Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
69827f30
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
69827f30
编写于
6月 19, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
6月 19, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #11527 from jacquesqiao/concat-grad-support-data-input
concat support data as input
上级
210790d8
ad1ad738
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
68 addition
and
42 deletion
+68
-42
paddle/fluid/operators/concat_op.h
paddle/fluid/operators/concat_op.h
+26
-15
paddle/fluid/operators/math/concat.cc
paddle/fluid/operators/math/concat.cc
+15
-10
paddle/fluid/operators/math/concat.cu
paddle/fluid/operators/math/concat.cu
+25
-16
paddle/fluid/operators/math/concat.h
paddle/fluid/operators/math/concat.h
+2
-1
未找到文件。
paddle/fluid/operators/concat_op.h
浏览文件 @
69827f30
...
...
@@ -60,34 +60,45 @@ template <typename DeviceContext, typename T>
class
ConcatGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
out_var_names
=
ctx
.
Outputs
(
framework
::
GradVarName
(
"X"
));
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int64_t
axis
=
static_cast
<
int64_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
// get output tensor that the name is not kEmptyVarName
std
::
vector
<
framework
::
Tensor
*>
outputs
;
for
(
size_t
j
=
0
;
j
<
outs
.
size
();
++
j
)
{
if
(
out_var_names
[
j
]
!=
framework
::
kEmptyVarName
)
{
outs
[
j
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
outputs
.
push_back
(
outs
[
j
]);
}
else
{
outputs
.
push_back
(
nullptr
);
}
}
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
outs
.
size
()
<
10
)
{
size_t
input_offset
=
0
;
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
const
auto
in_stride
=
framework
::
stride_numel
(
out_grad
->
dims
());
for
(
auto
&
out
:
outs
)
{
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
,
out_stride
[
axis
]);
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
++
i
)
{
auto
out_stride
=
framework
::
stride_numel
(
ins
[
i
]
->
dims
());
auto
*
out
=
outputs
[
i
];
if
(
out
!=
nullptr
)
{
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
out_grad
->
data
<
T
>
()
+
input_offset
,
in_stride
,
out_stride
[
axis
]);
}
input_offset
+=
out_stride
[
axis
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
outputs
(
outs
.
size
());
for
(
size_t
j
=
0
;
j
<
outs
.
size
();
++
j
)
{
outs
[
j
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
outputs
[
j
]
=
*
outs
[
j
];
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
paddle
::
operators
::
math
::
ConcatGradFunctor
<
DeviceContext
,
T
>
concat_grad_functor
;
concat_grad_functor
(
dev_ctx
,
*
in
,
static_cast
<
int
>
(
axis
),
&
outputs
);
concat_grad_functor
(
dev_ctx
,
*
out_grad
,
ins
,
static_cast
<
int
>
(
axis
),
&
outputs
);
}
}
};
...
...
paddle/fluid/operators/math/concat.cc
浏览文件 @
69827f30
...
...
@@ -70,35 +70,40 @@ template <typename T>
class
ConcatGradFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
>*
outputs
)
{
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
)
{
// TODO(zcd): Add input data validity checking
in
t
num
=
outputs
->
size
();
size_
t
num
=
outputs
->
size
();
int
input_rows
=
1
;
auto
dim_0
=
outputs
->
at
(
0
).
dims
();
auto
dim_0
=
ref_inputs
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
input_rows
*=
dim_0
[
i
];
}
int
input_cols
=
0
;
std
::
vector
<
int64_t
>
output_cols
(
outputs
->
size
());
for
(
in
t
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
outputs
->
at
(
i
).
numel
()
/
input_rows
;
for
(
size_
t
i
=
0
;
i
<
num
;
++
i
)
{
int
t_cols
=
ref_inputs
[
i
]
->
numel
()
/
input_rows
;
input_cols
+=
t_cols
;
output_cols
[
i
]
=
t_cols
;
}
auto
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
());
// computation
for
(
in
t
k
=
0
;
k
<
input_rows
;
++
k
)
{
for
(
size_
t
k
=
0
;
k
<
input_rows
;
++
k
)
{
const
T
*
src_ptr
=
input
.
data
<
T
>
()
+
k
*
input_cols
;
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
output_cols
[
j
];
T
*
dst_ptr
=
outputs
->
at
(
j
).
data
<
T
>
()
+
k
*
col_len
;
auto
*
out_tensor
=
outputs
->
at
(
j
);
if
(
out_tensor
!=
nullptr
)
{
T
*
dst_ptr
=
out_tensor
->
data
<
T
>
()
+
k
*
col_len
;
memory
::
Copy
(
cpu_place
,
dst_ptr
,
cpu_place
,
src_ptr
+
col_idx
,
sizeof
(
T
)
*
col_len
);
}
col_idx
+=
col_len
;
}
}
...
...
paddle/fluid/operators/math/concat.cu
浏览文件 @
69827f30
...
...
@@ -102,11 +102,13 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
T
*
output_ptr
=
outputs_data
[
curr_segment
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
}
}
}
template
<
typename
T
>
...
...
@@ -118,11 +120,13 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
int
split
=
tid_x
/
fixed_out_col
;
int
in_offset
=
tid_x
-
split
*
fixed_out_col
;
T
*
output_ptr
=
outputs_data
[
split
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
fixed_out_col
+
in_offset
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
}
}
}
/*
...
...
@@ -203,17 +207,18 @@ template <typename T>
class
ConcatGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
>*
outputs
)
{
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
)
{
// TODO(zcd): Add input data validity checking
int
o_num
=
outputs
->
size
();
int
out_row
=
1
;
auto
dim_0
=
outputs
->
at
(
0
).
dims
();
auto
dim_0
=
ref_inputs
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
out_row
*=
dim_0
[
i
];
}
int
out
_col
=
outputs
->
at
(
0
).
numel
()
/
out_row
;
int
out
0_col
=
ref_inputs
[
0
]
->
numel
()
/
out_row
;
int
in_col
=
0
,
in_row
=
out_row
;
bool
sameShape
=
true
;
...
...
@@ -223,13 +228,17 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
outputs_cols
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
o_num
;
++
i
)
{
int
t_col
=
outputs
->
at
(
i
)
.
numel
()
/
out_row
;
int
t_col
=
outputs
->
at
(
i
)
->
numel
()
/
out_row
;
if
(
sameShape
)
{
if
(
t_col
!=
out_col
)
sameShape
=
false
;
if
(
t_col
!=
out
0
_col
)
sameShape
=
false
;
}
in_col
+=
t_col
;
outputs_cols
[
i
+
1
]
=
in_col
;
outputs_ptr
[
i
]
=
outputs
->
at
(
i
).
data
<
T
>
();
if
(
outputs
->
at
(
i
)
!=
nullptr
)
{
outputs_ptr
[
i
]
=
outputs
->
at
(
i
)
->
data
<
T
>
();
}
else
{
outputs_ptr
[
i
]
=
nullptr
;
}
}
T
**
dev_out_gpu_data
=
...
...
@@ -255,7 +264,7 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
if
(
sameShape
)
{
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in_row
,
in_col
,
out_col
,
dev_out_gpu_data
);
input
.
data
<
T
>
(),
in_row
,
in_col
,
out
0
_col
,
dev_out_gpu_data
);
}
else
{
const
int
*
dev_outs_col_data
=
outputs_cols
.
CUDAData
(
context
.
GetPlace
());
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
...
...
paddle/fluid/operators/math/concat.h
浏览文件 @
69827f30
...
...
@@ -57,7 +57,8 @@ template <typename DeviceContext, typename T>
class
ConcatGradFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
>*
outputs
);
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
const
int
axis
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
);
};
}
// namespace math
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录