Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6829d94f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6829d94f
编写于
11月 06, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
5eb0ebaf
上级
9361062d
变更
4
展开全部
显示空白变更内容
内联
并排
Showing
4 changed file
with
60 addition
and
62 deletion
+60
-62
develop/doc/api/v2/config/optimizer.html
develop/doc/api/v2/config/optimizer.html
+29
-30
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/api/v2/config/optimizer.html
develop/doc_cn/api/v2/config/optimizer.html
+29
-30
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/api/v2/config/optimizer.html
浏览文件 @
6829d94f
...
...
@@ -188,35 +188,44 @@
<h1>
Optimizer
<a
class=
"headerlink"
href=
"#optimizer"
title=
"Permalink to this headline"
>
¶
</a></h1>
<div
class=
"section"
id=
"momentum"
>
<h2>
Momentum
<a
class=
"headerlink"
href=
"#momentum"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
Momentum
</code><span
class=
"sig-paren"
>
(
</span><em>
momentum=None
</em>
,
<em>
sparse=False
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
SGD Optimizer.
</p>
<p>
SGD is an optimization method, trying to find a neural network that
minimize the
“
cost/error
”
of it by iteration. In paddle
’
s implementation
SGD Optimizer is synchronized, which means all gradients will be wait to
calculate and reduced into one gradient, then do optimize operation.
</p>
<p>
The neural network consider the learning problem of minimizing an objective
function, that has the form of a sum
</p>
<dd><p>
Momentum Optimizer.
</p>
<p>
When sparse=False, the momentum update formula is as follows:
</p>
<div
class=
"math"
>
\[Q(w) = \sum_{i}^{n} Q_i(w)\]
</div>
<p>
The value of function Q sometimes is the cost of neural network (Mean
Square Error between prediction and label for example). The function Q is
parametrised by w, the weight/bias of neural network. And weights is what to
be learned. The i is the i-th observation in (trainning) data.
</p>
<p>
So, the SGD method will optimize the weight by
</p>
\[\begin{split}v_{t}
&
= k * v_{t-1} - \gamma_t / (g_{t} + \lambda w_{t-1}) \\
w_{t}
&
= w_{t-1} + v_{t} \\\end{split}\]
</div>
<p>
where,
<span
class=
"math"
>
\(k\)
</span>
is momentum,
<span
class=
"math"
>
\(\lambda\)
</span>
is decay rate,
<span
class=
"math"
>
\(\gamma_t\)
</span>
is learning rate at the t
’
th iteration.
<span
class=
"math"
>
\(w_{t}\)
</span>
is the weight as the t
’
th iteration.
And the
<span
class=
"math"
>
\(v_{t}\)
</span>
is the history momentum variable.
</p>
<p>
When sparse=True, the update scheme:
</p>
<div
class=
"math"
>
\[w = w - \eta \nabla Q(w) = w - \eta \sum_{i}^{n} \nabla Q_i(w)\]
</div>
<p>
where
<span
class=
"math"
>
\(\eta\)
</span>
is learning rate. And
<span
class=
"math"
>
\(n\)
</span>
is batch size.
</p>
\[\begin{split}\alpha_t
&
= \alpha_{t-1} / k \\
\beta_t
&
= \beta_{t-1} / (1 + \lambda \gamma_t) \\
u_t
&
= u_{t-1} - \alpha_t \gamma_t g_t \\
v_t
&
= v_{t-1} + \tau_{t-1} \alpha_t \gamma_t g_t \\
\tau_t
&
= \tau_{t-1} + \beta_t / \alpha_t\end{split}\]
</div>
<p>
where
<span
class=
"math"
>
\(k\)
</span>
is momentum,
<span
class=
"math"
>
\(\lambda\)
</span>
is decay rate,
<span
class=
"math"
>
\(\gamma_t\)
</span>
is learning rate at the t
’
th iteration.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first last simple"
>
<li><strong>
momentum
</strong>
(
<em>
float
</em>
)
–
the momentum factor.
</li>
<li><strong>
sparse
</strong>
(
<em>
bool
</em>
)
–
with sparse support or not, False by default.
</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"adam"
>
<h2>
Adam
<a
class=
"headerlink"
href=
"#adam"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
Adam
</code><span
class=
"sig-paren"
>
(
</span><em>
beta1=0.9
</em>
,
<em>
beta2=0.999
</em>
,
<em>
epsilon=1e-08
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -225,7 +234,7 @@ The details of please refer <a class="reference external" href="https://arxiv.or
<div
class=
"math"
>
\[\begin{split}m(w, t)
&
= \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t)
&
= \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
w
&
= w - \frac{\eta}{\sqrt{v(w,t) + \epsilon}}\end{split}\]
</div>
w
&
= w - \frac{\eta
m(w, t)
}{\sqrt{v(w,t) + \epsilon}}\end{split}\]
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
...
...
@@ -245,8 +254,6 @@ divided by zero.</li>
</div>
<div
class=
"section"
id=
"adamax"
>
<h2>
Adamax
<a
class=
"headerlink"
href=
"#adamax"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
Adamax
</code><span
class=
"sig-paren"
>
(
</span><em>
beta1=0.9
</em>
,
<em>
beta2=0.999
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -273,8 +280,6 @@ w_t & = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
</div>
<div
class=
"section"
id=
"adagrad"
>
<h2>
AdaGrad
<a
class=
"headerlink"
href=
"#adagrad"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
AdaGrad
</code><span
class=
"sig-paren"
>
(
</span><em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -289,8 +294,6 @@ w & = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</div>
<div
class=
"section"
id=
"decayedadagrad"
>
<h2>
DecayedAdaGrad
<a
class=
"headerlink"
href=
"#decayedadagrad"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
DecayedAdaGrad
</code><span
class=
"sig-paren"
>
(
</span><em>
rho=0.95
</em>
,
<em>
epsilon=1e-06
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -316,8 +319,6 @@ learning\_rate &= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
</div>
<div
class=
"section"
id=
"adadelta"
>
<h2>
AdaDelta
<a
class=
"headerlink"
href=
"#adadelta"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
AdaDelta
</code><span
class=
"sig-paren"
>
(
</span><em>
rho=0.95
</em>
,
<em>
epsilon=1e-06
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -345,8 +346,6 @@ E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{spl
</div>
<div
class=
"section"
id=
"rmsprop"
>
<h2>
RMSProp
<a
class=
"headerlink"
href=
"#rmsprop"
title=
"Permalink to this headline"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
RMSProp
</code><span
class=
"sig-paren"
>
(
</span><em>
rho=0.95
</em>
,
<em>
epsilon=1e-06
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
develop/doc/searchindex.js
浏览文件 @
6829d94f
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/api/v2/config/optimizer.html
浏览文件 @
6829d94f
...
...
@@ -201,35 +201,44 @@
<h1>
Optimizer
<a
class=
"headerlink"
href=
"#optimizer"
title=
"永久链接至标题"
>
¶
</a></h1>
<div
class=
"section"
id=
"momentum"
>
<h2>
Momentum
<a
class=
"headerlink"
href=
"#momentum"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
Momentum
</code><span
class=
"sig-paren"
>
(
</span><em>
momentum=None
</em>
,
<em>
sparse=False
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
SGD Optimizer.
</p>
<p>
SGD is an optimization method, trying to find a neural network that
minimize the
“
cost/error
”
of it by iteration. In paddle
’
s implementation
SGD Optimizer is synchronized, which means all gradients will be wait to
calculate and reduced into one gradient, then do optimize operation.
</p>
<p>
The neural network consider the learning problem of minimizing an objective
function, that has the form of a sum
</p>
<dd><p>
Momentum Optimizer.
</p>
<p>
When sparse=False, the momentum update formula is as follows:
</p>
<div
class=
"math"
>
\[Q(w) = \sum_{i}^{n} Q_i(w)\]
</div>
<p>
The value of function Q sometimes is the cost of neural network (Mean
Square Error between prediction and label for example). The function Q is
parametrised by w, the weight/bias of neural network. And weights is what to
be learned. The i is the i-th observation in (trainning) data.
</p>
<p>
So, the SGD method will optimize the weight by
</p>
\[\begin{split}v_{t}
&
= k * v_{t-1} - \gamma_t / (g_{t} + \lambda w_{t-1}) \\
w_{t}
&
= w_{t-1} + v_{t} \\\end{split}\]
</div>
<p>
where,
<span
class=
"math"
>
\(k\)
</span>
is momentum,
<span
class=
"math"
>
\(\lambda\)
</span>
is decay rate,
<span
class=
"math"
>
\(\gamma_t\)
</span>
is learning rate at the t
’
th iteration.
<span
class=
"math"
>
\(w_{t}\)
</span>
is the weight as the t
’
th iteration.
And the
<span
class=
"math"
>
\(v_{t}\)
</span>
is the history momentum variable.
</p>
<p>
When sparse=True, the update scheme:
</p>
<div
class=
"math"
>
\[w = w - \eta \nabla Q(w) = w - \eta \sum_{i}^{n} \nabla Q_i(w)\]
</div>
<p>
where
<span
class=
"math"
>
\(\eta\)
</span>
is learning rate. And
<span
class=
"math"
>
\(n\)
</span>
is batch size.
</p>
\[\begin{split}\alpha_t
&
= \alpha_{t-1} / k \\
\beta_t
&
= \beta_{t-1} / (1 + \lambda \gamma_t) \\
u_t
&
= u_{t-1} - \alpha_t \gamma_t g_t \\
v_t
&
= v_{t-1} + \tau_{t-1} \alpha_t \gamma_t g_t \\
\tau_t
&
= \tau_{t-1} + \beta_t / \alpha_t\end{split}\]
</div>
<p>
where
<span
class=
"math"
>
\(k\)
</span>
is momentum,
<span
class=
"math"
>
\(\lambda\)
</span>
is decay rate,
<span
class=
"math"
>
\(\gamma_t\)
</span>
is learning rate at the t
’
th iteration.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first last simple"
>
<li><strong>
momentum
</strong>
(
<em>
float
</em>
)
–
the momentum factor.
</li>
<li><strong>
sparse
</strong>
(
<em>
bool
</em>
)
–
with sparse support or not, False by default.
</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"adam"
>
<h2>
Adam
<a
class=
"headerlink"
href=
"#adam"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
Adam
</code><span
class=
"sig-paren"
>
(
</span><em>
beta1=0.9
</em>
,
<em>
beta2=0.999
</em>
,
<em>
epsilon=1e-08
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -238,7 +247,7 @@ The details of please refer <a class="reference external" href="https://arxiv.or
<div
class=
"math"
>
\[\begin{split}m(w, t)
&
= \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t)
&
= \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
w
&
= w - \frac{\eta}{\sqrt{v(w,t) + \epsilon}}\end{split}\]
</div>
w
&
= w - \frac{\eta
m(w, t)
}{\sqrt{v(w,t) + \epsilon}}\end{split}\]
</div>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
...
...
@@ -258,8 +267,6 @@ divided by zero.</li>
</div>
<div
class=
"section"
id=
"adamax"
>
<h2>
Adamax
<a
class=
"headerlink"
href=
"#adamax"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
Adamax
</code><span
class=
"sig-paren"
>
(
</span><em>
beta1=0.9
</em>
,
<em>
beta2=0.999
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -286,8 +293,6 @@ w_t & = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
</div>
<div
class=
"section"
id=
"adagrad"
>
<h2>
AdaGrad
<a
class=
"headerlink"
href=
"#adagrad"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
AdaGrad
</code><span
class=
"sig-paren"
>
(
</span><em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -302,8 +307,6 @@ w & = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</div>
<div
class=
"section"
id=
"decayedadagrad"
>
<h2>
DecayedAdaGrad
<a
class=
"headerlink"
href=
"#decayedadagrad"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
DecayedAdaGrad
</code><span
class=
"sig-paren"
>
(
</span><em>
rho=0.95
</em>
,
<em>
epsilon=1e-06
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -329,8 +332,6 @@ learning\_rate &= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
</div>
<div
class=
"section"
id=
"adadelta"
>
<h2>
AdaDelta
<a
class=
"headerlink"
href=
"#adadelta"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
AdaDelta
</code><span
class=
"sig-paren"
>
(
</span><em>
rho=0.95
</em>
,
<em>
epsilon=1e-06
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
@@ -358,8 +359,6 @@ E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{spl
</div>
<div
class=
"section"
id=
"rmsprop"
>
<h2>
RMSProp
<a
class=
"headerlink"
href=
"#rmsprop"
title=
"永久链接至标题"
>
¶
</a></h2>
<p>
Optimizers(update equation) for SGD method.
</p>
<p>
TODO(yuyang18): Complete comments.
</p>
<dl
class=
"class"
>
<dt>
<em
class=
"property"
>
class
</em><code
class=
"descclassname"
>
paddle.v2.optimizer.
</code><code
class=
"descname"
>
RMSProp
</code><span
class=
"sig-paren"
>
(
</span><em>
rho=0.95
</em>
,
<em>
epsilon=1e-06
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
6829d94f
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录