Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
69bf5ee8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
69bf5ee8
编写于
6月 28, 2023
作者:
B
bukejiyu
提交者:
GitHub
6月 28, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[inference][trt]add Einsum op (#54860)
* add einsum layer
上级
6da0a24d
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
574 addition
and
1 deletion
+574
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+2
-1
paddle/fluid/inference/tensorrt/convert/einsum_op.cc
paddle/fluid/inference/tensorrt/convert/einsum_op.cc
+53
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+35
-0
test/ir/inference/test_trt_convert_einsum.py
test/ir/inference/test_trt_convert_einsum.py
+483
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
69bf5ee8
...
...
@@ -2754,6 +2754,7 @@ USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER
(
pad
);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER
(
pad3d
);
USE_TRT_CONVERTER
(
einsum
)
#endif
USE_TRT_CONVERTER
(
hard_sigmoid
);
USE_TRT_CONVERTER
(
hard_swish
);
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
69bf5ee8
...
...
@@ -105,7 +105,8 @@ list(
preln_groupnorm_act_op.cc
expand_v2_op.cc
cumsum_op.cc
temporal_shift_op.cc
)
temporal_shift_op.cc
einsum_op.cc
)
if
(
${
TENSORRT_MAJOR_VERSION
}
GREATER_EQUAL 7
)
list
(
APPEND CONVERT_FILES emb_eltwise_layernorm.cc
...
...
paddle/fluid/inference/tensorrt/convert/einsum_op.cc
0 → 100644
浏览文件 @
69bf5ee8
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
/*
* Einsum Op
*/
class
EinsumOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
#if IS_TRT_VERSION_GE(8200)
VLOG
(
3
)
<<
"convert a einsum op to tensorrt layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
operand_inputs
=
op_desc
.
Input
(
"Operands"
);
auto
equation
=
PADDLE_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"equation"
));
std
::
vector
<
nvinfer1
::
ITensor
*>
input_tensors
;
for
(
auto
input_name
:
operand_inputs
)
{
auto
tmp_tensor
=
engine_
->
GetITensor
(
input_name
);
input_tensors
.
push_back
(
tmp_tensor
);
}
int32_t
input_num
=
static_cast
<
int32_t
>
(
operand_inputs
.
size
());
auto
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Einsum
,
input_tensors
.
data
(),
input_num
,
equation
.
c_str
());
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"einsum"
,
{
output_name
},
test_mode
);
#else
VLOG
(
3
)
<<
"Einsum is not supported when TensorRT < 8.2.0"
;
#endif
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
einsum
,
EinsumOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
69bf5ee8
...
...
@@ -79,6 +79,8 @@ struct SimpleOpTypeSetTeller : public Teller {
teller_set
.
insert
(
"set_value"
);
teller_set
.
insert
(
"index_select"
);
int8_teller_set
.
insert
(
"index_select"
);
int8_teller_set
.
insert
(
"einsum"
);
teller_set
.
insert
(
"einsum"
);
#endif
}
...
...
@@ -2700,6 +2702,39 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"einsum"
)
{
#if !IS_TRT_VERSION_GE(8200)
VLOG
(
3
)
<<
"einsum is not supported when TensorRT < 8.2"
;
return
false
;
#else
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"the einsum does not support "
"static shape yet"
;
return
false
;
}
auto
operand_inputs
=
desc
.
Input
(
"Operands"
);
if
(
operand_inputs
.
size
()
>
2
)
{
VLOG
(
3
)
<<
"TensorRT currently supports up to 2 input tensors"
<<
"to einsum but operation had"
<<
operand_inputs
.
size
()
<<
"input tensors !"
;
return
false
;
}
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
auto
equation
=
PADDLE_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"equation"
));
if
(
equation
.
find
(
"..."
)
!=
std
::
string
::
npos
)
{
VLOG
(
3
)
<<
"TensorRT currently does not support ellipses !"
;
return
false
;
}
#endif
}
if
(
use_no_calib_int8
)
{
return
int8_teller_set
.
count
(
op_type
);
}
else
{
...
...
test/ir/inference/test_trt_convert_einsum.py
0 → 100644
浏览文件 @
69bf5ee8
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertEinsumTest_SingleOperand
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8200
:
return
False
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
dims
,
batch
):
if
dims
==
1
:
return
np
.
ones
(
shape
=
[
batch
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
(
shape
=
[
batch
,
3
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
((
batch
,
2
,
3
)).
astype
(
np
.
float32
)
def
generate_equation1
(
dims
):
if
dims
==
1
:
return
[
"i->"
]
elif
dims
==
2
:
# "ij->"
return
[
"ij->ji"
,
"ij->i"
,
"ij->j"
]
elif
dims
==
3
:
# "ijk->","ijk->j","ijk->k"
# error: The current implementation of Einsum doesn't support mask dimensions on multiple contracting/free dimensions
return
[
"ijk->ikj"
,
"ijk->i"
,
"ijk->ij"
,
"ijk->ik"
,
"ijk->ijk"
,
"ijk->jk"
,
]
# Single operand: transpose, sum
for
dims
in
[
1
,
2
,
3
]:
for
batch
in
[
2
]:
equation_list
=
generate_equation1
(
dims
)
for
equation
in
equation_list
:
self
.
equation
=
equation
self
.
dims
=
dims
dics
=
[
{
"equation"
:
equation
,
}
]
ops_config
=
[
{
"op_type"
:
"einsum"
,
"op_inputs"
:
{
"Operands"
:
[
"operands_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"einsum_output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"operands_data0"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
batch
)
)
},
outputs
=
[
"einsum_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
[
1
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
[
3
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
[
2
],
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
[
1
,
3
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
[
4
,
3
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
[
2
,
3
],
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
[
1
,
2
,
3
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
[
4
,
2
,
3
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
[
2
,
2
,
3
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
(
not
dynamic_shape
)
or
(
"..."
in
self
.
equation
):
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
test
(
self
):
self
.
run_test
()
class
TrtConvertEinsumTest_DoubuleOperand_Vector_Matrix
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8200
:
return
False
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input_matrix
(
dims
,
batch
):
if
dims
==
1
:
return
np
.
ones
(
shape
=
[
batch
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
(
shape
=
[
batch
,
3
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
((
batch
,
2
,
3
)).
astype
(
np
.
float32
)
"""
genertate_vector
"""
def
generate_input_vector
(
vec_shape
):
return
np
.
ones
(
vec_shape
).
astype
(
np
.
float32
)
def
generate_equation_matrix_vector
(
dims
,
vec_shape
):
if
dims
==
1
:
return
[
"i,i->"
,
"i,i->i"
,
"i,j->ij"
]
elif
dims
==
2
and
vec_shape
==
[
3
]:
return
[
"ij,j->i"
,
"ij,j->j"
,
"ij,j->ij"
,
"ij,j"
,
"ij,j->"
]
elif
dims
==
3
and
vec_shape
==
[
3
]:
return
[
"ijk,k->i"
,
"ijk,k->j"
,
"ijk,k->k"
,
"ijk,k->ij"
,
"ijk,k->ik"
,
"ijk,k->jk"
,
"ijk,k->ijk"
,
"ijk,k"
,
"ijk,k->"
,
]
# Doubule operands vector
for
dims
in
[
1
]:
self
.
dims
=
dims
for
vec_shape
in
[[
2
],
[
3
]]:
for
batch
in
[
2
]:
equation_list
=
generate_equation_matrix_vector
(
dims
,
vec_shape
)
for
equation
in
equation_list
:
if
(
dims
==
1
and
vec_shape
!=
[
2
]
and
equation
!=
"i,j->ij"
)
or
((
dims
==
2
or
dims
==
3
)
and
vec_shape
!=
[
3
]):
continue
self
.
equation
=
equation
self
.
dims
=
dims
dics
=
[{
"equation"
:
equation
},
{}]
ops_config
=
[
{
"op_type"
:
"einsum"
,
"op_inputs"
:
{
"Operands"
:
[
"operands_data0"
,
"operands_data1"
,
]
},
"op_outputs"
:
{
"Out"
:
[
"einsum_output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"operands_data0"
:
TensorConfig
(
data_gen
=
partial
(
generate_input_matrix
,
dims
,
batch
)
),
"operands_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input_vector
,
vec_shape
)
),
},
outputs
=
[
"einsum_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
[
1
],
"operands_data1"
:
[
1
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
[
4
],
"operands_data1"
:
[
4
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
[
2
],
"operands_data1"
:
[
2
],
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
[
1
,
3
],
"operands_data1"
:
[
1
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
[
4
,
3
],
"operands_data1"
:
[
4
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
[
2
,
3
],
"operands_data1"
:
[
3
],
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
[
1
,
2
,
3
],
"operands_data1"
:
[
1
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
[
4
,
2
,
3
],
"operands_data1"
:
[
4
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
[
2
,
2
,
3
],
"operands_data1"
:
[
3
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
(
not
dynamic_shape
)
or
(
"..."
in
self
.
equation
):
return
0
,
4
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
test
(
self
):
self
.
run_test
()
class
TrtConvertEinsumTest_DoubuleOperand_Matrix_Matrix
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8200
:
return
False
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input_matrix
(
input_shape
):
return
np
.
ones
(
shape
=
input_shape
).
astype
(
np
.
float32
)
# Doubule operands vector
for
item
in
[
[[
4
,
5
],
[
4
,
5
],
"ij,ij->ij"
],
# MatrixEleMul
[[
4
,
5
],
[
2
,
5
],
"ij,kj->ik"
],
# MatrixMul
[[
4
,
5
],
[
3
,
7
],
"ij,kl->ijkl"
],
# MatrixOuter
[[
3
,
4
,
5
],
[
3
,
5
,
2
],
"bij,bjk->bik"
],
[[
3
,
4
,
5
],
[
4
,
5
],
"ijk,jk->i"
],
[[
3
,
4
,
5
],
[
2
,
5
],
"ijk,lk->ijl"
],
[[
2
,
4
,
5
,
3
],
[
3
,
4
,
5
],
"ijkl,lmn->ijkmn"
],
[[
3
,
4
,
5
],
[
4
,
5
],
"ijk,jk->ik"
],
[[
3
,
4
,
5
],
[
4
,
5
],
"ijk,jk->ij"
],
[[
4
,
5
],
[
4
,
2
,
5
],
"ik,ijk->j"
],
[[
4
,
2
,
5
],
[
4
,
5
],
"ijk,ik->jk"
],
[[
2
,
4
,
5
,
3
],
[
3
,
2
,
4
],
"ijkl,lmn->kmn"
],
[[
2
,
4
,
5
,
3
],
[
3
,
2
,
4
],
"ijkl,lmn->ijn"
],
[[
1
,
3
,
5
],
[
1
,
2
,
3
,
4
],
"blq,bhlk->bhlqk"
],
]:
self
.
x_shape
=
item
[
0
]
self
.
y_shape
=
item
[
1
]
equation
=
item
[
2
]
self
.
equation
=
equation
dics
=
[{
"equation"
:
equation
},
{}]
ops_config
=
[
{
"op_type"
:
"einsum"
,
"op_inputs"
:
{
"Operands"
:
[
"operands_data0"
,
"operands_data1"
]
},
"op_outputs"
:
{
"Out"
:
[
"einsum_output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"operands_data0"
:
TensorConfig
(
data_gen
=
partial
(
generate_input_matrix
,
self
.
x_shape
)
),
"operands_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input_matrix
,
self
.
y_shape
)
),
},
outputs
=
[
"einsum_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
min_xshape
=
self
.
x_shape
[:]
max_xshape
=
self
.
x_shape
[:]
min_yshape
=
self
.
y_shape
[:]
max_yshape
=
self
.
y_shape
[:]
if
"b"
in
self
.
equation
:
min_xshape
[
0
]
=
1
max_xshape
[
0
]
=
4
min_yshape
[
0
]
=
1
max_yshape
[
0
]
=
4
self
.
dynamic_shape
.
min_input_shape
=
{
"operands_data0"
:
min_xshape
,
"operands_data1"
:
min_yshape
,
}
self
.
dynamic_shape
.
max_input_shape
=
{
"operands_data0"
:
max_xshape
,
"operands_data1"
:
max_yshape
,
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"operands_data0"
:
self
.
x_shape
,
"operands_data1"
:
self
.
y_shape
,
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
(
not
dynamic_shape
)
or
(
"..."
in
self
.
equation
):
return
0
,
4
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录