::gil_scoped_release release;
self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
create_local_scope, create_vars,
feed_holder_name, fetch_holder_name);
self.RunPreparedContext(ctx,
scope,
feed_targets,
fetch_targets,
create_local_scope,
create_vars,
feed_holder_name,
fetch_holder_name);
})
.def("run_prepared_ctx",
[](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
bool create_local_scope = true, bool create_vars = true,
[](Executor &self,
ExecutorPrepareContext *ctx,
Scope *scope,
bool create_local_scope = true,
bool create_vars = true,
bool keep_kids = false) {
pybind11::gil_scoped_release release;
self.RunPreparedContext(ctx, scope, create_local_scope,
create_vars, keep_kids);
self.RunPreparedContext(
ctx, scope, create_local_scope, create_vars, keep_kids);
})
.def("prepare",
[](Executor &self, const ProgramDesc &program, int block_id,
[](Executor &self,
const ProgramDesc &program,
int block_id,
const std::vector<std::string> &skip_ref_cnt_vars =
std::vector<std::string>(),
bool force_disable_gc = false) {
pybind11::gil_scoped_release release;
return self.Prepare(program, block_id, skip_ref_cnt_vars,
force_disable_gc);
return self.Prepare(
program, block_id, skip_ref_cnt_vars, force_disable_gc);
})
.def("create_variables", &Executor::CreateVariables)
.def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
int block_id, bool create_local_scope, bool create_vars,
const std::vector<std::string> &fetch_vars) {
pybind11::gil_scoped_release release;
self.Run(prog, scope, block_id, create_local_scope, create_vars,
fetch_vars);
});
.def("run",
[](Executor &self,
const ProgramDesc &prog,
Scope *scope,
int block_id,
bool create_local_scope,
bool create_vars,
const std::vector<std::string> &fetch_vars) {
pybind11::gil_scoped_release release;
self.Run(prog,
scope,
block_id,
create_local_scope,
create_vars,
fetch_vars);
});
py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
.def(py::init<>())
......@@ -2821,8 +2976,10 @@ All parameter, weight, gradient are variables in Paddle.
});
py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
.def(py::init<const platform::Place &, const ProgramDesc &,
const ProgramDesc &, Scope *>())
.def(py::init<const platform::Place &,
const ProgramDesc &,
const ProgramDesc &,
Scope *>())
.def("run",
[](StandaloneExecutor &self,
const std::unordered_map<std::string, py::array> &input_dict,
......@@ -2866,11 +3023,13 @@ All parameter, weight, gradient are variables in Paddle.
return py::cast(std::move(ret));
})
.def("run",
[](StandaloneExecutor &self, std::vector<std::string> feed_names,
[](StandaloneExecutor &self,
std::vector<std::string> feed_names,
std::vector<std::string> fetch_names) {
platform::RecordEvent record_event(
"StandaloneExecutor:run",
platform::TracerEventType::UserDefined, 1);
platform::TracerEventType::UserDefined,
1);
paddle::framework::FetchList ret;
{
pybind11::gil_scoped_release release;
......@@ -2951,21 +3110,30 @@ All parameter, weight, gradient are variables in Paddle.
});
m.def("memory_stat_get_current", memory::StatGetCurrentValue);
m.def("memory_stat_get_peak", memory::StatGetPeakValue);
m.def("run_cmd",
[](const std::string &cmd, int time_out = -1,
int sleep_inter = -1) -> const std::string {
return paddle::framework::shell_get_command_output(cmd, time_out,
sleep_inter);
},
py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
m.def("shell_execute_cmd",
[](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
bool redirect_stderr = false) -> std::vector<std::string> {
return paddle::framework::shell_execute_cmd(
cmd, time_out, sleep_inter, redirect_stderr);
},
py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
py::arg("redirect_stderr") = false);
m.def(
"run_cmd",
[](const std::string &cmd,
int time_out = -1,
int sleep_inter = -1) -> const std::string {
return paddle::framework::shell_get_command_output(
cmd, time_out, sleep_inter);
},
py::arg("cmd"),
py::arg("time_out") = -1,
py::arg("sleep_inter") = -1);
m.def(
"shell_execute_cmd",
[](const std::string &cmd,
int time_out = 0,
int sleep_inter = 0,
bool redirect_stderr = false) -> std::vector<std::string> {
return paddle::framework::shell_execute_cmd(
cmd, time_out, sleep_inter, redirect_stderr);
},
py::arg("cmd"),
py::arg("time_out") = 0,
py::arg("sleep_inter") = 0,
py::arg("redirect_stderr") = false);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
......@@ -2979,13 +3147,16 @@ All parameter, weight, gradient are variables in Paddle.
#endif
m.def("set_feed_variable",
static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
size_t)>(&framework::SetFeedVariable));
static_cast<void (*)(
Scope *, const LoDTensor &, const std::string &, size_t)>(
&framework::SetFeedVariable));
m.def("set_feed_variable",
static_cast<void (*)(Scope *, const Strings &, const std::string &,
size_t)>(&framework::SetFeedVariable));
static_cast<void (*)(
Scope *, const Strings &, const std::string &, size_t)>(
&framework::SetFeedVariable));
m.def("get_fetch_variable",
[](const Scope &scope, const std::string &var_name,
[](const Scope &scope,
const std::string &var_name,
size_t index) -> py::object {
auto &var = framework::GetFetchVariable(scope, var_name, index);
if (data_is_lod_tensor(var)) {
......@@ -3033,26 +3204,30 @@ All parameter, weight, gradient are variables in Paddle.
pylodtensorarray
.def("__init__",
[](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
.def("__getitem__",
[](LoDTensorArray &self, size_t i) { return &self.at(i); },
py::return_value_policy::reference)
.def(
"__getitem__",
[](LoDTensorArray &self, size_t i) { return &self.at(i); },
py::return_value_policy::reference)
.def("__len__", [](LoDTensorArray &self) { return self.size(); })
.def("__setitem__",
[](LoDTensorArray &self, size_t i, const LoDTensor &t) {
PADDLE_ENFORCE_LT(i, self.size(),
PADDLE_ENFORCE_LT(i,
self.size(),
platform::errors::InvalidArgument(
"The index to set is larger than the size "
"of LoDTensorArray."));
self[i].ShareDataWith(t);
self[i].set_lod(t.lod());
})
.def("append",
[](LoDTensorArray &self, const LoDTensor &t) {
self.emplace_back();
self.back().ShareDataWith(t);
self.back().set_lod(t.lod());
},
py::arg("tensor"), R"DOC(
.def(
"append",
[](LoDTensorArray &self, const LoDTensor &t) {
self.emplace_back();
self.back().ShareDataWith(t);
self.back().set_lod(t.lod());
},
py::arg("tensor"),
R"DOC(
Append a LoDensor to LoDTensorArray.
Args:
......@@ -3072,89 +3247,94 @@ All parameter, weight, gradient are variables in Paddle.
t.set(np.ndarray([5, 30]), fluid.CPUPlace())
arr.append(t)
)DOC")
.def("_move_to_list",
[](LoDTensorArray &self) -> py::list {
py::list res(self.size());
for (size_t i = 0; i < self.size(); ++i) {
res[i] = py::cast(std::move(self[i]));
}
self.clear();
return res;
},
py::return_value_policy::take_ownership);
.def(
"_move_to_list",
[](LoDTensorArray &self) -> py::list {
py::list res(self.size());
for (size_t i = 0; i < self.size(); ++i) {
res[i] = py::cast(std::move(self[i]));
}
self.clear();
return res;
},
py::return_value_policy::take_ownership);
py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
vector of boost::variant<LoDTensor, LoDTensorArray>.
)DOC")
.def("_move_to_list",
[](FetchList &self) -> py::list {
py::list res(self.size());
for (size_t i = 0; i < self.size(); ++i) {
if (data_is_lod_tensor(self[i])) {
auto &data = BOOST_GET(LoDTensor, self[i]);
res[i] = py::cast(std::move(data));
} else {
auto &data = BOOST_GET(LoDTensorArray, self[i]);
py::list tmp(data.size());
for (size_t j = 0; j < data.size(); ++j) {
tmp[j] = py::cast(std::move(data[j]));
}
res[i] = std::move(tmp);
}
}
self.clear();
return res;
},
py::return_value_policy::take_ownership)
.def(
"_move_to_list",
[](FetchList &self) -> py::list {
py::list res(self.size());
for (size_t i = 0; i < self.size(); ++i) {
if (data_is_lod_tensor(self[i])) {
auto &data = BOOST_GET(LoDTensor, self[i]);
res[i] = py::cast(std::move(data));
} else {
auto &data = BOOST_GET(LoDTensorArray, self[i]);
py::list tmp(data.size());
for (size_t j = 0; j < data.size(); ++j) {
tmp[j] = py::cast(std::move(data[j]));
}
res[i] = std::move(tmp);
}
}
self.clear();
return res;
},
py::return_value_policy::take_ownership)
.def("append",
[](FetchList &self, const LoDTensor &t) {
self.emplace_back();
auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
lod_tensor.ShareDataWith(t);
lod_tensor.set_lod(t.lod());
},
py::arg("var"))
.def("append",
[](FetchList &self, const LoDTensorArray &t) {
self.emplace_back();
auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
for (size_t i = 0; i < t.size(); ++i) {
lod_tensor_array[i].ShareDataWith(t[i]);
lod_tensor_array[i].set_lod(t[i].lod());
}
},
py::arg("var"));
.def(
"append",
[](FetchList &self, const LoDTensor &t) {
self.emplace_back();
auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
lod_tensor.ShareDataWith(t);
lod_tensor.set_lod(t.lod());
},
py::arg("var"))
.def(
"append",
[](FetchList &self, const LoDTensorArray &t) {
self.emplace_back();
auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
for (size_t i = 0; i < t.size(); ++i) {
lod_tensor_array[i].ShareDataWith(t[i]);
lod_tensor_array[i].set_lod(t[i].lod());
}
},
py::arg("var"));
py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
)DOC")
.def("_move_to_list",
[](FetchUnmergedList &self) -> py::list {
py::list res(self.size());
for (size_t i = 0; i < self.size(); ++i) {
py::list tmp(self[i].size());
for (size_t j = 0; j < self[i].size(); ++j) {
if (data_is_lod_tensor(self[i][j])) {
auto &var = BOOST_GET(LoDTensor, self[i][j]);
tmp[j] = py::cast(std::move(var));
} else {
auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
py::list tmp_array(var.size());
for (size_t k = 0; k < var.size(); ++k) {
tmp_array[k] = std::move(var[k]);
}
tmp[j] = std::move(tmp_array);
}
}
res[i] = std::move(tmp);
self[i].clear();
}
self.clear();
return res;
},
py::return_value_policy::take_ownership);
.def(
"_move_to_list",
[](FetchUnmergedList &self) -> py::list {
py::list res(self.size());
for (size_t i = 0; i < self.size(); ++i) {
py::list tmp(self[i].size());
for (size_t j = 0; j < self[i].size(); ++j) {
if (data_is_lod_tensor(self[i][j])) {
auto &var = BOOST_GET(LoDTensor, self[i][j]);
tmp[j] = py::cast(std::move(var));
} else {
auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
py::list tmp_array(var.size());
for (size_t k = 0; k < var.size(); ++k) {
tmp_array[k] = std::move(var[k]);
}
tmp[j] = std::move(tmp_array);
}
}
res[i] = std::move(tmp);
self[i].clear();
}
self.clear();
return res;
},
py::return_value_policy::take_ownership);
m.def("op_support_gpu", OpSupportGPU);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
......@@ -3168,11 +3348,12 @@ All parameter, weight, gradient are variables in Paddle.
}
platform::EmptyCache();
});
m.def("get_device_properties",
[](int id) -> const gpuDeviceProp & {
return platform::GetDeviceProperties(id);
},
py::return_value_policy::copy);
m.def(
"get_device_properties",
[](int id) -> const gpuDeviceProp & {
return platform::GetDeviceProperties(id);
},
py::return_value_policy::copy);
py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
.def_property_readonly(
......@@ -3283,18 +3464,20 @@ All parameter, weight, gradient are variables in Paddle.
m.def("reset_profiler", platform::ResetProfiler);
m.def("register_pass", [](const std::string &pass_type, py::object callable) {
PADDLE_ENFORCE_EQ(
framework::ir::PassRegistry::Instance().Has(pass_type), false,
framework::ir::PassRegistry::Instance().Has(pass_type),
false,
platform::errors::AlreadyExists("Pass '%s' is registered more than "
"once. Please use another name.",
pass_type));
callable.inc_ref();
framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
callable]() {
py::gil_scoped_acquire guard;
std::unique_ptr<framework::ir::Pass> pass(
new framework::ir::GeneratePass(py::cast<std::string>(callable())));
return pass;
});
framework::ir::PassRegistry::Instance().Insert(
pass_type, [pass_type, callable]() {
py::gil_scoped_acquire guard;
std::unique_ptr<framework::ir::Pass> pass(
new framework::ir::GeneratePass(
py::cast<std::string>(callable())));
return pass;
});
});
m.def("get_pass", [](const std::string &pass_type) {
auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
......@@ -3304,7 +3487,8 @@ All parameter, weight, gradient are variables in Paddle.
m.def("size_of_dtype", framework::SizeOfType);
py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
.def(py::init<>())
.def("get_data", &paddle::platform::ProfilerResult::GetData,
.def("get_data",
&paddle::platform::ProfilerResult::GetData,
py::return_value_policy::automatic_reference)
.def("save", &paddle::platform::ProfilerResult::Save)
.def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo);
......@@ -3339,7 +3523,8 @@ All parameter, weight, gradient are variables in Paddle.
&paddle::platform::HostPythonNode::device_node_ptrs);
py::class_<paddle::platform::Profiler>(m, "_Profiler")
.def("create", &paddle::platform::Profiler::Create,
.def("create",
&paddle::platform::Profiler::Create,
py::return_value_policy::take_ownership)
.def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
.def("is_cnpapi_supported",
......@@ -3350,12 +3535,13 @@ All parameter, weight, gradient are variables in Paddle.
profiler->Prepare();
})
.def("start", &paddle::platform::Profiler::Start)
.def("stop",
[](paddle::platform::Profiler *profiler) {
platform::DisableHostEventRecorder();
return profiler->Stop();
},
py::return_value_policy::automatic_reference);
.def(
"stop",
[](paddle::platform::Profiler *profiler) {
platform::DisableHostEventRecorder();
return profiler->Stop();
},
py::return_value_policy::automatic_reference);
py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
.def(py::init<>())
......@@ -3412,22 +3598,29 @@ All parameter, weight, gradient are variables in Paddle.
[](ir::Pass &self, const std::string &name, const std::string &attr) {
self.Set<std::string>(name, new std::string(attr));
})
.def("set", [](ir::Pass &self, const std::string &name,
bool val) { self.Set<bool>(name, new bool(val)); })
.def("set", [](ir::Pass &self, const std::string &name,
int val) { self.Set<const int>(name, new int(val)); })
.def("set",
[](ir::Pass &self, const std::string &name,
[](ir::Pass &self, const std::string &name, bool val) {
self.Set<bool>(name, new bool(val));
})
.def("set",
[](ir::Pass &self, const std::string &name, int val) {
self.Set<const int>(name, new int(val));
})
.def("set",
[](ir::Pass &self,
const std::string &name,
std::vector<std::string> set) {
self.Set(name, new std::vector<std::string>(set));
})
.def("set",
[](ir::Pass &self, const std::string &name,
[](ir::Pass &self,
const std::string &name,
std::unordered_set<std::string> set) {
self.Set(name, new std::unordered_set<std::string>(set));
})
.def("set",
[](ir::Pass &self, const std::string &name,
[](ir::Pass &self,
const std::string &name,
std::unordered_set<int> set) {
self.Set(name, new std::unordered_set<int>(set));
})
......@@ -3604,11 +3797,12 @@ All parameter, weight, gradient are variables in Paddle.
},
R"DOC(This config that the this is distributed training with parameter server
)DOC")
.def_property("_dry_run",
[](const ExecutionStrategy &self) { return self.dry_run_; },
[](ExecutionStrategy &self, bool dry_run) {
self.dry_run_ = dry_run;
});
.def_property(
"_dry_run",
[](const ExecutionStrategy &self) { return self.dry_run_; },
[](ExecutionStrategy &self, bool dry_run) {
self.dry_run_ = dry_run;
});
exec_strategy.def_property(
"use_experimental_executor",
......@@ -3671,7 +3865,8 @@ All parameter, weight, gradient are variables in Paddle.
"reduce_strategy",
[](const BuildStrategy &self) { return self.reduce_; },
[](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3701,7 +3896,8 @@ All parameter, weight, gradient are variables in Paddle.
[](const BuildStrategy &self) { return self.gradient_scale_; },
[](BuildStrategy &self,
BuildStrategy::GradientScaleStrategy strategy) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3766,7 +3962,8 @@ All parameter, weight, gradient are variables in Paddle.
"debug_graphviz_path",
[](const BuildStrategy &self) { return self.debug_graphviz_path_; },
[](BuildStrategy &self, const std::string &path) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3793,7 +3990,8 @@ All parameter, weight, gradient are variables in Paddle.
return self.enable_sequential_execution_;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3819,7 +4017,8 @@ All parameter, weight, gradient are variables in Paddle.
return self.remove_unnecessary_lock_;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3856,11 +4055,12 @@ All parameter, weight, gradient are variables in Paddle.
const std::vector<std::string> &trainers_endpoints) {
self.trainers_endpoints_ = trainers_endpoints;
})
.def_property("trainer_id",
[](const BuildStrategy &self) { return self.trainer_id_; },
[](BuildStrategy &self, int trainer_id) {
self.trainer_id_ = trainer_id;
})
.def_property(
"trainer_id",
[](const BuildStrategy &self) { return self.trainer_id_; },
[](BuildStrategy &self, int trainer_id) {
self.trainer_id_ = trainer_id;
})
.def_property(
"nccl_comm_num",
[](const BuildStrategy &self) { return self.nccl_comm_num_; },
......@@ -3873,20 +4073,22 @@ All parameter, weight, gradient are variables in Paddle.
[](BuildStrategy &self, int bkcl_comm_num) {
self.bkcl_comm_num_ = bkcl_comm_num;
})
.def_property("use_hierarchical_allreduce",
[](const BuildStrategy &self) {
return self.use_hierarchical_allreduce_;
},
[](BuildStrategy &self, bool use) {
self.use_hierarchical_allreduce_ = use;
})
.def_property("hierarchical_allreduce_inter_nranks",
[](const BuildStrategy &self) {
return self.hierarchical_allreduce_inter_nranks_;
},
[](BuildStrategy &self, int nranks) {
self.hierarchical_allreduce_inter_nranks_ = nranks;
})
.def_property(
"use_hierarchical_allreduce",
[](const BuildStrategy &self) {
return self.use_hierarchical_allreduce_;
},
[](BuildStrategy &self, bool use) {
self.use_hierarchical_allreduce_ = use;
})
.def_property(
"hierarchical_allreduce_inter_nranks",
[](const BuildStrategy &self) {
return self.hierarchical_allreduce_inter_nranks_;
},
[](BuildStrategy &self, int nranks) {
self.hierarchical_allreduce_inter_nranks_ = nranks;
})
.def_property(
"fuse_elewise_add_act_ops",
......@@ -3894,7 +4096,8 @@ All parameter, weight, gradient are variables in Paddle.
return self.fuse_elewise_add_act_ops_;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3919,7 +4122,8 @@ All parameter, weight, gradient are variables in Paddle.
"fuse_gemm_epilogue",
[](const BuildStrategy &self) { return self.fuse_gemm_epilogue_; },
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3944,7 +4148,8 @@ All parameter, weight, gradient are variables in Paddle.
"fuse_bn_act_ops",
[](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3969,7 +4174,8 @@ All parameter, weight, gradient are variables in Paddle.
"fuse_bn_add_act_ops",
[](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -3994,7 +4200,8 @@ All parameter, weight, gradient are variables in Paddle.
"enable_auto_fusion",
[](const BuildStrategy &self) { return self.enable_auto_fusion_; },
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -4022,7 +4229,8 @@ All parameter, weight, gradient are variables in Paddle.
return self.fuse_relu_depthwise_conv_;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -4045,19 +4253,21 @@ All parameter, weight, gradient are variables in Paddle.
build_strategy = static.BuildStrategy()
build_strategy.fuse_relu_depthwise_conv = True
)DOC")
.def_property("fuse_broadcast_ops",
[](const BuildStrategy &self) {
return self.fuse_broadcast_ops_ == true ||
self.fuse_broadcast_ops_ == paddle::none;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, "
"cannot be configured again."));
self.fuse_broadcast_ops_ = b;
},
R"DOC((bool, optional): fuse_broadcast_op indicates whether
.def_property(
"fuse_broadcast_ops",
[](const BuildStrategy &self) {
return self.fuse_broadcast_ops_ == true ||
self.fuse_broadcast_ops_ == paddle::none;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, "
"cannot be configured again."));
self.fuse_broadcast_ops_ = b;
},
R"DOC((bool, optional): fuse_broadcast_op indicates whether
to fuse the broadcast ops. Note that, in Reduce mode,
fusing broadcast ops may make the program faster. Because
fusing broadcast OP equals delaying the execution of all
......@@ -4075,23 +4285,26 @@ All parameter, weight, gradient are variables in Paddle.
build_strategy = static.BuildStrategy()
build_strategy.fuse_broadcast_ops = True
)DOC")
.def_property("fuse_all_optimizer_ops",
[](const BuildStrategy &self) {
return self.fuse_all_optimizer_ops_ == true ||
self.fuse_all_optimizer_ops_ == paddle::none;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, "
"cannot be configured again."));
self.fuse_all_optimizer_ops_ = b;
})
.def_property(
"fuse_all_optimizer_ops",
[](const BuildStrategy &self) {
return self.fuse_all_optimizer_ops_ == true ||
self.fuse_all_optimizer_ops_ == paddle::none;
},
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, "
"cannot be configured again."));
self.fuse_all_optimizer_ops_ = b;
})
.def_property(
"sync_batch_norm",
[](const BuildStrategy &self) { return self.sync_batch_norm_; },
[](BuildStrategy &self, bool b) {
PADDLE_ENFORCE_NE(self.IsFinalized(), true,
PADDLE_ENFORCE_NE(self.IsFinalized(),
true,
platform::errors::PreconditionNotMet(
"BuildStrategy has been finlaized, cannot be "
"configured again."));
......@@ -4169,9 +4382,10 @@ All parameter, weight, gradient are variables in Paddle.
self.is_distribution_ = b;
#endif
})
.def_property("async_mode",
[](const BuildStrategy &self) { return self.async_mode_; },
[](BuildStrategy &self, bool b) { self.async_mode_ = b; })
.def_property(
"async_mode",
[](const BuildStrategy &self) { return self.async_mode_; },
[](BuildStrategy &self, bool b) { self.async_mode_ = b; })
.def_property(
"enable_inplace",
[](const BuildStrategy &self) { return self.enable_inplace_; },
......@@ -4187,13 +4401,14 @@ All parameter, weight, gradient are variables in Paddle.
self.fuse_all_reduce_ops_ == paddle::none;
},
[](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
.def_property("enable_backward_optimizer_op_deps",
[](const BuildStrategy &self) {
return self.enable_backward_optimizer_op_deps_;
},
[](BuildStrategy &self, bool b) {
self.enable_backward_optimizer_op_deps_ = b;
})
.def_property(
"enable_backward_optimizer_op_deps",
[](const BuildStrategy &self) {
return self.enable_backward_optimizer_op_deps_;
},
[](BuildStrategy &self, bool b) {
self.enable_backward_optimizer_op_deps_ = b;
})
.def_property(
"cache_runtime_context",
[](const BuildStrategy &self) { return self.cache_runtime_context_; },
......@@ -4213,24 +4428,26 @@ All parameter, weight, gradient are variables in Paddle.
[](BuildStrategy &self, bool fix_op_run_order) {
self.fix_op_run_order_ = fix_op_run_order;
})
.def_property("allow_cuda_graph_capture",
[](const BuildStrategy &self) {
return self.allow_cuda_graph_capture_;
},
[](BuildStrategy &self, bool allow_cuda_graph_capture) {
self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
})
.def_property(
"allow_cuda_graph_capture",
[](const BuildStrategy &self) {
return self.allow_cuda_graph_capture_;
},
[](BuildStrategy &self, bool allow_cuda_graph_capture) {
self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
})
.def("_copy",
[](const BuildStrategy &self) {
auto new_bs = self;
new_bs.ClearFinalized();
return new_bs;
})
.def("_finalize_strategy_and_create_passes",
[](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
return self.CreatePassesFromStrategy(true);
},
R"DOC(Allow user to customized passes. Normally model-specific
.def(
"_finalize_strategy_and_create_passes",
[](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
return self.CreatePassesFromStrategy(true);
},
R"DOC(Allow user to customized passes. Normally model-specific
optimization passes should be defined in this way. BuildStrategy
cannot be updated after being finalized.)DOC");
......@@ -4241,18 +4458,23 @@ All parameter, weight, gradient are variables in Paddle.
});
pe.def(py::init<const std::vector<platform::Place> &,
const std::vector<std::string> &, const std::string &,
Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
const BuildStrategy &, ir::Graph *>())
const std::vector<std::string> &,
const std::string &,
Scope *,
std::vector<Scope *> &,
const ExecutionStrategy &,
const BuildStrategy &,
ir::Graph *>())
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
// of vec<Scope*> will be freed by Python GC. We can only return Scope*
// one by one and mark them as reference.
.def("local_scopes",
[](ParallelExecutor &self) -> std::vector<Scope *> * {
return &self.GetLocalScopes();
},
py::return_value_policy::reference)
.def(
"local_scopes",
[](ParallelExecutor &self) -> std::vector<Scope *> * {
return &self.GetLocalScopes();
},
py::return_value_policy::reference)
.def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
.def("_need_create_local_exe_scopes",
&ParallelExecutor::NeedCreateLocalExeScope)
......@@ -4284,12 +4506,13 @@ All parameter, weight, gradient are variables in Paddle.
std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
m, "IpuBackend")
// manage IpuBackend in C++
.def("get_instance",
[]() {
return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
platform::ipu::IpuBackend::GetInstance());
},
py::return_value_policy::reference)
.def(
"get_instance",
[]() {
return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
platform::ipu::IpuBackend::GetInstance());
},
py::return_value_policy::reference)
.def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
.def("detach", &platform::ipu::IpuBackend::Detach)
.def("reset", &platform::ipu::IpuBackend::Reset)
......@@ -4330,7 +4553,8 @@ All parameter, weight, gradient are variables in Paddle.
PADDLE_THROW(platform::errors::Unimplemented(
"Failed to convert type: %s when set IpuStrategy "
"option: %s",
option.get_type(), option_name));
option.get_type(),
option_name));
}
self.InsertStringOption(option_name, option_val);
}
......@@ -4338,7 +4562,8 @@ All parameter, weight, gradient are variables in Paddle.
if (option_name.rfind("location_", 0) == 0) {
for (auto option : element.second.cast<py::dict>()) {
self.SetTensorLocation(
option_name, option.first.cast<std::string>(),
option_name,
option.first.cast<std::string>(),
option.second.cast<std::uint64_t>());
}
} else if (option_name == "accumulate_outer_fragment") {
......@@ -4386,17 +4611,19 @@ All parameter, weight, gradient are variables in Paddle.
PADDLE_THROW(platform::errors::Unimplemented(
"Failed to convert value type: %s when set "
"IpuStrategy option: %s",
option.second.get_type(), option_key));
option.second.get_type(),
option_key));
}
self.InsertStringPairOption(option_name, option_key,
option_val);
self.InsertStringPairOption(
option_name, option_key, option_val);
}
}
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Invalid IpuStrategy option value type: %s, please check "
"input value for option: %s",
element.second.get_type(), option_name));
element.second.get_type(),
option_name));
}
}
})
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册