Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6992170e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6992170e
编写于
11月 22, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
11月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix_var_recursive (#48206)
上级
3c0bd3af
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
57 addition
and
85 deletion
+57
-85
python/paddle/distributed/auto_parallel/operators/common.py
python/paddle/distributed/auto_parallel/operators/common.py
+3
-3
python/paddle/distributed/auto_parallel/operators/dist_check_finite_and_unscale.py
.../auto_parallel/operators/dist_check_finite_and_unscale.py
+4
-4
python/paddle/distributed/auto_parallel/operators/dist_default.py
...addle/distributed/auto_parallel/operators/dist_default.py
+2
-3
python/paddle/distributed/auto_parallel/operators/dist_eltwise.py
...addle/distributed/auto_parallel/operators/dist_eltwise.py
+0
-1
python/paddle/distributed/auto_parallel/operators/dist_embedding.py
...dle/distributed/auto_parallel/operators/dist_embedding.py
+7
-7
python/paddle/distributed/auto_parallel/operators/dist_matmul.py
...paddle/distributed/auto_parallel/operators/dist_matmul.py
+25
-43
python/paddle/distributed/auto_parallel/operators/dist_pnorm.py
.../paddle/distributed/auto_parallel/operators/dist_pnorm.py
+4
-4
python/paddle/distributed/auto_parallel/operators/dist_reduce_sum_p.py
.../distributed/auto_parallel/operators/dist_reduce_sum_p.py
+2
-2
python/paddle/distributed/auto_parallel/operators/dist_reshape.py
...addle/distributed/auto_parallel/operators/dist_reshape.py
+9
-15
python/paddle/distributed/auto_parallel/operators/dist_softmax.py
...addle/distributed/auto_parallel/operators/dist_softmax.py
+0
-1
python/paddle/distributed/auto_parallel/operators/dist_transpose.py
...dle/distributed/auto_parallel/operators/dist_transpose.py
+0
-1
python/paddle/distributed/auto_parallel/operators/dist_update_loss_scaling.py
...buted/auto_parallel/operators/dist_update_loss_scaling.py
+1
-1
未找到文件。
python/paddle/distributed/auto_parallel/operators/common.py
浏览文件 @
6992170e
...
...
@@ -266,13 +266,13 @@ def is_parameter_related(varname, block):
varname
=
varname
[:
varname
.
index
(
".cast_fp"
)]
if
".quantized"
in
varname
:
varname
=
varname
[:
varname
.
index
(
".quantized"
)]
assert
block
.
has_var
(
varname
)
var
=
block
.
var
(
varname
)
assert
block
.
_find_var_recursive
(
varname
)
var
=
block
.
_var_recursive
(
varname
)
return
var
.
is_parameter
def
infer_shape
(
block
,
src_var
,
src_var_dist_attr
,
op_input_dist_attr
):
var_shape
=
block
.
var
(
src_var
.
name
).
shape
var_shape
=
block
.
_var_recursive
(
src_var
.
name
).
shape
var_topoloy
=
src_var_dist_attr
.
process_mesh
.
topology
var_dims_mapping
=
src_var_dist_attr
.
dims_mapping
...
...
python/paddle/distributed/auto_parallel/operators/dist_check_finite_and_unscale.py
浏览文件 @
6992170e
...
...
@@ -117,7 +117,7 @@ class DistributedCheckFiniteAndUnscaleImpl(DistributedOperatorImpl):
if
(
rank_id
in
ctx
.
get_tensor_dist_attr_for_program
(
main_block
.
var
(
varname
)
main_block
.
_var_recursive
(
varname
)
).
process_mesh
.
processes
):
filter_vars
.
append
(
varname
)
...
...
@@ -132,7 +132,7 @@ class DistributedCheckFiniteAndUnscaleImpl(DistributedOperatorImpl):
# sync result
group
=
new_process_group
(
world_process_group
.
ranks
)
inf_var
=
main_block
.
var
(
kwargs
[
'FoundInfinite'
][
0
])
inf_var
=
main_block
.
_var_recursive
(
kwargs
[
'FoundInfinite'
][
0
])
inf_var_int32
=
main_block
.
create_var
(
name
=
inf_var
.
name
+
"@cast_int32"
,
shape
=
inf_var
.
shape
,
...
...
@@ -179,7 +179,7 @@ class DistributedCheckFiniteAndUnscaleImpl(DistributedOperatorImpl):
new_op_dist_attr
=
OperatorDistributedAttribute
()
for
varname
in
op
.
input_arg_names
:
var_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
main_block
.
var
(
varname
)
main_block
.
_var_recursive
(
varname
)
)
assert
var_dist_attr
is
not
None
new_op_dist_attr
.
set_input_dims_mapping
(
...
...
@@ -187,7 +187,7 @@ class DistributedCheckFiniteAndUnscaleImpl(DistributedOperatorImpl):
)
for
varname
in
op
.
output_arg_names
:
var_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
main_block
.
var
(
varname
)
main_block
.
_var_recursive
(
varname
)
)
new_op_dist_attr
.
set_output_dims_mapping
(
varname
,
var_dist_attr
.
dims_mapping
...
...
python/paddle/distributed/auto_parallel/operators/dist_default.py
浏览文件 @
6992170e
...
...
@@ -69,7 +69,7 @@ def prim_operator_data_parallel_functor(ctx, src_op):
},
)
grad_var
=
main_block
.
var
(
var_name
)
grad_var
=
main_block
.
_var_recursive
(
var_name
)
dims_mapping
=
ctx
.
get_tensor_dist_attr_for_program
(
grad_var
).
dims_mapping
...
...
@@ -140,7 +140,6 @@ class DistributedDefaultImpl0(DistributedOperatorImpl):
res
.
append
(
cost_mapping
)
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
need_gradient_allreduce
=
False
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
...
...
@@ -588,7 +587,7 @@ class DistributedDefaultImpl0(DistributedOperatorImpl):
for
varname
in
backward_op
.
desc
.
output
(
output_name
):
if
varname
in
kwargs
[
"grad_var_to_var"
]:
fwd_name
=
kwargs
[
"grad_var_to_var"
][
varname
]
if
fwd_name
not
in
main_block
.
vars
:
if
not
main_block
.
_find_var_recursive
(
fwd_name
)
:
continue
if
is_parameter_related
(
fwd_name
,
main_block
):
out_grad_names
.
append
(
varname
)
...
...
python/paddle/distributed/auto_parallel/operators/dist_eltwise.py
浏览文件 @
6992170e
...
...
@@ -84,7 +84,6 @@ class DistributedElementwiseImpl0(DistributedOperatorImpl):
res
.
append
(
cost_mapping
)
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
need_gradient_allreduce
=
False
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
...
...
python/paddle/distributed/auto_parallel/operators/dist_embedding.py
浏览文件 @
6992170e
...
...
@@ -370,9 +370,9 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
kwargs
[
'Out'
]
)
Ids_var
=
main_block
.
var
(
kwargs
[
'Ids'
][
0
])
Ids_var
=
main_block
.
_var_recursive
(
kwargs
[
'Ids'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'W'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
# support lookup_table_v1
if
src_op
.
type
==
'lookup_table'
:
...
...
@@ -507,7 +507,7 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
allreduce_op_dist_attr
.
impl_type
=
op_dist_attr
.
impl_type
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
...
...
@@ -607,10 +607,10 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
kwargs
[
'W@GRAD'
]
)
Ids_var
=
main_block
.
var
(
kwargs
[
'Ids'
][
0
])
Weight_var
=
main_block
.
var
(
kwargs
[
'W'
][
0
])
Out_grad
=
main_block
.
var
(
kwargs
[
'Out@GRAD'
][
0
])
Weight_grad
=
main_block
.
var
(
kwargs
[
'W@GRAD'
][
0
])
Ids_var
=
main_block
.
_var_recursive
(
kwargs
[
'Ids'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'W'
][
0
])
Out_grad
=
main_block
.
_var_recursive
(
kwargs
[
'Out@GRAD'
][
0
])
Weight_grad
=
main_block
.
_var_recursive
(
kwargs
[
'W@GRAD'
][
0
])
embedding_row_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
Weight_var
.
name
...
...
python/paddle/distributed/auto_parallel/operators/dist_matmul.py
浏览文件 @
6992170e
...
...
@@ -316,10 +316,10 @@ def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):
kwargs
[
'Y@GRAD'
]
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Y_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_grad
=
main_block
.
var
(
kwargs
[
'Out@GRAD'
][
0
])
Y_grad
=
main_block
.
var
(
kwargs
[
'Y@GRAD'
][
0
])
Out_grad
=
main_block
.
_var_recursive
(
kwargs
[
'Out@GRAD'
][
0
])
Y_grad
=
main_block
.
_var_recursive
(
kwargs
[
'Y@GRAD'
][
0
])
assert
not
is_parameter_related
(
X_var
.
name
,
main_block
...
...
@@ -433,7 +433,7 @@ def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):
has_x_grad
=
len
(
kwargs
[
'X@GRAD'
])
>
0
if
has_x_grad
:
assert
len
(
kwargs
[
'X@GRAD'
])
==
1
X_grad
=
main_block
.
var
(
kwargs
[
'X@GRAD'
][
0
])
X_grad
=
main_block
.
_var_recursive
(
kwargs
[
'X@GRAD'
][
0
])
intermediate_var_0
=
main_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
"."
.
join
([
"c_identity"
,
'tmp'
])
...
...
@@ -572,7 +572,6 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
Y_var_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
backward_op
.
input
(
"Y"
)[
0
]
)
...
...
@@ -647,7 +646,6 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
# calc comm op cost
serial_op
=
dist_op
.
serial_op
vars
=
serial_op
.
block
.
vars
parallel_axis
=
dist_op
.
dist_attr
.
get_input_dims_mapping
(
serial_op
.
input
(
"Y"
)[
0
]
)[
-
1
]
...
...
@@ -762,9 +760,9 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
var
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
trans_x
=
src_op
.
attr
(
"transpose_X"
)
trans_y
=
src_op
.
attr
(
"transpose_Y"
)
...
...
@@ -906,7 +904,7 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
input_varname
,
input_dist_attr
)
else
:
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
...
...
@@ -958,7 +956,6 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
Y_var_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
backward_op
.
input
(
"Y"
)[
0
]
)
...
...
@@ -1023,8 +1020,6 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
# calc comm op cost
serial_op
=
dist_op
.
serial_op
vars
=
serial_op
.
block
.
vars
parallel_axis
=
dist_op
.
dist_attr
.
get_input_dims_mapping
(
serial_op
.
input
(
"Y"
)[
0
]
)[
-
2
]
...
...
@@ -1147,9 +1142,9 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
var
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
trans_x
=
src_op
.
attr
(
'transpose_X'
)
trans_y
=
src_op
.
attr
(
'transpose_Y'
)
...
...
@@ -1268,7 +1263,7 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
allreduce_op_dist_attr
.
impl_type
=
op_dist_attr
.
impl_type
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
...
...
@@ -1316,7 +1311,6 @@ class DistributedMatmulImpl2(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
# calc comp op cost
desc_mapping
=
build_comp_desc_from_dist_op
(
...
...
@@ -1469,7 +1463,6 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
Y_var_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
backward_op
.
input
(
"Y"
)[
0
]
)
...
...
@@ -1549,8 +1542,6 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
# calc comm op cost
serial_op
=
dist_op
.
serial_op
vars
=
serial_op
.
block
.
vars
parallel_axis
=
dist_op
.
dist_attr
.
get_input_dims_mapping
(
serial_op
.
input
(
"Y"
)[
0
]
)[
-
1
]
...
...
@@ -1665,9 +1656,9 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
trans_x
=
src_op
.
attr
(
'trans_x'
)
trans_y
=
src_op
.
attr
(
'trans_y'
)
...
...
@@ -1808,7 +1799,7 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
input_varname
,
input_dist_attr
)
else
:
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
...
...
@@ -1858,7 +1849,7 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
Y_var_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
backward_op
.
input
(
"Y"
)[
0
]
)
...
...
@@ -1924,8 +1915,6 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
# calc comm op cost
serial_op
=
dist_op
.
serial_op
vars
=
serial_op
.
block
.
vars
parallel_axis
=
dist_op
.
dist_attr
.
get_input_dims_mapping
(
serial_op
.
input
(
"Y"
)[
0
]
)[
-
2
]
...
...
@@ -2047,9 +2036,9 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
trans_x
=
src_op
.
attr
(
'trans_x'
)
trans_y
=
src_op
.
attr
(
'trans_y'
)
...
...
@@ -2167,7 +2156,7 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
allreduce_op_dist_attr
.
impl_type
=
op_dist_attr
.
impl_type
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
...
...
@@ -2215,7 +2204,6 @@ class DistributedMatmulV2Impl2(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
process_mesh
=
dist_attr
.
process_mesh
# calc comp op cost
...
...
@@ -2370,7 +2358,6 @@ class DistributedMulImpl0(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
Y_var_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
backward_op
.
input
(
"Y"
)[
0
]
)
...
...
@@ -2445,7 +2432,6 @@ class DistributedMulImpl0(DistributedOperatorImpl):
# calc comm op cost
serial_op
=
dist_op
.
serial_op
vars
=
serial_op
.
block
.
vars
parallel_axis
=
dist_op
.
dist_attr
.
get_input_dims_mapping
(
serial_op
.
input
(
"Y"
)[
0
]
)[
-
1
]
...
...
@@ -2555,9 +2541,9 @@ class DistributedMulImpl0(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
# TODO infer logic comm presentation
matmul_col_dim_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
...
...
@@ -2712,7 +2698,7 @@ class DistributedMulImpl0(DistributedOperatorImpl):
input_varname
,
input_dist_attr
)
else
:
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
...
...
@@ -2763,7 +2749,6 @@ class DistributedMulImpl1(DistributedOperatorImpl):
dist_attr
=
dist_op
.
dist_attr
process_mesh
=
dist_attr
.
process_mesh
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
Y_var_dim_mapping
=
dist_attr
.
get_input_dims_mapping
(
backward_op
.
input
(
"Y"
)[
0
]
)
...
...
@@ -2827,8 +2812,6 @@ class DistributedMulImpl1(DistributedOperatorImpl):
# calc comm op cost
serial_op
=
dist_op
.
serial_op
vars
=
serial_op
.
block
.
vars
parallel_axis
=
dist_op
.
dist_attr
.
get_input_dims_mapping
(
serial_op
.
input
(
"Y"
)[
0
]
)[
-
2
]
...
...
@@ -2947,9 +2930,9 @@ class DistributedMulImpl1(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Weight_var
=
main_block
.
_var_recursive
(
kwargs
[
'Y'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
# TODO infer logic comm presentation
matmul_row_dim_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
...
...
@@ -3082,7 +3065,7 @@ class DistributedMulImpl1(DistributedOperatorImpl):
allreduce_op_dist_attr
.
impl_type
=
op_dist_attr
.
impl_type
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
input_var
=
main_block
.
_var_recursive
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
...
...
@@ -3130,7 +3113,6 @@ class DistributedMulImpl2(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
dist_attr
=
dist_op
.
dist_attr
main_block
=
backward_op
.
block
vars
=
main_block
.
vars
# calc comp op cost
desc_mapping
=
build_comp_desc_from_dist_op
(
...
...
python/paddle/distributed/auto_parallel/operators/dist_pnorm.py
浏览文件 @
6992170e
...
...
@@ -155,7 +155,7 @@ class DistributedPNormImpl(DistributedOperatorImpl):
ctx
,
op_dist_attr
.
process_mesh
,
rank_id
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
in_dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
X_var
.
name
)
for
axis
in
range
(
len
(
in_dims_mapping
)):
if
in_dims_mapping
[
axis
]
!=
-
1
:
...
...
@@ -260,13 +260,13 @@ class DistributedPNormImpl(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
X_grad_var
=
main_block
.
var
(
kwargs
[
'X@GRAD'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
X_grad_var
=
main_block
.
_var_recursive
(
kwargs
[
'X@GRAD'
][
0
])
# 1. copy p_norm_grad op and reset input name and output name
new_kwargs
=
copy
.
deepcopy
(
kwargs
)
new_kwargs
[
'X'
]
=
[
"."
.
join
([
"c_allgather"
,
X_var
.
name
])]
new_X_var
=
main_block
.
var
(
new_kwargs
[
'X'
][
0
])
new_X_var
=
main_block
.
_var_recursive
(
new_kwargs
[
'X'
][
0
])
new_X_grad
=
main_block
.
create_var
(
name
=
"."
.
join
([
"c_allgather"
,
X_grad_var
.
name
]),
dtype
=
X_grad_var
.
dtype
,
...
...
python/paddle/distributed/auto_parallel/operators/dist_reduce_sum_p.py
浏览文件 @
6992170e
...
...
@@ -54,7 +54,7 @@ class DistributedReduceSumPrimtiveImpl0(DistributedOperatorImpl):
return
False
output_name
=
outputs
[
0
]
output_var
=
dist_op
.
serial_op
.
block
.
var
(
output_name
)
output_var
=
dist_op
.
serial_op
.
block
.
_var_recursive
(
output_name
)
if
output_var
.
shape
!=
(
1
,):
return
False
...
...
@@ -124,7 +124,7 @@ class DistributedReduceSumPrimtiveImpl0(DistributedOperatorImpl):
)
# dist attr
var
=
main_block
.
var
(
var_name
)
var
=
main_block
.
_var_recursive
(
var_name
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
var
)
op_dist_attr
=
ctx
.
get_op_dist_attr_for_program
(
src_op
)
new_op_attr
=
OperatorDistributedAttribute
()
...
...
python/paddle/distributed/auto_parallel/operators/dist_reshape.py
浏览文件 @
6992170e
...
...
@@ -53,7 +53,6 @@ class DistributedReshapeImpl0(DistributedOperatorImpl):
def
calc_fwd_cost
(
self
,
dist_op
,
ctx
,
cluster
):
res
=
[]
op
=
dist_op
.
serial_op
vars
=
op
.
block
.
vars
dist_attr
=
dist_op
.
dist_attr
shape_list
=
op
.
desc
.
attr
(
"shape"
)
...
...
@@ -103,7 +102,6 @@ class DistributedReshapeImpl0(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
main_block
=
backward_op
.
block
need_gradient_allreduce
=
False
vars
=
main_block
.
vars
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
if
"@GRAD"
not
in
varname
and
is_parameter_related
(
...
...
@@ -246,9 +244,9 @@ class DistributedReshapeImpl0(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
XShape_var
=
main_block
.
var
(
kwargs
[
'XShape'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
XShape_var
=
main_block
.
_var_recursive
(
kwargs
[
'XShape'
][
0
])
shape_list
=
src_op
.
desc
.
attr
(
"shape"
)
ShapeTensor_var_list
=
[]
for
name
in
kwargs
[
'ShapeTensor'
]:
...
...
@@ -303,7 +301,6 @@ class DistributedReshapeImpl1(DistributedOperatorImpl):
def
calc_fwd_cost
(
self
,
dist_op
,
ctx
,
cluster
):
res
=
[]
op
=
dist_op
.
serial_op
vars
=
op
.
block
.
vars
dist_attr
=
dist_op
.
dist_attr
shape_list
=
op
.
desc
.
attr
(
"shape"
)
...
...
@@ -353,7 +350,6 @@ class DistributedReshapeImpl1(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
main_block
=
backward_op
.
block
need_gradient_allreduce
=
False
vars
=
main_block
.
vars
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
if
"@GRAD"
not
in
varname
and
not
is_parameter_related
(
...
...
@@ -499,9 +495,9 @@ class DistributedReshapeImpl1(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
XShape_var
=
main_block
.
var
(
kwargs
[
'XShape'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
XShape_var
=
main_block
.
_var_recursive
(
kwargs
[
'XShape'
][
0
])
shape_list
=
src_op
.
desc
.
attr
(
"shape"
)
ShapeTensor_var_list
=
[]
for
name
in
kwargs
[
'ShapeTensor'
]:
...
...
@@ -556,7 +552,6 @@ class DistributedReshapeImpl2(DistributedOperatorImpl):
def
calc_fwd_cost
(
self
,
dist_op
,
ctx
,
cluster
):
res
=
[]
op
=
dist_op
.
serial_op
vars
=
op
.
block
.
vars
dist_attr
=
dist_op
.
dist_attr
shape_list
=
op
.
desc
.
attr
(
"shape"
)
...
...
@@ -606,7 +601,6 @@ class DistributedReshapeImpl2(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
main_block
=
backward_op
.
block
need_gradient_allreduce
=
False
vars
=
main_block
.
vars
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
if
"@GRAD"
not
in
varname
and
not
is_parameter_related
(
...
...
@@ -745,9 +739,9 @@ class DistributedReshapeImpl2(DistributedOperatorImpl):
output_name
)
X_var
=
main_block
.
var
(
kwargs
[
'X'
][
0
])
Out_var
=
main_block
.
var
(
kwargs
[
'Out'
][
0
])
XShape_var
=
main_block
.
var
(
kwargs
[
'XShape'
][
0
])
X_var
=
main_block
.
_var_recursive
(
kwargs
[
'X'
][
0
])
Out_var
=
main_block
.
_var_recursive
(
kwargs
[
'Out'
][
0
])
XShape_var
=
main_block
.
_var_recursive
(
kwargs
[
'XShape'
][
0
])
shape_list
=
src_op
.
desc
.
attr
(
"shape"
)
ShapeTensor_var_list
=
[]
for
name
in
kwargs
[
'ShapeTensor'
]:
...
...
python/paddle/distributed/auto_parallel/operators/dist_softmax.py
浏览文件 @
6992170e
...
...
@@ -79,7 +79,6 @@ class DistributedSoftmaxImpl(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
main_block
=
backward_op
.
block
need_gradient_allreduce
=
False
vars
=
main_block
.
vars
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
if
"@GRAD"
not
in
varname
and
is_parameter_related
(
...
...
python/paddle/distributed/auto_parallel/operators/dist_transpose.py
浏览文件 @
6992170e
...
...
@@ -160,7 +160,6 @@ class DistributedTranspose2Impl(DistributedOperatorImpl):
backward_op
=
dist_op
.
serial_op
main_block
=
backward_op
.
block
need_gradient_allreduce
=
False
vars
=
main_block
.
vars
for
input_name
in
backward_op
.
desc
.
input_names
():
for
varname
in
backward_op
.
desc
.
input
(
input_name
):
if
"@GRAD"
not
in
varname
and
is_parameter_related
(
...
...
python/paddle/distributed/auto_parallel/operators/dist_update_loss_scaling.py
浏览文件 @
6992170e
...
...
@@ -151,7 +151,7 @@ class DistributedUpdateLossScalingImpl(DistributedOperatorImpl):
if
(
rank_id
in
ctx
.
get_tensor_dist_attr_for_program
(
main_block
.
var
(
varname
)
main_block
.
_var_recursive
(
varname
)
).
process_mesh
.
processes
):
filter_vars
.
append
(
varname
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录