Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6935dd7b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6935dd7b
编写于
7月 04, 2017
作者:
D
dongzhihong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"lr state serialization"
上级
f448edf1
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
47 addition
and
30 deletion
+47
-30
paddle/optimizer/lr_policy.h
paddle/optimizer/lr_policy.h
+33
-13
paddle/optimizer/sgd_optimizer.cc
paddle/optimizer/sgd_optimizer.cc
+2
-2
proto/OptimizerConfig.proto
proto/OptimizerConfig.proto
+12
-15
未找到文件。
paddle/optimizer/lr_policy.h
浏览文件 @
6935dd7b
...
@@ -19,34 +19,54 @@ class ConstLr final : public LrPolicy {
...
@@ -19,34 +19,54 @@ class ConstLr final : public LrPolicy {
public:
public:
ConstLr
(
double
lr
)
:
learning_rate
(
lr
){};
ConstLr
(
double
lr
)
:
learning_rate
(
lr
){};
double
LearningRate
(
const
uint64_t
num_sample_passed
)
{
double
LearningRate
(
const
uint64_t
num_sample_passed
)
{
return
learning_rate
;
return
learning_rate_
;
}
const
char
*
SerializeState
(
int
*
state_len
)
{
LrPolicyState
state
;
state
.
set_learning_rate
(
learning_rate_
);
auto
str
=
state
.
SerializeAsString
();
*
state_len
=
str
.
size
();
return
str
.
c_str
();
}
void
DeserializeState
(
const
std
::
string
&
state
)
{
LrPolicyState
state
;
state
.
ParseFromString
(
str
);
learning_rate_
=
state
.
learning_rate
();
}
}
const
char
*
SerializeState
(
int
*
state_len
)
{
return
nullptr
;
}
void
DeserializeState
(
const
std
::
string
&
state
)
{}
private:
private:
double
learning_rate
;
double
learning_rate
_
;
};
};
class
LinearLr
final
:
public
LrPolicy
{
class
LinearLr
final
:
public
LrPolicy
{
public:
public:
LinearLr
(
double
lr
,
double
lr_decay_a
,
double
lr_decay_b
)
LinearLr
(
double
lr
,
double
lr_decay_a
,
double
lr_decay_b
)
:
learning_rate
(
lr
),
lr_decay_a
(
lr_decay_a
),
lr_decay_b
(
lr_decay_b
)
{}
:
learning_rate
_
(
lr
),
lr_decay_a_
(
lr_decay_a
),
lr_decay_b_
(
lr_decay_b
)
{}
double
LearningRate
(
const
uint64_t
num_sample_passed
)
{
double
LearningRate
(
const
uint64_t
num_sample_passed
)
{
return
std
::
max
(
learning_rate
-
lr_decay_a
*
num_sample_passed
,
lr_decay_b
);
return
std
::
max
(
learning_rate_
-
lr_decay_a_
*
num_sample_passed
,
lr_decay_b_
);
}
}
const
char
*
SerializeState
(
int
*
state_len
)
{
const
char
*
SerializeState
(
int
*
state_len
)
{
// TODO(zhihong) : add lr_policy serialization
LrPolicyState
state
;
return
nullptr
;
state
.
set_learning_rate
(
learning_rate_
);
state
.
set_lr_decay_a
(
lr_decay_a_
);
state
.
set_lr_decay_b
(
lr_decay_b_
);
auto
str
=
state
.
SerializeAsString
();
*
state_len
=
str
.
size
();
return
str
.
c_str
();
}
}
void
DeserializeState
(
const
std
::
string
&
state
)
{
void
DeserializeState
(
const
std
::
string
&
str
)
{
// TODO(zhihong) : add lr_policy serialization
LrPolicyState
state
;
state
.
ParseFromString
(
str
);
learning_rate_
=
state
.
learning_rate
();
lr_decay_a_
=
state
.
lr_decay_a
();
lr_decay_b_
=
state
.
lr_decay_b
();
}
}
private:
private:
double
learning_rate
;
double
learning_rate
_
;
double
lr_decay_a
;
double
lr_decay_a
_
;
double
lr_decay_b
;
double
lr_decay_b
_
;
};
};
}
// namespace optimizer
}
// namespace optimizer
...
...
paddle/optimizer/sgd_optimizer.cc
浏览文件 @
6935dd7b
...
@@ -30,10 +30,10 @@ void SGDOptimizer::Update(const Tensor *gradient) {
...
@@ -30,10 +30,10 @@ void SGDOptimizer::Update(const Tensor *gradient) {
const
char
*
SGDOptimizer
::
SerializeState
(
int
*
state_len
)
{
const
char
*
SGDOptimizer
::
SerializeState
(
int
*
state_len
)
{
SGDOptimizerState
state
;
SGDOptimizerState
state
;
state
.
set_num_sample_passed
(
num_sample_passed_
);
state
.
set_num_sample_passed
(
num_sample_passed_
);
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
state
.
set_lr_
TensorToProto
(
*
parameter_
,
state
.
mutable_parameter
());
if
(
momentum_
!=
0.0
)
TensorToProto
(
*
momentums_
,
state
.
mutable_momentums
());
if
(
momentum_
!=
0.0
)
TensorToProto
(
*
momentums_
,
state
.
mutable_momentums
());
auto
str
=
state
.
SerializeAsString
();
auto
str
=
state
.
SerializeAsString
();
*
state_len
=
str
.
size
();
*
state_len
+
=
str
.
size
();
return
str
.
c_str
();
return
str
.
c_str
();
}
}
...
...
proto/OptimizerConfig.proto
浏览文件 @
6935dd7b
...
@@ -78,11 +78,15 @@ enum DataType {
...
@@ -78,11 +78,15 @@ enum DataType {
repeated
bytes
content
=
2
;
repeated
bytes
content
=
2
;
}
}
message
LrPolicyState
{
// learninRate Policy
optional
double
learning_rate
=
1
[
default
=
1.0
];
optional
double
lr_decay_a
=
2
;
optional
double
lr_decay_b
=
3
;
}
message
SGDOptimizerState
{
message
SGDOptimizerState
{
// learning rate policy
optional
LrPolicyState
lrstate
=
101
;
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
optional
double
num_sample_passed
=
104
;
// state
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
parameter
=
1
;
...
@@ -91,9 +95,7 @@ message SGDOptimizerState {
...
@@ -91,9 +95,7 @@ message SGDOptimizerState {
message
AdadeltaOptimizerState
{
message
AdadeltaOptimizerState
{
// learning rate policy
// learning rate policy
optional
double
learning_rate
=
101
;
optional
LrPolicyState
lrstate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
optional
double
num_sample_passed
=
104
;
// state
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
parameter
=
1
;
...
@@ -102,11 +104,9 @@ message AdadeltaOptimizerState {
...
@@ -102,11 +104,9 @@ message AdadeltaOptimizerState {
optional
TensorProto
update_delta
=
4
;
optional
TensorProto
update_delta
=
4
;
}
}
message
AdagradOptimizerState
{
message
AdagradOptimizerState
{
// learning rate policy
optional
LrPolicyState
lrstate
=
101
;
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
optional
double
num_sample_passed
=
104
;
// state
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
parameter
=
1
;
...
@@ -114,10 +114,7 @@ message AdagradOptimizerState {
...
@@ -114,10 +114,7 @@ message AdagradOptimizerState {
}
}
message
AdamOptimizerState
{
message
AdamOptimizerState
{
// learning rate policy
optional
LrPolicyState
lrstate
=
101
;
optional
double
learning_rate
=
101
;
optional
double
lr_decay_a
=
102
;
optional
double
lr_decay_b
=
103
;
optional
double
num_sample_passed
=
104
;
optional
double
num_sample_passed
=
104
;
// state
// state
optional
TensorProto
parameter
=
1
;
optional
TensorProto
parameter
=
1
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录