Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
689de12c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
689de12c
编写于
2月 20, 2023
作者:
H
houj04
提交者:
GitHub
2月 20, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] add fp16 support for top_k_v2, squeeze2 and argsort. (#50614)
上级
1c8e15c9
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
124 addition
and
74 deletion
+124
-74
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+4
-1
paddle/phi/kernels/xpu/argsort_kernel.cc
paddle/phi/kernels/xpu/argsort_kernel.cc
+34
-23
paddle/phi/kernels/xpu/top_k_kernel.cc
paddle/phi/kernels/xpu/top_k_kernel.cc
+32
-24
python/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
+3
-1
python/paddle/fluid/tests/unittests/xpu/test_top_k_v2_op_xpu.py
.../paddle/fluid/tests/unittests/xpu/test_top_k_v2_op_xpu.py
+51
-25
未找到文件。
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
689de12c
...
...
@@ -40,6 +40,7 @@ XPUOpMap& get_kl2_ops() {
{
"argsort"
,
XPUKernelSet
({
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
FLOAT32
})},
{
"assign"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
...
...
@@ -598,6 +599,7 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
BOOL
,
phi
::
DataType
::
INT8
,
phi
::
DataType
::
UINT8
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
FLOAT32
})},
{
"squeeze"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT64
,
...
...
@@ -665,7 +667,8 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"truncated_gaussian_random"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"top_k"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"top_k_v2"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"top_k_v2"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"update_loss_scaling"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"unbind"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
...
...
paddle/phi/kernels/xpu/argsort_kernel.cc
浏览文件 @
689de12c
...
...
@@ -207,26 +207,31 @@ void ArgsortKernel(const Context& dev_ctx,
}
}
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
if
(
int64_need_cast
)
{
XPUArgsort
<
T
,
true
,
true
>
()(
dev_ctx
.
x_context
(),
input_data
,
output_data
,
XPUArgsort
<
XPUType
,
true
,
true
>
()(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
input_data
),
reinterpret_cast
<
XPUType
*>
(
output_data
),
indices_data
,
data_shape
,
permute_vec
,
descending
);
}
else
if
(
index_need_cast
)
{
XPUArgsort
<
T
,
false
,
true
>
()(
dev_ctx
.
x_context
(),
input_data
,
output_data
,
XPUArgsort
<
XPUType
,
false
,
true
>
()(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
input_data
),
reinterpret_cast
<
XPUType
*>
(
output_data
),
indices_data
,
data_shape
,
permute_vec
,
descending
);
}
else
{
XPUArgsort
<
T
,
false
,
false
>
()(
dev_ctx
.
x_context
(),
input_data
,
output_data
,
XPUArgsort
<
XPUType
,
false
,
false
>
()(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
input_data
),
reinterpret_cast
<
XPUType
*>
(
output_data
),
indices_data
,
data_shape
,
permute_vec
,
...
...
@@ -236,5 +241,11 @@ void ArgsortKernel(const Context& dev_ctx,
}
// namespace phi
PD_REGISTER_KERNEL
(
argsort
,
XPU
,
ALL_LAYOUT
,
phi
::
ArgsortKernel
,
float
,
int
,
int64_t
)
{}
PD_REGISTER_KERNEL
(
argsort
,
XPU
,
ALL_LAYOUT
,
phi
::
ArgsortKernel
,
float
,
int
,
int64_t
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/top_k_kernel.cc
浏览文件 @
689de12c
...
...
@@ -28,6 +28,8 @@ void TopkKernel(const Context& dev_ctx,
bool
sorted
,
DenseTensor
*
out
,
DenseTensor
*
indices
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
auto
&
in_dims
=
x
.
dims
();
const
T
*
in_data
=
x
.
data
<
T
>
();
int64_t
*
indices_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
...
...
@@ -59,9 +61,9 @@ void TopkKernel(const Context& dev_ctx,
const
size_t
row
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
in_dims
.
size
()
-
1
));
const
size_t
col
=
in_dims
[
in_dims
.
size
()
-
1
];
int
r
=
xpu
::
sorted_topk
<
T
>
(
dev_ctx
.
x_context
(),
in_data
,
output_data
,
int
r
=
xpu
::
sorted_topk
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
in_data
)
,
reinterpret_cast
<
XPUType
*>
(
output_data
)
,
indices_int_data
,
row
,
col
,
...
...
@@ -97,11 +99,14 @@ void TopkKernel(const Context& dev_ctx,
}
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
T
*
trans_in_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
.
numel
());
XPUType
*
trans_in_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
x
.
numel
());
// Transpose and save interval output to trans_in
int
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
in_data
,
trans_in_data
,
x_shape_host
,
trans_axes
);
int
r
=
xpu
::
transpose
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
in_data
),
trans_in_data
,
x_shape_host
,
trans_axes
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
errors
::
External
(
"XPU API 1st Transpose kernel"
...
...
@@ -109,7 +114,7 @@ void TopkKernel(const Context& dev_ctx,
r
,
XPUAPIErrorMsg
[
r
]));
T
*
trans_out_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
out
->
numel
());
XPUType
*
trans_out_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
out
->
numel
());
int64_t
*
trans_idx_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int64_t
>
(
out
->
numel
());
int32_t
*
trans_idx_int32_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
out
->
numel
());
...
...
@@ -118,9 +123,10 @@ void TopkKernel(const Context& dev_ctx,
const
size_t
col
=
trans_dims
[
trans_dims
.
size
()
-
1
];
// Do top k on transposed input
r
=
xpu
::
sorted_topk
<
T
>
(
dev_ctx
.
x_context
(),
trans_in_data
,
trans_out_data
,
r
=
xpu
::
sorted_topk
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
trans_in_data
),
reinterpret_cast
<
XPUType
*>
(
trans_out_data
),
trans_idx_int32_data
,
row
,
col
,
...
...
@@ -146,9 +152,10 @@ void TopkKernel(const Context& dev_ctx,
for
(
size_t
i
=
0
;
i
<
trans_back_axes
.
size
();
++
i
)
{
trans_out_shape_host
[
i
]
=
trans_out_dims
[
i
];
}
r
=
xpu
::
transpose
<
T
>
(
dev_ctx
.
x_context
(),
trans_out_data
,
output_data
,
r
=
xpu
::
transpose
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
trans_out_data
),
reinterpret_cast
<
XPUType
*>
(
output_data
),
trans_out_shape_host
,
trans_back_axes
);
PADDLE_ENFORCE_EQ
(
r
,
...
...
@@ -173,4 +180,5 @@ void TopkKernel(const Context& dev_ctx,
}
// namespace phi
PD_REGISTER_KERNEL
(
topk
,
XPU
,
ALL_LAYOUT
,
phi
::
TopkKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
topk
,
XPU
,
ALL_LAYOUT
,
phi
::
TopkKernel
,
float
,
phi
::
dtype
::
float16
)
{}
python/paddle/fluid/tests/unittests/xpu/test_argsort_op_xpu.py
浏览文件 @
689de12c
...
...
@@ -185,6 +185,8 @@ class XPUTestArgsortOp_LargeN(XPUOpTestWrapper):
support_types
=
get_xpu_op_support_types
(
'argsort'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestArgsortOp
,
stype
)
if
stype
!=
"float16"
:
# skip fp16 test on LARGE input because unstable sort on low-precision fp16 will lead to test failure
create_test_class
(
globals
(),
XPUTestArgsortOp_LargeN
,
stype
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/xpu/test_top_k_v2_op_xpu.py
浏览文件 @
689de12c
...
...
@@ -30,6 +30,20 @@ import paddle
paddle
.
enable_static
()
def
random_unique_float
(
shape
,
dtype
):
# create a random float array with 10x length
numel
=
np
.
prod
(
shape
)
arr
=
np
.
random
.
uniform
(
-
10.0
,
10.0
,
numel
*
10
).
astype
(
dtype
)
arr
=
np
.
unique
(
arr
)
assert
(
arr
.
shape
[
0
]
>=
numel
),
"failed to create enough unique values: %d vs %d"
%
(
arr
.
shape
[
0
],
numel
)
arr
=
arr
[:
numel
]
np
.
random
.
shuffle
(
arr
)
arr
=
arr
.
reshape
(
shape
)
return
arr
def
numpy_topk
(
x
,
k
=
1
,
axis
=-
1
,
largest
=
True
):
if
axis
<
0
:
axis
=
len
(
x
.
shape
)
+
axis
...
...
@@ -52,16 +66,14 @@ class XPUTestTopKV2Op(XPUOpTestWrapper):
self
.
use_dynamic_create_class
=
False
class
TestTopkOp
(
XPUOpTest
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
20
).
astype
(
self
.
dtype
)
def
setUp
(
self
):
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"top_k_v2"
self
.
init_args
()
self
.
dtype
=
self
.
in_type
self
.
init_args
()
self
.
input_data
=
random_unique_float
(
self
.
input_data_shape
,
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
...
...
@@ -74,98 +86,112 @@ class XPUTestTopKV2Op(XPUOpTestWrapper):
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad
(
set
([
'X'
]),
'Out'
)
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data_shape
=
(
10
,
20
)
class
TestTopkOp1
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
100
,
155
).
astype
(
self
.
dtype
)
# too many values for fp16 will lead to failure in random_unique_float function
if
self
.
dtype
==
np
.
float16
:
self
.
input_data_shape
=
(
100
,
55
)
else
:
self
.
input_data_shape
=
(
100
,
155
)
class
TestTopkOp2
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp3
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp4
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp5
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
2
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp6
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
8
,
32
,
64
).
astype
(
self
.
dtype
)
# too many values for fp16 will lead to failure in random_unique_float function
if
self
.
dtype
==
np
.
float16
:
self
.
input_data_shape
=
(
8
,
32
,
32
)
else
:
self
.
input_data_shape
=
(
8
,
32
,
64
)
class
TestTopkOp7
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
10
self
.
axis
=
2
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
8
,
5
,
10
,
16
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
8
,
5
,
10
,
16
)
class
TestTopkOp8
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
8
,
32
,
64
).
astype
(
self
.
dtype
)
# too many values for fp16 will lead to failure in random_unique_float function
if
self
.
dtype
==
np
.
float16
:
self
.
input_data_shape
=
(
8
,
32
,
32
)
else
:
self
.
input_data_shape
=
(
8
,
32
,
64
)
class
TestTopkOp9
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp10
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp11
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
class
TestTopkOp12
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
self
.
input_data
_shape
=
(
10
,
10
,
5
)
support_types
=
get_xpu_op_support_types
(
'top_k_v2'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录