From 687ac358098f3802fad254e1bbe18f8799897172 Mon Sep 17 00:00:00 2001 From: kangguangli Date: Thu, 8 Dec 2022 16:43:05 +0800 Subject: [PATCH] remove test_auto_search_dist_matmul_op.py (#48794) --- .../test_auto_search_dist_matmul_op.py | 594 ------------------ 1 file changed, 594 deletions(-) delete mode 100644 python/paddle/fluid/tests/unittests/test_auto_search_dist_matmul_op.py diff --git a/python/paddle/fluid/tests/unittests/test_auto_search_dist_matmul_op.py b/python/paddle/fluid/tests/unittests/test_auto_search_dist_matmul_op.py deleted file mode 100644 index 145a4a2724b..00000000000 --- a/python/paddle/fluid/tests/unittests/test_auto_search_dist_matmul_op.py +++ /dev/null @@ -1,594 +0,0 @@ -# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import unittest - -import paddle -import paddle.fluid.core as core -import paddle.nn as nn -import paddle.nn.functional as F -import paddle.static as static -import paddle.utils as utils -from paddle.distributed.auto_parallel.dist_attribute import ( - OperatorDistributedAttribute, -) -from paddle.distributed.auto_parallel.dist_op import DistributedOperator -from paddle.distributed.auto_parallel.operators.common import ( - get_distributed_operator_impl_container, -) -from paddle.fluid import layers - -paddle.enable_static() -device = "gpu" if core.is_compiled_with_cuda() else "cpu" - - -class MLPLayer(nn.Layer): - def __init__( - self, - hidden_size=1024, - intermediate_size=4 * 1024, - initializer_range=0.02, - ): - super().__init__() - d_model = hidden_size - dim_feedforward = intermediate_size - weight_attr = paddle.ParamAttr( - initializer=nn.initializer.Normal(mean=0.0, std=initializer_range) - ) - bias_attr = None - - self.linear0 = nn.Linear( - d_model, dim_feedforward, weight_attr, bias_attr=bias_attr - ) - self.linear1 = nn.Linear( - dim_feedforward, d_model, weight_attr, bias_attr=bias_attr - ) - self.norm = nn.LayerNorm(d_model, epsilon=1e-5) - - def forward(self, input): - out = self.norm(input) - out = self.linear0(out) - out = F.gelu(out, approximate=True) - out = self.linear1(out) - - return out - - -def mlp_forward(train_program, start_program): - with static.program_guard( - train_program, start_program - ), utils.unique_name.guard(): - batch_size = 4 - hidden_size = 1024 - sqrt_hidden_size = 32 - double_hidden_size = 64 - - input = static.data(name="input", shape=[8, 8, 16], dtype='int32') - input = paddle.reshape(input, [hidden_size]) - input = paddle.reshape(input, [sqrt_hidden_size, sqrt_hidden_size]) - embedding = paddle.nn.Embedding(2, batch_size, sparse=True) - input = embedding(input) - input = paddle.reshape(input, [hidden_size, batch_size]) - input = paddle.transpose(input, perm=[1, 0]) - matmulinput = static.data( - name="matmulinput", - shape=[hidden_size, hidden_size], - dtype='float32', - ) - input = layers.matmul(x=input, y=matmulinput) - label = static.data( - name="label", shape=[batch_size, 1], dtype='float32' - ) - mlp = MLPLayer( - hidden_size=hidden_size, - intermediate_size=4 * hidden_size, - initializer_range=0.02, - ) - - predict = mlp(input) - error_cost = paddle.nn.functional.square_error_cost(predict, label) - loss = paddle.mean(error_cost) - m = paddle.nn.Softmax() - loss = m(loss) - return loss, train_program, start_program - - -@unittest.skipIf(True, "to delete later") -class TestCompatible(unittest.TestCase): - def test_matmulv2_matmul_2_compatible(self): - valid_op_dist_attr_list = [] - program = paddle.static.Program() - startup_program = paddle.static.Program() - loss, program, start_program = mlp_forward(program, startup_program) - - with static.program_guard( - program, start_program - ), utils.unique_name.guard(): - matmulx3 = static.data( - name="matmulx3", shape=[6, 2, 6], dtype='float32' - ) - matmuly3 = static.data( - name="matmuly3", shape=[6, 6], dtype='float32' - ) - output1 = paddle.matmul(x=matmulx3, y=matmuly3) - output_1 = layers.matmul(x=matmulx3, y=matmuly3) - matmulx4 = static.data( - name="matmulx4", shape=[6, 6, 2, 6], dtype='float32' - ) - matmuly4 = static.data( - name="matmuly4", shape=[6, 6, 6, 6], dtype='float32' - ) - output2 = paddle.matmul(x=matmulx4, y=matmuly4) - output_2 = layers.matmul(x=matmulx4, y=matmuly4) - ops = program.global_block().ops - vars = program.global_block().vars - for idx, op in enumerate(ops): - if op.type == 'matmul_v2' or op.type == 'matmul': - dist_op_impl_container = ( - get_distributed_operator_impl_container(op.type) - ) - impls = dist_op_impl_container.impls - op_dist_attr = OperatorDistributedAttribute() - X = op.input_arg_names[0] - Y = op.input_arg_names[1] - out = op.output_arg_names[0] - if len(vars[X].shape) == 2 and len(vars[Y].shape) == 2: - op_dist_attr.set_input_dims_mapping(X, [-1, -1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1]) - self.assertTrue( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, 1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, 1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, 1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - if len(vars[X].shape) == 3 and len(vars[Y].shape) == 2: - op_dist_attr.set_input_dims_mapping(X, [-1, -1, -1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, -1]) - self.assertTrue( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [1, -1, -1]) - op_dist_attr.set_input_dims_mapping(X, [-1, -1, 1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, 1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - if len(vars[X].shape) == 4 and len(vars[Y].shape) == 4: - op_dist_attr.set_input_dims_mapping(X, [-1, -1, -1, -1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, -1, -1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, -1, -1]) - self.assertTrue( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [0, -1, -1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [0, -1, -1, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, 0, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, 0, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, -1, 1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, 0, -1]) - self.assertFalse( - impls[2].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - - def test_matmulv2_matmul_1_compatible(self): - valid_op_dist_attr_list = [] - program = paddle.static.Program() - startup_program = paddle.static.Program() - loss, program, start_program = mlp_forward(program, startup_program) - with static.program_guard( - program, start_program - ), utils.unique_name.guard(): - matmulx3 = static.data( - name="matmulx3", shape=[6, 2, 6], dtype='float32' - ) - matmuly3 = static.data( - name="matmuly3", shape=[6, 6], dtype='float32' - ) - output1 = paddle.matmul(x=matmulx3, y=matmuly3) - output_1 = layers.matmul(x=matmulx3, y=matmuly3) - matmulx4 = static.data( - name="matmulx4", shape=[6, 6, 6, 6], dtype='float32' - ) - matmuly4 = static.data( - name="matmuly4", shape=[6, 6, 6, 6], dtype='float32' - ) - output2 = paddle.matmul(x=matmulx4, y=matmuly4) - output_2 = layers.matmul(x=matmulx4, y=matmuly4) - ops = program.global_block().ops - vars = program.global_block().vars - for idx, op in enumerate(ops): - if op.type == 'matmul_v2' or op.type == 'matmul': - dist_op_impl_container = ( - get_distributed_operator_impl_container(op.type) - ) - impls = dist_op_impl_container.impls - op_dist_attr = OperatorDistributedAttribute() - X = op.input_arg_names[0] - Y = op.input_arg_names[1] - out = op.output_arg_names[0] - if len(vars[X].shape) == 2 and len(vars[Y].shape) == 2: - op_dist_attr.set_input_dims_mapping(X, [-1, 1]) - op_dist_attr.set_input_dims_mapping(Y, [1, -1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1]) - dist_op = DistributedOperator(op, op_dist_attr) - op_dist_attr.set_output_dims_mapping(out, [1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - if len(vars[X].shape) == 3 and len(vars[Y].shape) == 2: - op_dist_attr.set_input_dims_mapping(X, [-1, -1, 1]) - op_dist_attr.set_input_dims_mapping(Y, [1, -1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, -1]) - self.assertTrue( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [1, -1, 1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(out, [-1, -1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, 0, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, -1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - if len(vars[X].shape) == 4 and len(vars[Y].shape) == 4: - op_dist_attr.set_input_dims_mapping(X, [-1, -1, -1, 1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, 1, -1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, -1, -1]) - self.assertTrue( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [0, -1, -1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [0, -1, -1, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, 0, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, 0, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, -1, 1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, 0, -1]) - self.assertFalse( - impls[1].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - - def test_matmulv2_matmul_0_compatible(self): - valid_op_dist_attr_list = [] - program = paddle.static.Program() - startup_program = paddle.static.Program() - loss, program, start_program = mlp_forward(program, startup_program) - with static.program_guard( - program, start_program - ), utils.unique_name.guard(): - matmulx3 = static.data( - name="matmulx3", shape=[6, 2, 6], dtype='float32' - ) - matmuly3 = static.data( - name="matmuly3", shape=[6, 6], dtype='float32' - ) - output1 = paddle.matmul(x=matmulx3, y=matmuly3) - output_1 = layers.matmul(x=matmulx3, y=matmuly3) - matmulx4 = static.data( - name="matmulx4", shape=[6, 6, 2, 6], dtype='float32' - ) - matmuly4 = static.data( - name="matmuly4", shape=[6, 6, 6, 6], dtype='float32' - ) - output2 = paddle.matmul(x=matmulx4, y=matmuly4) - output_2 = layers.matmul(x=matmulx4, y=matmuly4) - ops = program.global_block().ops - vars = program.global_block().vars - for idx, op in enumerate(ops): - if op.type == 'matmul_v2' or op.type == 'matmul': - dist_op_impl_container = ( - get_distributed_operator_impl_container(op.type) - ) - impls = dist_op_impl_container.impls - op_dist_attr = OperatorDistributedAttribute() - X = op.input_arg_names[0] - Y = op.input_arg_names[1] - out = op.output_arg_names[0] - if len(vars[X].shape) == 2 and len(vars[Y].shape) == 2: - op_dist_attr.set_input_dims_mapping(X, [-1, -1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, 1]) - op_dist_attr.set_output_dims_mapping(out, [-1, 1]) - self.assertTrue( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [0, 0]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [0, -1]) - op_dist_attr.set_output_dims_mapping(out, [1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - if len(vars[X].shape) == 3 and len(vars[Y].shape) == 2: - op_dist_attr.set_input_dims_mapping(X, [-1, -1, -1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, 1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, 1]) - self.assertTrue( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, 0, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, 1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [1, -1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, 1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - if len(vars[X].shape) == 4 and len(vars[Y].shape) == 4: - op_dist_attr.set_input_dims_mapping(X, [-1, -1, -1, -1]) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, -1, 1]) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, -1, 1]) - self.assertTrue( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [0, -1, -1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, 1, 1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, 1, -1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(X, [-1, -1, 1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [0, -1, -1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, 1, 1, 1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, -1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_output_dims_mapping(out, [-1, -1, 1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - op_dist_attr.set_input_dims_mapping(Y, [-1, -1, 1, -1]) - self.assertFalse( - impls[0].is_auto_compatible( - DistributedOperator(op, op_dist_attr) - ) - ) - - -if __name__ == "__main__": - unittest.main() -- GitLab