未验证 提交 69d01eb9 编写于 作者: Z zhangkaihuo 提交者: GitHub

move fuild.contrib.mixed_precision to paddle.static.amp (#49412)

上级 8e291bf7
......@@ -59,6 +59,7 @@ BLACK_LIST = {
'trilinear_interp_v2',
}
AMP_RELATED_FLAGS = [
'FLAGS_cudnn_exhaustive_search',
'FLAGS_conv_workspace_size_limit',
......@@ -127,7 +128,7 @@ def amp_state():
return _g_amp_state_
# NOTE(zhiqiu): similar as paddle.fluid.contrib.mixed_precision.fp16_lists.AutoMixedPrecisionLists._update_list
# NOTE(zhiqiu): similar as paddle.static.amp.fp16_lists.AutoMixedPrecisionLists._update_list
# The reason why not use AutoMixedPrecisionLists is that custom_black_varnames is not suitable for imperative mode.
def _update_list(
custom_white_list, custom_black_list, level='O1', dtype='float16'
......
......@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import paddle.fluid.contrib.mixed_precision as mixed_precision
import paddle.static.amp as mixed_precision
from .meta_optimizer_base import MetaOptimizerBase
......
......@@ -23,7 +23,9 @@ from paddle.distributed.auto_parallel.utils import (
set_var_dist_attr,
)
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.framework import core
from paddle.static.amp.fp16_utils import (
AutoMixedPrecisionLists,
_dtype_to_str,
_is_in_black_varnames,
......@@ -35,8 +37,6 @@ from paddle.fluid.contrib.mixed_precision.fp16_utils import (
find_true_post_op,
find_true_prev_op,
)
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.framework import core
from paddle.utils import unique_name
from ..auto_parallel.process_mesh import ProcessMesh
......@@ -83,7 +83,7 @@ class AMPState:
def _mark_black_white_ops(self, amp_lists):
"""
this function is modified from paddle.fluid.contrib.mixed_precision
this function is modified from paddle.static.amp
"""
self._block._sync_with_cpp()
ops = self._block.ops
......@@ -179,7 +179,7 @@ class AMPState:
):
"""
only for forward cast
modified from paddle.fluid.contrib.mixed_precision
modified from paddle.static.amp
"""
num_cast_ops = 0
var_name_dict = {}
......
......@@ -26,22 +26,20 @@ from paddle.distributed.auto_parallel.utils import (
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.distributed.passes.pass_base import PassBase, register_pass
from paddle.fluid import unique_name
from paddle.fluid.contrib.mixed_precision.bf16 import (
AutoMixedPrecisionListsBF16,
)
from paddle.fluid.contrib.mixed_precision.bf16.amp_utils import (
from paddle.fluid.framework import Block
from paddle.framework import core
from paddle.static.amp.bf16 import AutoMixedPrecisionListsBF16
from paddle.static.amp.bf16.amp_utils import (
_dtype_to_str,
_is_in_fp32_varnames,
_valid_types,
find_op_index,
find_true_post_op,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
from paddle.static.amp.fp16_utils import (
_rename_arg,
find_op_index,
find_true_prev_op,
)
from paddle.fluid.framework import Block
from paddle.framework import core
from ..auto_parallel.utils import is_backward_op, is_forward_op, is_loss_op
......
......@@ -26,16 +26,16 @@ from paddle.distributed.auto_parallel.utils import (
set_var_dist_attr,
)
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.framework import core
from paddle.static import default_main_program, default_startup_program
from paddle.static.amp.fp16_utils import (
AutoMixedPrecisionLists,
_dtype_to_str,
_keep_layer_norm_scale_bias_to_fp32,
_need_keep_fp32,
_valid_types,
)
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.framework import core
from paddle.static import default_main_program, default_startup_program
from paddle.utils import unique_name
from ..auto_parallel.process_mesh import ProcessMesh
......
......@@ -22,8 +22,6 @@ from . import extend_optimizer
from .extend_optimizer import *
from . import model_stat
from .model_stat import *
from . import mixed_precision
from .mixed_precision import *
from . import layers
from .layers import *
from . import optimizer
......@@ -34,6 +32,5 @@ __all__ = []
__all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__
__all__ += extend_optimizer.__all__
__all__ += ['mixed_precision']
__all__ += layers.__all__
__all__ += optimizer.__all__
......@@ -1587,7 +1587,7 @@ def fused_bn_add_act(
)
loss = paddle.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd = paddle.static.amp.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
sgd.minimize(loss)
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import decorator
from .decorator import *
from . import fp16_lists
from .fp16_lists import *
from . import fp16_utils
from .fp16_utils import *
from . import bf16
__all__ = []
__all__ += decorator.__all__
__all__ += fp16_lists.__all__
__all__ += fp16_utils.__all__
......@@ -14,7 +14,7 @@
import paddle
import unittest
from paddle.fluid.contrib.mixed_precision.fp16_lists import (
from paddle.static.amp.fp16_lists import (
AutoMixedPrecisionLists,
)
......
......@@ -110,7 +110,7 @@ class AMPTest2(unittest.TestCase):
def test_find_op_index(self):
block = fluid.default_main_program().global_block()
op_desc = core.OpDesc()
idx = amp.bf16.amp_utils.find_op_index(block.desc, op_desc)
idx = amp.fp16_utils.find_op_index(block.desc, op_desc)
assert idx == -1
def test_is_in_fp32_varnames(self):
......
......@@ -15,7 +15,7 @@
import unittest
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.contrib.mixed_precision import fp16_utils
from paddle.static.amp import fp16_utils
import paddle
paddle.enable_static()
......
......@@ -136,7 +136,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
custom_black_varnames={"loss", "conv2d_0.w_0"}
)
mp_optimizer = decorate(
......@@ -313,102 +313,66 @@ class TestImageClassification(unittest.TestCase):
# infer(use_cuda, save_dirname)
def test_amp_lists(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists()
amp_lists = paddle.static.amp.AutoMixedPrecisionLists()
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_1(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
# 1. w={'exp}, b=None
white_list.add('exp')
black_list.remove('exp')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
{'exp'}
)
amp_lists = paddle.static.amp.AutoMixedPrecisionLists({'exp'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_2(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
# 2. w={'tanh'}, b=None
white_list.add('tanh')
gray_list.remove('tanh')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
{'tanh'}
)
amp_lists = paddle.static.amp.AutoMixedPrecisionLists({'tanh'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_3(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
# 3. w={'lstm'}, b=None
white_list.add('lstm')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
{'lstm'}
)
amp_lists = paddle.static.amp.AutoMixedPrecisionLists({'lstm'})
self.assertEqual(amp_lists.white_list, white_list)
self.assertEqual(amp_lists.black_list, black_list)
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_4(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
# 4. w=None, b={'conv2d'}
white_list.remove('conv2d')
black_list.add('conv2d')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
custom_black_list={'conv2d'}
)
self.assertEqual(amp_lists.white_list, white_list)
......@@ -416,21 +380,15 @@ class TestImageClassification(unittest.TestCase):
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_5(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
# 5. w=None, b={'tanh'}
black_list.add('tanh')
gray_list.remove('tanh')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
custom_black_list={'tanh'}
)
self.assertEqual(amp_lists.white_list, white_list)
......@@ -438,20 +396,14 @@ class TestImageClassification(unittest.TestCase):
self.assertEqual(amp_lists.gray_list, gray_list)
def test_amp_lists_6(self):
white_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.white_list
)
black_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.black_list
)
gray_list = copy.copy(
fluid.contrib.mixed_precision.fp16_lists.gray_list
)
white_list = copy.copy(paddle.static.amp.fp16_lists.white_list)
black_list = copy.copy(paddle.static.amp.fp16_lists.black_list)
gray_list = copy.copy(paddle.static.amp.fp16_lists.gray_list)
# 6. w=None, b={'lstm'}
black_list.add('lstm')
amp_lists = fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
custom_black_list={'lstm'}
)
self.assertEqual(amp_lists.white_list, white_list)
......@@ -463,7 +415,7 @@ class TestImageClassification(unittest.TestCase):
# raise ValueError
self.assertRaises(
ValueError,
fluid.contrib.mixed_precision.AutoMixedPrecisionLists,
paddle.static.amp.AutoMixedPrecisionLists,
{'lstm'},
{'lstm'},
)
......@@ -515,11 +467,9 @@ class TestAmpWithNonIterableDataLoader(unittest.TestCase):
avg_cost = paddle.mean(cost)
optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
amp_lists = (
fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
custom_black_varnames={"loss", "conv2d_0.w_0"}
)
)
mp_optimizer = decorate(
optimizer=optimizer,
amp_lists=amp_lists,
......
......@@ -18,7 +18,7 @@ import contextlib
import unittest
import numpy as np
from paddle.io import Dataset
from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_model_to_fp16
from paddle.static.amp.fp16_utils import cast_model_to_fp16
paddle.enable_static()
......
......@@ -21,7 +21,7 @@ from paddle.optimizer import SGD as SGD_v2
from paddle.fluid.incubate.fleet.base.mode import Mode
from paddle.distributed.fleet.base.role_maker import RoleMakerBase
from paddle.fluid.contrib.mixed_precision.decorator import (
from paddle.static.amp.decorator import (
OptimizerWithMixedPrecision,
)
from . import mode
......
......@@ -555,7 +555,7 @@ class CollectiveOptimizer(DistributedOptimizer):
self.raiseOptimizeError(
"mixed_precision", self._optimizer.__class__.__name__
)
self._optimizer = fluid.contrib.mixed_precision.decorate(
self._optimizer = paddle.static.amp.decorate(
self._optimizer,
init_loss_scaling=self._amp_loss_scaling,
use_dynamic_loss_scaling=True,
......
......@@ -4404,7 +4404,7 @@ class PipelineOptimizer:
valid_optimizers = (
Optimizer,
paddle.optimizer.Optimizer,
paddle.fluid.contrib.mixed_precision.decorator.OptimizerWithMixedPrecision,
paddle.static.amp.decorator.OptimizerWithMixedPrecision,
)
if not isinstance(optimizer, valid_optimizers):
raise ValueError(
......
......@@ -215,11 +215,7 @@ class TestASPStaticOptimize(unittest.TestCase):
if core.is_compiled_with_cuda():
place = paddle.CUDAPlace(0)
with fluid.program_guard(self.main_program, self.startup_program):
self.optimizer = (
fluid.contrib.mixed_precision.decorator.decorate(
self.optimizer
)
)
self.optimizer = paddle.static.amp.decorate(self.optimizer)
self.optimizer = paddle.incubate.asp.decorate(self.optimizer)
self.optimizer.minimize(self.loss, self.startup_program)
......
......@@ -21,10 +21,10 @@ import paddle
import paddle.fluid.core as core
import paddle.nn as nn
from paddle.distributed.fleet import auto
from paddle.fluid.contrib.mixed_precision.bf16.amp_utils import _valid_types
from paddle.fluid.contrib.mixed_precision.fp16_utils import find_true_prev_op
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.static import InputSpec
from paddle.static.amp.bf16.amp_utils import _valid_types
from paddle.static.amp.fp16_utils import find_true_prev_op
from paddle.vision.datasets import MNIST
paddle.enable_static()
......
......@@ -26,6 +26,7 @@
import unittest
import paddle
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.collective import (
CollectiveOptimizer,
......@@ -61,7 +62,7 @@ class CollectiveOptimizerTest(unittest.TestCase):
def test_amp_strategy(self):
optimizer = fluid.optimizer.AdamOptimizer()
optimizer = fluid.contrib.mixed_precision.decorate(
optimizer = paddle.static.amp.decorate(
optimizer, init_loss_scaling=1.0, use_dynamic_loss_scaling=True
)
dist_strategy = DistributedStrategy()
......
......@@ -25,7 +25,7 @@ import sys
sys.path.append('..')
from op_test import _set_use_system_allocator
from paddle.fluid import Program, program_guard
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
from paddle.static.amp.fp16_utils import (
_keep_layer_norm_scale_bias_to_fp32,
)
from test_layer_norm_op import (
......
......@@ -21,7 +21,7 @@ from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.contrib.mixed_precision.amp_nn import check_finite_and_unscale
from paddle.static.amp.amp_nn import check_finite_and_unscale
paddle.enable_static()
......
......@@ -17,7 +17,7 @@ import sys
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.contrib.mixed_precision import fp16_utils
from paddle.static.amp import fp16_utils
import paddle.nn as nn
import paddle.static as static
import numpy as np
......
......@@ -21,7 +21,7 @@ sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.contrib.mixed_precision.amp_nn as amp_nn
import paddle.static.amp.amp_nn as amp_nn
from test_update_loss_scaling_op_npu import TestUpdateLossScalingOpBad
paddle.enable_static()
......
......@@ -20,7 +20,7 @@ sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.contrib.mixed_precision.amp_nn as amp_nn
import paddle.static.amp.amp_nn as amp_nn
paddle.enable_static()
SEED = 2021
......
......@@ -17,7 +17,7 @@ import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.contrib.mixed_precision.amp_nn as amp_nn
import paddle.static.amp.amp_nn as amp_nn
def check_finite_and_unscale_wrapper(x, scale):
......
......@@ -61,7 +61,7 @@ class TestFuseBatchNormActPass(unittest.TestCase):
loss = paddle.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
if use_cuda:
sgd = fluid.contrib.mixed_precision.decorate(
sgd = paddle.static.amp.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0
)
sgd.minimize(loss)
......
......@@ -112,7 +112,7 @@ class TestFusedBnAddActAPI(unittest.TestCase):
)
loss = paddle.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd = paddle.static.amp.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0
)
sgd.minimize(loss)
......@@ -173,7 +173,7 @@ class TestFusedBnAddActAPI(unittest.TestCase):
)
loss = paddle.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd = paddle.static.amp.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0
)
sgd.minimize(loss)
......
......@@ -24,9 +24,7 @@ import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn.functional as F
from paddle.fluid import Program, program_guard
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
_keep_layer_norm_scale_bias_to_fp32,
)
from paddle.static.amp.fp16_utils import _keep_layer_norm_scale_bias_to_fp32
paddle.enable_static()
......
......@@ -18,7 +18,7 @@ import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.contrib.mixed_precision.amp_nn as amp_nn
import paddle.static.amp.amp_nn as amp_nn
def update_loss_scaling_wrapper(
......
......@@ -26,7 +26,7 @@ from xpu.get_test_cover_info import (
import paddle
import paddle.fluid as fluid
import paddle.fluid.contrib.mixed_precision.amp_nn as amp_nn
import paddle.static.amp.amp_nn as amp_nn
paddle.enable_static()
......
......@@ -21,13 +21,6 @@ from paddle import _legacy_C_ops
from paddle.amp.auto_cast import _in_amp_guard, _in_pure_fp16_guard
from paddle.fluid import backward, core, framework, program_guard
from paddle.fluid.compiler import BuildStrategy
from paddle.fluid.contrib.mixed_precision.decorator import (
AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
cast_model_to_fp16,
rewrite_program,
)
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
from paddle.fluid.executor import (
......@@ -189,7 +182,7 @@ class PartialProgramLayer:
if tracer:
custom_white_list, custom_black_list = tracer._get_amp_op_list()
# For AMP training
self._amp_list = AutoMixedPrecisionLists(
self._amp_list = paddle.static.amp.fp16_lists.AutoMixedPrecisionLists(
custom_white_list=custom_white_list,
custom_black_list=custom_black_list,
)
......@@ -238,7 +231,9 @@ class PartialProgramLayer:
def _create_amp_program(self, is_infer_mode=False):
amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
with program_guard(amp_program):
rewrite_program(amp_program, self._amp_list)
paddle.static.amp.fp16_utils.rewrite_program(
amp_program, self._amp_list
)
if is_infer_mode:
return amp_program
else:
......@@ -252,7 +247,7 @@ class PartialProgramLayer:
for_test=is_infer_mode
)
with program_guard(pure_fp16_program):
cast_model_to_fp16(
paddle.static.amp.fp16_utils.cast_model_to_fp16(
pure_fp16_program, self._amp_list, use_fp16_guard=False
)
if is_infer_mode:
......
......@@ -12,14 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from ...fluid.contrib.mixed_precision import decorate # noqa: F401
from ...fluid.contrib.mixed_precision import CustomOpLists # noqa: F401
from ...fluid.contrib.mixed_precision import (
AutoMixedPrecisionLists,
) # noqa: F401
from ...fluid.contrib.mixed_precision import fp16_guard # noqa: F401
from ...fluid.contrib.mixed_precision import cast_model_to_fp16 # noqa: F401
from ...fluid.contrib.mixed_precision import (
cast_parameters_to_fp16,
) # noqa: F401
from ...fluid.contrib.mixed_precision import bf16 # noqa: F401
from . import decorator
from .decorator import decorate
from . import fp16_lists
from .fp16_lists import CustomOpLists, AutoMixedPrecisionLists
from . import fp16_utils
from .fp16_utils import fp16_guard, cast_model_to_fp16, cast_parameters_to_fp16
from . import bf16
from .bf16 import bf16_guard
__all__ = []
__all__ += decorator.__all__
__all__ += fp16_lists.__all__
__all__ += fp16_utils.__all__
......@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import Variable, in_dygraph_mode
from paddle.fluid import core
from paddle import _C_ops
from paddle.fluid import core
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.fluid.framework import Variable, in_dygraph_mode
from paddle.fluid.layer_helper import LayerHelper
__all__ = ['check_finite_and_unscale', 'update_loss_scaling']
......
......@@ -13,11 +13,17 @@
# limitations under the License.
from . import amp_lists
from .amp_lists import *
from .amp_lists import AutoMixedPrecisionListsBF16
from . import amp_utils
from .amp_utils import *
from .amp_utils import (
bf16_guard,
rewrite_program_bf16,
cast_model_to_bf16,
cast_parameters_to_bf16,
convert_float_to_uint16,
)
from . import decorator
from .decorator import *
from .decorator import decorate_bf16
__all__ = []
__all__ += decorator.__all__
......
......@@ -13,13 +13,12 @@
# limitations under the License.
import copy
from paddle.fluid import core
from ..fp16_lists import (
white_list as white_list_fp16,
black_list as black_list_fp16,
gray_list as gray_list_fp16,
)
from ..fp16_lists import black_list as black_list_fp16
from ..fp16_lists import gray_list as gray_list_fp16
from ..fp16_lists import white_list as white_list_fp16
__all__ = ["AutoMixedPrecisionListsBF16"]
......@@ -40,7 +39,7 @@ class AutoMixedPrecisionListsBF16:
import paddle
paddle.enable_static()
with paddle.static.amp.bf16_guard():
paddle.static.amp.AutoMixedPrecisionListsBF16(custom_fp32_list={'lstm'})
paddle.static.amp.bf16.AutoMixedPrecisionListsBF16(custom_fp32_list={'lstm'})
"""
def __init__(
......
......@@ -13,24 +13,23 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .... import core
from .... import framework
from .... import global_scope
from ....log_helper import get_logger
from ....wrapped_decorator import signature_safe_contextmanager
from .amp_lists import AutoMixedPrecisionListsBF16
import collections
import logging
import struct
import numpy as np
from paddle.fluid import core, framework, global_scope
from paddle.fluid.log_helper import get_logger
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
from ..fp16_utils import (
find_true_prev_op,
find_true_post_op,
_rename_arg,
find_op_index,
_rename_op_input,
find_true_post_op,
find_true_prev_op,
)
import collections
import struct
import logging
import numpy as np
from .amp_lists import AutoMixedPrecisionListsBF16
__all__ = [
"bf16_guard",
......
......@@ -12,22 +12,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import types
import warnings
import paddle
from paddle.fluid import (
core,
default_main_program,
layers,
program_guard,
unique_name,
)
from paddle.fluid import core, default_main_program, program_guard, unique_name
from .amp_lists import AutoMixedPrecisionListsBF16
from .amp_utils import (
rewrite_program_bf16,
cast_model_to_bf16,
cast_parameters_to_bf16,
rewrite_program_bf16,
)
from .amp_lists import AutoMixedPrecisionListsBF16
import types
import warnings
__all__ = ["decorate_bf16"]
......
......@@ -12,24 +12,27 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from ... import core
from ... import default_main_program
from ... import default_startup_program
from ... import framework
from ... import layers
from ... import program_guard
from ... import unique_name
from . import fp16_utils
from .fp16_utils import rewrite_program
from .fp16_utils import cast_model_to_fp16
from .fp16_utils import cast_parameters_to_fp16
from .fp16_utils import update_role_var_grad
from .fp16_lists import AutoMixedPrecisionLists
from .amp_nn import check_finite_and_unscale
from .amp_nn import update_loss_scaling
import types
import warnings
import paddle
from paddle.fluid import (
core,
default_main_program,
default_startup_program,
layers,
program_guard,
unique_name,
)
from .amp_nn import check_finite_and_unscale, update_loss_scaling
from .fp16_lists import AutoMixedPrecisionLists
from .fp16_utils import (
cast_model_to_fp16,
cast_parameters_to_fp16,
rewrite_program,
update_role_var_grad,
)
__all__ = ["decorate"]
......
......@@ -13,7 +13,8 @@
# limitations under the License.
import copy
from ... import core
from paddle.fluid import core
__all__ = ["CustomOpLists", "AutoMixedPrecisionLists"]
......
......@@ -12,17 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from ... import core
from ... import framework
from ... import layers
from ... import global_scope
from ...log_helper import get_logger
from ...wrapped_decorator import signature_safe_contextmanager
from .fp16_lists import AutoMixedPrecisionLists
import collections
import logging
import numpy as np
from paddle.fluid import core, framework, global_scope
from paddle.fluid.log_helper import get_logger
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
from .fp16_lists import AutoMixedPrecisionLists
__all__ = ["fp16_guard", "cast_model_to_fp16", "cast_parameters_to_fp16"]
_logger = get_logger(
......
......@@ -337,8 +337,6 @@ packages=['paddle',
'paddle.fluid.dataloader',
'paddle.fluid.contrib',
'paddle.fluid.contrib.extend_optimizer',
'paddle.fluid.contrib.mixed_precision',
'paddle.fluid.contrib.mixed_precision.bf16',
'paddle.fluid.contrib.layers',
'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details',
......@@ -400,6 +398,7 @@ packages=['paddle',
'paddle.static',
'paddle.static.nn',
'paddle.static.amp',
'paddle.static.amp.bf16',
'paddle.static.quantization',
'paddle.quantization',
'paddle.quantization.imperative',
......
......@@ -1236,8 +1236,6 @@ def get_setup_parameters():
'paddle.fluid.dataloader',
'paddle.fluid.contrib',
'paddle.fluid.contrib.extend_optimizer',
'paddle.fluid.contrib.mixed_precision',
'paddle.fluid.contrib.mixed_precision.bf16',
'paddle.fluid.contrib.layers',
'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details',
......@@ -1299,6 +1297,7 @@ def get_setup_parameters():
'paddle.static',
'paddle.static.nn',
'paddle.static.amp',
'paddle.static.amp.bf16',
'paddle.static.quantization',
'paddle.quantization',
'paddle.quantization.imperative',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册