未验证 提交 65bce2b3 编写于 作者: 姜永久 提交者: GitHub

Yj/eager op test part 1 (#49877)

* update tril unbind ops for eager tests

* add eager op test

* reset unbind

* lint

* lint

* rm eager checker

* copyright 2018->2023
上级 b2706b0c
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import os
import random
import struct
import sys
import unittest
import warnings
from collections import defaultdict
from copy import copy
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import unique_name
from paddle.fluid.backward import append_backward
from paddle.fluid.executor import Executor
from paddle.fluid.framework import (
OpProtoHolder,
Program,
_current_expected_place,
_dygraph_tracer,
in_dygraph_mode,
)
from paddle.fluid.op import Operator
from paddle.jit.dy2static.utils import parse_arg_and_kwargs
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
from testsuite import append_input_output, append_loss_ops, create_op, set_input
from white_list import (
check_shape_white_list,
compile_vs_runtime_white_list,
no_check_set_white_list,
no_grad_set_white_list,
op_accuracy_white_list,
op_threshold_white_list,
)
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
"""
Determines whether dtype of output tensor is as expected.
Args:
api_fn(callable): paddle api function
in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
expected_dtype(list[str]): expected dtype of output tensor.
target_index(int): indicate which one from in_specs to infer the dtype of output.
config(dict): other arguments of paddle api function
Example:
check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)
"""
paddle.enable_static()
for i, expect_dtype in enumerate(expect_dtypes):
with paddle.static.program_guard(paddle.static.Program()):
input_t = []
for index, spec in enumerate(in_specs):
if len(spec) == 1:
shape = spec[0]
dtype = expect_dtype if target_index == index else 'float32'
elif len(spec) == 2:
shape, dtype = spec
else:
raise ValueError(
"Value of in_specs[{}] should contains two elements: [shape, dtype]".format(
index
)
)
input_t.append(
paddle.static.data(
name='data_%s' % index, shape=shape, dtype=dtype
)
)
out = api_fn(*input_t, **configs)
out_dtype = fluid.data_feeder.convert_dtype(out.dtype)
if out_dtype != expect_dtype:
raise ValueError(
"Expected out.dtype is {}, but got {} from {}.".format(
expect_dtype, out_dtype, api_fn.__name__
)
)
def _set_use_system_allocator(value=None):
USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
value = old_value if value is None else value
core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
return old_value
def randomize_probability(batch_size, class_num, dtype='float32'):
prob = np.random.uniform(0.1, 1.0, size=(batch_size, class_num)).astype(
dtype
)
prob_sum = prob.sum(axis=1)
for i in range(len(prob)):
prob[i] /= prob_sum[i]
return prob
def get_numeric_gradient(
place,
scope,
op,
inputs,
input_to_check,
output_names,
delta=0.005,
in_place=False,
):
# FIXME: change this method by compile time concepts
set_input(scope, op, inputs, place)
def product(dim):
return functools.reduce(lambda a, b: a * b, dim, 1)
tensor_to_check = scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.shape())
tensor_to_check_dtype = tensor_to_check._dtype()
if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
tensor_to_check_dtype = np.float32
elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
tensor_to_check_dtype = np.float64
elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
tensor_to_check_dtype = np.float16
# set delta as np.float16, will automatic convert to float32, float64
delta = np.array(delta).astype(np.float16)
elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
tensor_to_check_dtype = np.float32
elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
tensor_to_check_dtype = np.complex64
elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
tensor_to_check_dtype = np.complex128
else:
raise ValueError(
"Not supported data type "
+ str(tensor_to_check_dtype)
+ ", tensor name : "
+ str(input_to_check)
)
def get_output():
sum = []
op.run(scope, place)
for output_name in output_names:
output_numpy = np.array(scope.find_var(output_name).get_tensor())
# numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
# store bfloat16 data, and need to be converted to float to check
# the floating precision.
if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
output_numpy = convert_uint16_to_float(output_numpy)
sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))
gradient_flat = np.zeros(shape=(tensor_size,), dtype=tensor_to_check_dtype)
def __get_elem__(tensor, i):
if tensor_to_check_dtype == np.float16:
numpy_tensor = np.array(tensor).astype(np.float16)
numpy_tensor = numpy_tensor.flatten()
return numpy_tensor[i]
elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
numpy_tensor = np.array(tensor).astype(np.uint16)
numpy_tensor = numpy_tensor.flatten()
return struct.unpack(
'<f',
struct.pack('<I', np.uint32(numpy_tensor[i]) << np.uint32(16)),
)[0]
elif tensor_to_check_dtype == np.float32:
return tensor._get_float_element(i)
elif tensor_to_check_dtype == np.float64:
return tensor._get_double_element(i)
else:
raise TypeError(
"Unsupported test data type %s." % tensor_to_check_dtype
)
def __set_elem__(tensor, i, e):
if tensor_to_check_dtype == np.float16:
numpy_tensor = np.array(tensor).astype(np.float16)
shape = numpy_tensor.shape
numpy_tensor = numpy_tensor.flatten()
numpy_tensor[i] = e
numpy_tensor = numpy_tensor.reshape(shape)
tensor.set(numpy_tensor, place)
elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
numpy_tensor = np.array(tensor).astype(np.uint16)
shape = numpy_tensor.shape
numpy_tensor = numpy_tensor.flatten()
numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
numpy_tensor = numpy_tensor.reshape(shape)
tensor.set(numpy_tensor, place)
elif tensor_to_check_dtype == np.float32:
tensor._set_float_element(i, e)
elif tensor_to_check_dtype == np.float64:
tensor._set_double_element(i, e)
else:
raise TypeError(
"Unsupported test data type %s." % tensor_to_check_dtype
)
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in range(tensor_size):
if in_place:
set_input(scope, op, inputs, place)
# get one input element throw it's index i.
origin = __get_elem__(tensor_to_check, i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
__set_elem__(tensor_to_check, i, x_pos)
y_pos = get_output()
if in_place:
set_input(scope, op, inputs, place)
x_neg = origin - delta
__set_elem__(tensor_to_check, i, x_neg)
y_neg = get_output()
__set_elem__(tensor_to_check, i, origin)
gradient_flat[i] = (y_pos - y_neg) / delta / 2
return gradient_flat.reshape(tensor_to_check.shape())
def skip_check_grad_ci(reason=None):
"""Decorator to skip check_grad CI.
Check_grad is required for Op test cases. However, there are some special
cases that do not need to do check_grad. This decorator is used to skip the
check_grad of the above cases.
Note: the execution of unit test will not be skipped. It just avoids check_grad
checking in tearDownClass method by setting a `no_need_check_grad` flag.
Example:
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
class TestInference(OpTest):
"""
if not isinstance(reason, str):
raise AssertionError("The reason for skipping check_grad is required.")
def wrapper(cls):
cls.no_need_check_grad = True
return cls
return wrapper
def skip_check_inplace_ci(reason=None):
if not isinstance(reason, str):
raise AssertionError(
"The reason for skipping check_inplace is required."
)
def wrapper(cls):
cls.no_need_check_inplace = True
return cls
return wrapper
def copy_bits_from_float_to_uint16(f):
return struct.unpack('<I', struct.pack('<f', f))[0] >> 16
def convert_float_to_uint16(float_list, data_format="NCHW"):
if data_format == "NHWC":
float_list = np.transpose(float_list, [0, 3, 1, 2])
new_output = []
for x in np.nditer(float_list):
new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
if data_format == "NHWC":
new_output = np.transpose(new_output, [0, 2, 3, 1])
return new_output
def convert_uint16_to_float(in_list):
in_list = np.asarray(in_list)
out = np.vectorize(
lambda x: struct.unpack(
'<f', struct.pack('<I', np.uint32(x) << np.uint32(16))
)[0],
otypes=[np.float32],
)(in_list.flat)
return np.reshape(out, in_list.shape)
class OpTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
'''Fix random seeds to remove randomness from tests'''
cls._np_rand_state = np.random.get_state()
cls._py_rand_state = random.getstate()
cls.call_once = False
cls.dtype = None
cls.outputs = {}
cls.input_shape_is_large = True
np.random.seed(123)
random.seed(124)
if paddle.is_compiled_with_npu():
cls._use_system_allocator = _set_use_system_allocator(False)
else:
cls._use_system_allocator = _set_use_system_allocator(True)
@classmethod
def tearDownClass(cls):
"""Restore random seeds"""
np.random.set_state(cls._np_rand_state)
random.setstate(cls._py_rand_state)
_set_use_system_allocator(cls._use_system_allocator)
def is_empty_grad_op(op_type):
all_op_kernels = core._get_all_register_op_kernels()
grad_op = op_type + '_grad'
if grad_op in all_op_kernels.keys():
if is_mkldnn_op_test():
grad_op_kernels = all_op_kernels[grad_op]
for grad_op_kernel in grad_op_kernels:
if 'MKLDNN' in grad_op_kernel:
return False
else:
return False
return True
def is_xpu_op_test():
return hasattr(cls, "use_xpu") and cls.use_xpu
def is_mkldnn_op_test():
return hasattr(cls, "use_mkldnn") and cls.use_mkldnn
def is_rocm_op_test():
return core.is_compiled_with_rocm()
def is_npu_op_test():
return hasattr(cls, "use_npu") and cls.use_npu
def is_mlu_op_test():
return hasattr(cls, "use_mlu") and cls.use_mlu
def is_custom_device_op_test():
return hasattr(cls, "use_custom_device") and cls.use_custom_device
if not hasattr(cls, "op_type"):
raise AssertionError(
"This test do not have op_type in class attrs, "
"please set self.__class__.op_type=the_real_op_type manually."
)
# case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op(
cls.op_type
):
if cls.dtype is None or (
cls.dtype == np.float16
and cls.op_type
not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST
and not hasattr(cls, "exist_check_grad")
):
raise AssertionError(
"This test of %s op needs check_grad." % cls.op_type
)
# check for op test with fp64 precision, but not check mkldnn op test for now
if (
cls.dtype in [np.float32, np.float64]
and cls.op_type
not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST
and not hasattr(cls, 'exist_fp64_check_grad')
and not is_xpu_op_test()
and not is_mkldnn_op_test()
and not is_rocm_op_test()
and not is_npu_op_test()
and not is_mlu_op_test()
and not is_custom_device_op_test()
):
raise AssertionError(
"This test of %s op needs check_grad with fp64 precision."
% cls.op_type
)
if (
not cls.input_shape_is_large
and cls.op_type
not in check_shape_white_list.NEED_TO_FIX_OP_LIST
):
raise AssertionError(
"Input's shape should be large than or equal to 100 for "
+ cls.op_type
+ " Op."
)
def try_call_once(self, data_type):
if not self.call_once:
self.call_once = True
self.dtype = data_type
def is_bfloat16_op(self):
# self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
# Make sure this function is called after calling infer_dtype_from_inputs_outputs.
return (
self.dtype == np.uint16
or (
hasattr(self, 'output_dtype') and self.output_dtype == np.uint16
)
or (
hasattr(self, 'mkldnn_data_type')
and getattr(self, 'mkldnn_data_type') == "bfloat16"
)
or (
hasattr(self, 'attrs')
and 'mkldnn_data_type' in self.attrs
and self.attrs['mkldnn_data_type'] == 'bfloat16'
)
)
def is_mkldnn_op(self):
return (hasattr(self, "use_mkldnn") and self.use_mkldnn) or (
hasattr(self, "attrs")
and "use_mkldnn" in self.attrs
and self.attrs["use_mkldnn"]
)
def is_xpu_op(self):
return (hasattr(self, "use_xpu") and self.use_xpu) or (
hasattr(self, "attrs")
and "use_xpu" in self.attrs
and self.attrs["use_xpu"]
)
# set the self.output_dtype .
def infer_dtype_from_inputs_outputs(self, inputs, outputs):
def is_np_data(input):
return isinstance(input, (np.ndarray, np.generic))
def infer_dtype(numpy_dict, dtype_set):
assert isinstance(
numpy_dict, dict
), "self.inputs, self.outputs must be numpy_dict"
# the inputs are as follows:
# case 1: inputs = {'X': x}
# case 2: inputs = {'X': (x, x_lod)}
# case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
# case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
# TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
for _, var_value in numpy_dict.items():
if is_np_data(var_value): # case 1
dtype_set.add(var_value.dtype)
elif isinstance(var_value, (list, tuple)): # case 2, 3, 4
for sub_val_value in var_value:
if is_np_data(sub_val_value): # case 2
dtype_set.add(sub_val_value.dtype)
elif len(sub_val_value) > 1 and is_np_data(
sub_val_value[1]
): # case 3
dtype_set.add(sub_val_value[1].dtype)
elif (
len(sub_val_value) > 1
and isinstance(sub_val_value[1], (list, tuple))
and is_np_data(sub_val_value[1][0])
): # case 4
dtype_set.add(sub_val_value[1][0].dtype)
# infer dtype from inputs, and dtype means the precision of the test
# collect dtype of all inputs
input_dtype_set = set()
infer_dtype(inputs, input_dtype_set)
dtype_list = [
np.dtype(np.float64),
np.dtype(np.float32),
np.dtype(np.float16),
np.dtype(np.int64),
np.dtype(np.int32),
np.dtype(np.uint16),
np.dtype(np.int16),
np.dtype(np.int8),
np.dtype(np.uint8),
np.dtype(np.bool_),
]
# check the dtype in dtype_list in order, select the first dtype that in dtype_set
for dtype in dtype_list:
if dtype in input_dtype_set:
self.dtype = dtype
break
# save input dtype in class attr
self.__class__.dtype = self.dtype
# infer dtype of outputs
output_dtype_set = set()
infer_dtype(outputs, output_dtype_set)
for dtype in dtype_list:
if dtype in output_dtype_set:
self.output_dtype = dtype
break
def feed_var(self, input_vars, place):
feed_map = {}
for var_name in input_vars:
if isinstance(input_vars[var_name], list):
for name, np_value in self.inputs[var_name]:
tensor = core.LoDTensor()
if isinstance(np_value, tuple):
tensor.set(np_value[0], place)
tensor.set_recursive_sequence_lengths(np_value[1])
else:
tensor.set(np_value, place)
feed_map[name] = tensor
else:
tensor = core.LoDTensor()
if isinstance(self.inputs[var_name], tuple):
tensor.set(self.inputs[var_name][0], place)
tensor.set_recursive_sequence_lengths(
self.inputs[var_name][1]
)
else:
tensor.set(self.inputs[var_name], place)
feed_map[var_name] = tensor
return feed_map
def _append_ops(self, block):
self.__class__.op_type = (
self.op_type
) # for ci check, please not delete it for now
if self.is_mkldnn_op():
self.__class__.use_mkldnn = True
if self.is_xpu_op():
self.__class__.use_xpu = True
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
"infer datatype from inputs and outputs for this test case"
if self.is_bfloat16_op():
self.dtype = np.uint16
self.__class__.dtype = self.dtype
self.output_dtype = np.uint16
else:
self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
inputs = append_input_output(
block, op_proto, self.inputs, True, self.dtype
)
outputs = append_input_output(
block, op_proto, self.outputs, False, self.dtype
)
if hasattr(self, "cache_name_list"):
for name in self.cache_name_list:
inputs[name] = block.create_var(
name=name,
persistable=True,
type=core.VarDesc.VarType.RAW,
stop_gradient=True,
)
op = block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=copy(self.attrs) if hasattr(self, "attrs") else dict(),
)
# infer variable type and infer shape in compile-time
op.desc.infer_var_type(block.desc)
op.desc.infer_shape(block.desc)
return op
def _get_io_vars(self, block, numpy_inputs):
inputs = {}
for name, value in numpy_inputs.items():
if isinstance(value, list):
var_list = [
block.var(sub_name) for sub_name, sub_value in value
]
inputs[name] = var_list
else:
inputs[name] = block.var(name)
return inputs
def _get_inputs(self, block):
return self._get_io_vars(block, self.inputs)
def _get_outputs(self, block):
return self._get_io_vars(block, self.outputs)
def calc_output(self, place):
outs, _ = self._calc_output(place)
return outs
def _create_var_from_numpy(self, value):
if isinstance(value, tuple):
data = value[0]
lod = value[1]
v = fluid.dygraph.base.to_variable(value=data)
v.value().get_tensor().set_recursive_sequence_lengths(lod)
return v
else:
return fluid.dygraph.base.to_variable(value)
def get_sequence_batch_size_1_input(self, lod=None, shape=None):
"""Get LoD input data whose batch size is 1.
All sequence related OP unittests should call this function to contain the case of batch size = 1.
Args:
lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
Returns:
tuple (ndarray, lod) : LoD input data whose batch size is 1.
"""
if lod is None:
lod = [[13]]
if shape is None:
shape = [13, 23]
assert len(lod[0]) == 1
assert lod[0][0] == shape[0]
x = np.random.uniform(0.1, 1, shape).astype('float32')
return (x, lod)
def lod_has_single_zero(self, lod):
for i in range(len(lod) - 2):
if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
return True
return False
def lod_has_continuous_zero(self, lod):
for i in range(len(lod) - 3):
if (
lod[i] != 0
and lod[i + 1] == 0
and lod[i + 2] == 0
and lod[i + 3] != 0
):
return True
return False
def get_sequence_instance_size_0_input(self, lod=None, shape=None):
"""Get LoD input data whose instance size is 0.
All sequence related OP unittests should call this function to contain the case of instance size is 0.
Args:
lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
Returns:
tuple (ndarray, lod): LoD input data whose instance size is 0.
"""
if lod is None:
lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
if shape is None:
shape = [12, 10]
assert len(lod[0]) >= 8
assert (
lod[0][0] == 0
and lod[0][1] == 0
and lod[0][-1] == 0
and lod[0][-2] == 0
)
assert self.lod_has_single_zero(lod[0]) is True
assert self.lod_has_continuous_zero(lod[0]) is True
assert sum(lod[0]) == shape[0]
x = np.random.uniform(0.1, 1, shape).astype('float32')
return (x, lod)
def append_input_output_for_dygraph(
self, op_proto, np_list, is_input, if_return_inputs_grad_dict, block
):
def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
np_value_temp = np_value
has_lod = False
lod_temp = None
if isinstance(np_value, tuple):
np_value_temp = np_value[0]
has_lod = True
lod_temp = np_value[1]
if is_input:
v = self._create_var_from_numpy(np_value_temp)
if if_return_inputs_grad_dict:
v.stop_gradient = False
if hasattr(v, "retain_grads"):
v.retain_grads()
if has_lod:
v.value().get_tensor().set_recursive_sequence_lengths(
lod_temp
)
else:
v = block.create_var(
name=name,
dtype=np_value_temp.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
)
return v
# prepare variable for input or output
var_dict = defaultdict(list)
if if_return_inputs_grad_dict:
inputs_grad_dict = defaultdict()
proto_list = op_proto.inputs if is_input else op_proto.outputs
for var_proto in proto_list:
name = var_proto.name
if (name not in np_list) and var_proto.dispensable:
continue
if name not in np_list:
assert var_proto.intermediate, "{} not found".format(name)
v = block.create_var(
dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR
)
var_dict[name].append(v)
if if_return_inputs_grad_dict:
inputs_grad_dict[name] = v
continue
if var_proto.duplicable:
assert isinstance(
np_list[name], list
), "Duplicable {} should be set as list".format(name)
var_list = []
slot_name = name
for (name, np_value) in np_list[name]:
v = create_var(
np_value, name, is_input, if_return_inputs_grad_dict
)
var_list.append(v)
if if_return_inputs_grad_dict:
inputs_grad_dict[name] = v
var_dict[slot_name] = var_list
else:
nplist_value_temp = None
name_temp = None
if isinstance(np_list[name], list):
nplist_value_temp = np_list[name][0]
name_temp = name
else:
nplist_value_temp = np_list[name]
name_temp = unique_name.generate("%s_out" % (name))
v = create_var(
nplist_value_temp,
name_temp,
is_input,
if_return_inputs_grad_dict,
)
var_dict[name].append(v)
if if_return_inputs_grad_dict:
inputs_grad_dict[name] = v
if if_return_inputs_grad_dict:
return var_dict, inputs_grad_dict
else:
return var_dict
def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
"""for quick verify, here we take a simplest strategy:
1. we only check variable in api_outs.
2. we simply check the numpy (tensor) .
3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
"""
for name in api_outs:
np_api = np.array(api_outs[name])
np_dyg = np.array(dygraph_outs[name])
np.testing.assert_allclose(
np_api,
np_dyg,
rtol=1e-05,
equal_nan=False,
err_msg='Output ('
+ name
+ ') has diff at '
+ str(place)
+ '\nExpect '
+ str(np_dyg)
+ '\n'
+ 'But Got'
+ str(np_api)
+ ' in class '
+ self.__class__.__name__,
)
def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
"""set egr_inps and egr_oups = None if you want to create it by yourself."""
def prepare_python_api_arguments(
api, op_proto_ins, op_proto_attrs, kernel_sig
):
"""map from `op proto inputs and attrs` to `api input list and api attrs dict`
NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
"""
class Empty:
pass
def is_empty(a):
return isinstance(a, Empty)
def get_default(idx, defaults):
assert not isinstance(defaults[idx], Empty), (
"%d-th params of python api don't have default value." % idx
)
return defaults[idx]
def to_defaults_list(params, defaults):
return [defaults[p] for p in params if p in defaults]
def parse_attri_value(name, op_inputs, op_attrs):
"""parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
1. if the name in op_attrs, use the op_attrs[name]
2. if the name in op_inputs, convert the op_inputs to [type of default value]
3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
"""
if name in op_proto_attrs:
return op_proto_attrs[name]
elif name in op_inputs:
if len(op_inputs[name]) == 1:
# why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
# why we reconstruct a tensor: because we want the tensor in cpu.
return paddle.to_tensor(
op_inputs[name][0].numpy(), place='cpu'
)
else:
# if this is a list (test_unsqueeze2_op): we just pass it into the python api.
return op_inputs[name]
else:
return Empty()
# NOTE(xiongkun): the logic of constructing parameters:
# for example:
# python api: cumprod(x, dim, dtype=None, name=None)
# kernel sig: [["x"], ["dim"], ["out"]]"
#
# we will construct a lot of list with the same length : len == len(api_params), here is 4
# api_params = ["x", "dim", "dtype", "name"]
# api_defaults = [Empty, Empty, None, None]; empty means no defaults.
# inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
# input_arguments = [RealValue in self.inputs and self.attrs]
# then ,we will loop for the api_params, construct a result list:
# if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
# else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)
api_params, api_defaults = parse_arg_and_kwargs(api)
api_defaults = to_defaults_list(api_params, api_defaults)
api_defaults = [
Empty() for i in range(len(api_params) - len(api_defaults))
] + api_defaults
assert len(api_defaults) == len(
api_params
), "Error happens. contack xiongkun03 to solve."
inputs_sig, attrs_sig, outputs_sig = kernel_sig
inputs_and_attrs = inputs_sig + attrs_sig
input_arguments = [
op_proto_ins.get(name, Empty()) for name in inputs_sig
] + [
parse_attri_value(name, op_proto_ins, op_proto_attrs)
for name in attrs_sig
]
results = []
api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
idx_of_op_proto_arguments = 0
for idx, arg_name in enumerate(api_params):
if arg_name in api_ignore_param_list:
results.append(get_default(idx, api_defaults))
else:
if idx_of_op_proto_arguments < len(input_arguments):
tmp = input_arguments[idx_of_op_proto_arguments]
idx_of_op_proto_arguments += 1
else:
tmp = Empty() # use the default value
if isinstance(tmp, Empty):
results.append(get_default(idx, api_defaults))
else:
results.append(tmp)
assert len(results) == len(api_params)
return results
def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
if hasattr(self, "python_out_sig"):
output_sig = self.python_out_sig
if not isinstance(ret_tuple, (tuple, list)):
ret_tuple = [ret_tuple]
if len(output_sig) == len(ret_tuple):
# [assumption]: we assume {"Out": [Tensor]}
return {a: [b] for a, b in zip(output_sig, ret_tuple)}
else:
# [assumption]: return multi-Tensor in a single output. such as paddle.split()
assert (
len(output_sig) == 1
), "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
return {output_sig[0]: ret_tuple}
def assumption_assert_and_transform(args, inp_num):
"""
transform inputs by the following rules:
1. [Tensor] -> Tensor
2. [Tensor, Tensor, ...] -> list of Tensors
3. None -> None
4. Others: raise Error
only support "X" is list of Tensor, currently don't support other structure like dict.
"""
inp_args = [
[inp] if inp is None else inp for inp in args[:inp_num]
] # convert None -> [None]
for inp in inp_args:
assert isinstance(
inp, list
), "currently only support `X` is [Tensor], don't support other structure."
args = [
inp[0] if len(inp) == 1 else inp for inp in inp_args
] + args[inp_num:]
return args
def _get_kernel_signature(
dygraph_tensor_inputs, dygraph_tensor_outputs, attrs_outputs
):
try:
kernel_sig = _dygraph_tracer()._get_kernel_signature(
self.op_type,
dygraph_tensor_inputs,
dygraph_tensor_outputs,
attrs_outputs,
)
except RuntimeError as re:
"""we think the kernel_sig is missing."""
kernel_sig = None
print(
"[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
% self.op_type
)
return kernel_sig
def cal_python_api(python_api, args, kernel_sig):
inputs_sig, attrs_sig, outputs_sig = kernel_sig
args = assumption_assert_and_transform(args, len(inputs_sig))
ret_tuple = python_api(*args)
return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)
with fluid.dygraph.base.guard(place=place):
block = fluid.default_main_program().global_block()
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
# prepare input variable
dygraph_tensor_inputs = (
egr_inps
if egr_inps
else self.append_input_output_for_dygraph(
op_proto, self.inputs, True, False, block
)
)
# prepare output variable
dygraph_tensor_outputs = (
egr_oups
if egr_oups
else self.append_input_output_for_dygraph(
op_proto, self.outputs, False, False, block
)
)
# prepare attributes
attrs_outputs = {}
if hasattr(self, "attrs"):
for attrs_name in self.attrs:
if self.attrs[attrs_name] is not None:
attrs_outputs[attrs_name] = self.attrs[attrs_name]
kernel_sig = _get_kernel_signature(
dygraph_tensor_inputs, dygraph_tensor_outputs, attrs_outputs
)
if not kernel_sig:
return None
assert hasattr(self, "python_api"), (
"Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_dygraph = True"
% self.op_type
)
args = prepare_python_api_arguments(
self.python_api,
dygraph_tensor_inputs,
attrs_outputs,
kernel_sig,
)
""" we directly return the cal_python_api value because the value is already tensor.
"""
return cal_python_api(self.python_api, args, kernel_sig)
def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
self.__class__.op_type = (
self.op_type
) # for ci check, please not delete it for now
with fluid.dygraph.base.guard(place=place):
block = fluid.default_main_program().global_block()
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
# prepare input variable
inputs = self.append_input_output_for_dygraph(
op_proto, self.inputs, True, False, block
)
# prepare output variable
outputs = self.append_input_output_for_dygraph(
op_proto, self.outputs, False, False, block
)
# prepare attributes
attrs_outputs = {}
if hasattr(self, "attrs"):
for attrs_name in self.attrs:
if self.attrs[attrs_name] is not None:
attrs_outputs[attrs_name] = self.attrs[attrs_name]
block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=attrs_outputs if hasattr(self, "attrs") else None,
)
return outputs
def _calc_output(
self,
place,
parallel=False,
no_check_set=None,
loss=None,
enable_inplace=None,
for_inplace_test=None,
):
program = Program()
block = program.global_block()
op = self._append_ops(block)
inputs = self._get_inputs(block)
outputs = self._get_outputs(block)
feed_map = self.feed_var(inputs, place)
if for_inplace_test:
# Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
# and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
# Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
# since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
for out_name in op.output_arg_names:
var = block.var(out_name)
if 0 in var.shape:
var.persistable = True
original_program = program
if parallel:
use_cuda = False
if isinstance(place, fluid.CUDAPlace):
use_cuda = True
compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss.name if loss else None, places=place
)
program = compiled_prog
fetch_list = getattr(self, "fetch_list", [])
# if the fetch_list is customized by user, we use it directly.
# if not, fill the fetch_list by the user configured outputs in test.
if len(fetch_list) == 0:
for var_name, var in outputs.items():
if no_check_set is not None and var_name in no_check_set:
continue
if isinstance(var, list):
for v in var:
fetch_list.append(v.name)
else:
fetch_list.append(var.name)
# if the fetch_list still empty, fill the fetch_list by the operator output.
if len(fetch_list) == 0:
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
fetch_list.append(str(out_name))
if enable_inplace is not None:
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = enable_inplace
compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
build_strategy=build_strategy, places=place
)
program = compiled_prog
executor = Executor(place)
outs = executor.run(
program, feed=feed_map, fetch_list=fetch_list, return_numpy=False
)
self.op = op
self.program = original_program
if for_inplace_test:
return outs, fetch_list, feed_map, original_program, op.desc
else:
return outs, fetch_list
def _compare_expect_and_actual_outputs(
self, place, fetch_list, expect_outs, actual_outs, inplace_atol=None
):
"""Compare expect outs and actual outs of an tested op.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fetch_list (list): The outputs of tested op.
expect_outs (list): The expect outs of tested op.
actual_outs (list): The actual outs of tested op.
inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.
Returns:
None.
"""
# compare expect_outs and actual_outs
for i, name in enumerate(fetch_list):
# Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
# computational consistency.
# When inplace_atol is not None, the inplace check uses numpy.allclose
# to check inplace result instead of numpy.array_equal.
expect_out = np.array(expect_outs[i])
actual_out = np.array(actual_outs[i])
if inplace_atol is not None:
np.testing.assert_allclose(
expect_out,
actual_out,
rtol=1e-05,
atol=inplace_atol,
err_msg='Output ('
+ name
+ ') has diff at '
+ str(place)
+ ' when using and not using inplace'
+ '\nExpect '
+ str(expect_out)
+ '\n'
+ 'But Got'
+ str(actual_out)
+ ' in class '
+ self.__class__.__name__,
)
else:
np.testing.assert_array_equal(
expect_out,
actual_out,
err_msg='Output ('
+ name
+ ') has diff at '
+ str(place)
+ ' when using and not using inplace'
+ '\nExpect '
+ str(expect_out)
+ '\n'
+ 'But Got'
+ str(actual_out)
+ ' in class '
+ self.__class__.__name__
+ '\n',
)
def _construct_grad_program_from_forward(
self, fwd_program, grad_op_desc, op_grad_to_var
):
"""Generate grad_program which contains the grad_op.
Args:
fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
grad_op_desc (OpDesc): The OpDesc of grad op.
op_grad_to_var (dict): The relation of variables in grad op and its forward op.
Returns:
grad_program (program): The program which contains the grad_op.
"""
grad_program = Program()
grad_block = grad_program.global_block()
new_op_desc = grad_block.desc.append_op()
new_op_desc.copy_from(grad_op_desc)
grad_program._sync_with_cpp()
# Create grad vars based on fwd vars (shape and dtype)
for arg in (
grad_op_desc.input_arg_names() + grad_op_desc.output_arg_names()
):
fwd_var_name = op_grad_to_var.get(arg, None)
if fwd_var_name is None:
fwd_var_name = arg
fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
assert fwd_var is not None, "{} cannot be found".format(
fwd_var_name
)
grad_var = grad_block.create_var(
name=arg,
dtype=fwd_var.dtype,
shape=fwd_var.shape,
type=fwd_var.type,
persistable=False,
)
# Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
# and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
# Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
# since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
if 0 in grad_var.shape:
grad_var.persistable = True
grad_program._sync_with_cpp()
return grad_program
def _construct_grad_feed_map_from_forward(
self, place, fwd_res, grad_op_desc, op_grad_to_var
):
"""Generate grad_feed_map for grad_program.
since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
we use fwd outs (also inputs sometimes) to construct grad inputs.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
grad_op_desc (OpDesc): The OpDesc of grad op.
op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
Returns:
grad_feed_map (dict): The feed_map of grad_op.
"""
(
fwd_outs,
fwd_fetch_list,
fwd_feed_map,
fwd_program,
fwd_op_desc,
) = fwd_res
p = core.Place()
p.set_place(place)
grad_feed_map = {}
for arg in grad_op_desc.input_arg_names():
if arg in fwd_feed_map.keys():
grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
else:
fwd_var_name = op_grad_to_var.get(arg, None)
if fwd_var_name is None:
fwd_var_name = arg
for i, out_name in enumerate(fwd_fetch_list):
if out_name == fwd_var_name:
# don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
# get them from global_scope directly since we have set them persistable in fwd execution
if 0 in fwd_program.global_block().var(out_name).shape:
continue
else:
grad_feed_map[arg] = fwd_outs[i]._copy(p)
return grad_feed_map
def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
"""Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
An op needs to run druing inplace check if,
(1) it has infer_inplace,
(2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
Args:
op_desc (OpDesc): The op_desc of current op.
fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
Returns:
need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
"""
need_run_ops = []
visited_ops = []
def _dfs_grad_op(op_desc, fwd_op_desc=None):
visited_ops.append(op_desc.type())
has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
has_infer_inplace_in_grad_descendants = False
if not has_grad_op_maker:
has_infer_inplace_in_descendants = False
else:
# get grad_op_desc
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
op_desc, set(), []
)
if not grad_op_desc_list:
has_infer_inplace_in_grad_descendants = False
else:
for i, grad_op_desc in enumerate(grad_op_desc_list):
if (
grad_op_desc.type() not in visited_ops
and _dfs_grad_op(grad_op_desc, fwd_op_desc=op_desc)
):
has_infer_inplace_in_grad_descendants = True
if has_infer_inplace or has_infer_inplace_in_grad_descendants:
need_run_ops.append((op_desc, fwd_op_desc))
return True
else:
return False
_dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
return need_run_ops
def _check_forward_inplace(
self, place, no_check_set=None, inplace_atol=None
):
"""Check the inplace correctness of given op (self.op_type).
Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.
Returns:
expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
We return this to construct grad_program and grad_feed_map for grad inplace check.
"""
# _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
expect_res = self._calc_output(
place,
no_check_set=no_check_set,
enable_inplace=False,
for_inplace_test=True,
)
actual_res = self._calc_output(
place,
no_check_set=no_check_set,
enable_inplace=True,
for_inplace_test=True,
)
# compare expect_outs and actual_outs
self._compare_expect_and_actual_outputs(
place,
expect_res[1],
expect_res[0],
actual_res[0],
inplace_atol=inplace_atol,
)
return expect_res
def _calc_grad_output(
self, place, fwd_res, grad_op_desc, enable_inplace=None
):
"""Calculate grad_output for given grad_op_desc.
since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
we use fwd outs (also inputs sometimes) to construct grad inputs.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
grad_op_desc (OpDesc): The OpDesc of grad op.
enable_inplace (bool): Enable inplace or not.
Returns:
res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
"""
(
fwd_outs,
fwd_fetch_list,
fwd_feed_map,
fwd_program,
fwd_op_desc,
) = fwd_res
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
fwd_op_desc, set(), []
)
grad_program = self._construct_grad_program_from_forward(
fwd_program, grad_op_desc, op_grad_to_var
)
grad_feed_map = self._construct_grad_feed_map_from_forward(
place, fwd_res, grad_op_desc, op_grad_to_var
)
grad_fetch_list = grad_op_desc.output_arg_names()
exe = Executor(place)
program = grad_program
if enable_inplace is not None:
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = enable_inplace
compiled_program = fluid.CompiledProgram(
grad_program
).with_data_parallel(
loss_name="", build_strategy=build_strategy, places=place
)
program = compiled_program
outs = exe.run(
program,
feed=grad_feed_map,
fetch_list=grad_fetch_list,
return_numpy=False,
)
return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc
def _check_grad_inplace(
self, place, fwd_res, grad_op_desc, inplace_atol=None
):
"""Check the inplace correctness of given grad_op_desc.
Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
It works like _check_forward_inplace, but the way to construct program and feed_map differs.
So we define a new function for grad, grad_grad, etc.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
grad_op_desc (OpDesc): The OpDesc of grad op.
inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.
Returns:
expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
We return this to construct grad_program and grad_feed_map for grad inplace check.
"""
expect_res = self._calc_grad_output(
place, fwd_res, grad_op_desc, enable_inplace=False
)
actual_res = self._calc_grad_output(
place, fwd_res, grad_op_desc, enable_inplace=True
)
self._compare_expect_and_actual_outputs(
place,
expect_res[1],
expect_res[0],
actual_res[0],
inplace_atol=inplace_atol,
)
return expect_res
def check_inplace_output_with_place(
self, place, no_check_set=None, inplace_atol=None
):
"""Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.
(1) Get all ops need to run. (see conditions in _get_need_run_ops())
(2) Run op in need_run_ops, and do inplace check if it has infer_inplace.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.
Returns:
None
"""
if getattr(self, "no_need_check_inplace", False):
return
has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)
fwd_res = self._calc_output(
place, no_check_set=no_check_set, for_inplace_test=True
)
op_desc = fwd_res[4]
need_run_ops = self._get_need_run_ops(op_desc)
res = {}
if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
return
for op_desc, father_op_desc in reversed(need_run_ops):
# The first one is the forward op
has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
if op_desc.type() == self.op_type:
if has_infer_inplace:
res[op_desc] = self._check_forward_inplace(
place,
no_check_set=no_check_set,
inplace_atol=inplace_atol,
)
else:
res[op_desc] = self._calc_output(
place, no_check_set=no_check_set, for_inplace_test=True
)
else:
# TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
# skip op that use_mkldnn currently
flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
attrs_use_mkldnn = hasattr(self, 'attrs') and bool(
self.attrs.get('use_mkldnn', False)
)
if flags_use_mkldnn or attrs_use_mkldnn:
warnings.warn(
"check inplace_grad for ops using mkldnn is not supported"
)
continue
if has_infer_inplace:
fwd_res = res[father_op_desc]
res[op_desc] = self._check_grad_inplace(
place, fwd_res, op_desc, inplace_atol=inplace_atol
)
else:
res[op_desc] = self._calc_grad_output(
place, fwd_res, op_desc
)
def check_output_with_place(
self,
place,
atol=0,
no_check_set=None,
equal_nan=False,
check_dygraph=True,
inplace_atol=None,
):
def find_imperative_actual(target_name, dygraph_outs, place):
for name in dygraph_outs:
if name == target_name:
return dygraph_outs[name][0]
var_list = dygraph_outs[name]
for i, var in enumerate(var_list):
if var.name == target_name:
return dygraph_outs[name][i]
self.assertTrue(
False,
"Found failed {} {}".format(dygraph_outs.keys(), target_name),
)
def find_actual(target_name, fetch_list):
found = [
i
for i, var_name in enumerate(fetch_list)
if var_name == target_name
]
self.assertTrue(
len(found) == 1, "Found {} {}".format(len(found), target_name)
)
return found[0]
class Checker:
"""base class for check with self.outputs.
currently don't support check between checkers.
"""
def __init__(self, op_test, expect_dict):
"""expect_dict is the self.outputs
support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
"""
self.expects = expect_dict
self.checker_name = "checker"
self.op_test = op_test # stop the op_test object.
self.op_type = op_test.op_type
def init(self):
pass
def convert_uint16_to_float(self, actual_np, expect_np):
raise NotImplementedError("base class, not implement!")
def calculate_output(self):
"""
judge whether convert current output and expect to uint16.
return True | False
"""
def _is_skip_name(self, name):
if name not in self.expects:
return True
if no_check_set is not None and name in no_check_set:
return True
return False
def find_actual_value(self, name):
"""return: (actual_tensor(var_base), actual_numpy)"""
raise NotImplementedError("base class, not implement!")
def _compare_numpy(self, name, actual_np, expect_np):
self.op_test.assertTrue(
np.allclose(
actual_np,
expect_np,
atol=atol,
rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
equal_nan=equal_nan,
),
"Output ("
+ name
+ ") has diff at "
+ str(place)
+ " in "
+ self.checker_name,
)
def _compare_list(self, name, actual, expect):
"""if expect is a tuple, we need to compare list."""
raise NotImplementedError("base class, not implement!")
def compare_single_output_with_expect(self, name, expect):
actual, actual_np = self.find_actual_value(name)
expect_np = expect[0] if isinstance(expect, tuple) else expect
actual_np, expect_np = self.convert_uint16_to_float_ifneed(
actual_np, expect_np
)
# NOTE(zhiqiu): np.allclose([], [1.]) returns True
# see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
if expect_np.size == 0:
self.op_test.assertTrue(actual_np.size == 0)
self._compare_numpy(name, actual_np, expect_np)
if isinstance(expect, tuple):
self._compare_list(name, actual, expect)
def compare_outputs_with_expects(self):
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
if self._is_skip_name(out_name):
continue
if out_dup:
# if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
sub_out = self.expects[out_name]
if not isinstance(sub_out, list):
raise AssertionError(
"sub_out type %s is not list", type(sub_out)
)
for item in sub_out:
sub_out_name, expect = item[0], item[1]
self.compare_single_output_with_expect(
sub_out_name, expect
)
else:
expect = self.expects[out_name]
self.compare_single_output_with_expect(out_name, expect)
def check(self):
"""
return None means ok, raise Error means failed.
the main enter point of Checker class
"""
self.init()
self.calculate_output()
self.compare_outputs_with_expects()
class StaticChecker(Checker):
def init(self):
self.checker_name = "static checker"
def calculate_output(self):
outs, fetch_list = self.op_test._calc_output(
place, no_check_set=no_check_set
)
self.outputs = outs
self.fetch_list = fetch_list
def find_actual_value(self, name):
idx = find_actual(name, self.fetch_list)
actual = self.outputs[idx]
actual_t = np.array(actual)
return actual, actual_t
def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
"""
judge whether convert current output and expect to uint16.
return True | False
"""
if actual_np.dtype == np.uint16 and expect_np.dtype in [
np.float32,
np.float64,
]:
actual_np = convert_uint16_to_float(actual_np)
self.rtol = 1.0e-2
else:
self.rtol = 1.0e-5
if (
expect_np.dtype == np.uint16
and actual_np.dtype == np.uint16
):
nonlocal atol
expect_np = convert_uint16_to_float(expect_np)
actual_np = convert_uint16_to_float(actual_np)
atol = max(atol, 0.03)
return actual_np, expect_np
def _compare_list(self, name, actual, expect):
"""if expect is a tuple, we need to compare list."""
self.op_test.assertListEqual(
actual.recursive_sequence_lengths(),
expect[1],
"Output (" + name + ") has different lod at " + str(place),
)
class DygraphChecker(Checker):
def init(self):
self.checker_name = "dygraph checker"
def calculate_output(self):
# we only check end2end api when check_dygraph=True
self.is_python_api_test = True
dygraph_outs = self.op_test._calc_python_api_output(place)
if dygraph_outs is None:
self.is_python_api_test = False
# missing KernelSignature, fall back to eager middle output.
dygraph_outs = self.op_test._calc_dygraph_output(
place, no_check_set=no_check_set
)
self.outputs = dygraph_outs
def _compare_numpy(self, name, actual_np, expect_np):
if (
functools.reduce(lambda x, y: x * y, actual_np.shape, 1)
== 0
and functools.reduce(lambda x, y: x * y, expect_np.shape, 1)
== 0
):
pass
else:
self.op_test.assertTrue(
np.allclose(
actual_np,
expect_np,
atol=atol,
rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
equal_nan=equal_nan,
),
"Output ("
+ name
+ ") has diff at "
+ str(place)
+ " in "
+ self.checker_name,
)
def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
if actual_np.dtype == np.uint16 and expect_np.dtype in [
np.float32,
np.float64,
]:
self.rtol = 1.0e-2
else:
self.rtol = 1.0e-5
if self.op_test.is_bfloat16_op():
if actual_np.dtype == np.uint16:
actual_np = convert_uint16_to_float(actual_np)
if expect_np.dtype == np.uint16:
expect_np = convert_uint16_to_float(expect_np)
return actual_np, expect_np
def find_actual_value(self, name):
with fluid.dygraph.base.guard(place=place):
imperative_actual = find_imperative_actual(
name, self.outputs, place
)
imperative_actual_t = np.array(
imperative_actual.value().get_tensor()
)
return imperative_actual, imperative_actual_t
def _compare_list(self, name, actual, expect):
"""if expect is a tuple, we need to compare list."""
with fluid.dygraph.base.guard(place=place):
self.op_test.assertListEqual(
actual.value()
.get_tensor()
.recursive_sequence_lengths(),
expect[1],
"Output ("
+ name
+ ") has different lod at "
+ str(place)
+ " in dygraph mode",
)
def _is_skip_name(self, name):
# if in final state and kernel signature don't have name, then skip it.
if (
self.is_python_api_test
and hasattr(self.op_test, "python_out_sig")
and name not in self.op_test.python_out_sig
):
return True
return super()._is_skip_name(name)
# set some flags by the combination of arguments.
self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
if (
self.dtype == np.float64
and self.op_type
not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST
):
atol = 0
if self.is_bfloat16_op():
if self.is_mkldnn_op():
check_dygraph = False
if hasattr(self, 'force_fp32_output') and getattr(
self, 'force_fp32_output'
):
atol = 1e-2
else:
atol = 2
else:
atol = 1e-1
if no_check_set is not None:
if (
self.op_type
not in no_check_set_white_list.no_check_set_white_list
):
raise AssertionError(
"no_check_set of op %s must be set to None." % self.op_type
)
static_checker = StaticChecker(self, self.outputs)
static_checker.check()
outs, fetch_list = static_checker.outputs, static_checker.fetch_list
if check_dygraph:
dygraph_checker = DygraphChecker(self, self.outputs)
dygraph_checker.check()
dygraph_dygraph_outs = dygraph_checker.outputs
# Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
# computational consistency.
# For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
# computation order when multiple threads write the same address. So the
# result of group_norm is non-deterministic when datatype is float.
# When inplace_atol is not None, the inplace check uses numpy.allclose
# to check inplace result instead of numpy.array_equal.
if inplace_atol is not None:
warnings.warn(
"inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
)
# Check inplace for given op, its grad op, its grad_grad op, etc.
# No effect on original OpTest
# Currently not support ParallelExecutor on XPUPlace.
if (
not paddle.is_compiled_with_xpu()
and not paddle.is_compiled_with_npu()
and not paddle.is_compiled_with_mlu()
and not isinstance(place, core.CustomPlace)
):
self.check_inplace_output_with_place(
place, no_check_set=no_check_set, inplace_atol=inplace_atol
)
if check_dygraph:
return outs, dygraph_dygraph_outs, fetch_list
else:
return outs, fetch_list
def check_compile_vs_runtime(self, fetch_list, fetch_outs):
def find_fetch_index(target_name, fetch_list):
found = [
i
for i, var_name in enumerate(fetch_list)
if var_name == target_name
]
if len(found) == 0:
return -1
else:
self.assertTrue(
len(found) == 1,
"Found {} {}".format(len(found), target_name),
)
return found[0]
for name in self.op.desc.output_names():
var_names = self.op.desc.output(name)
for var_name in var_names:
i = find_fetch_index(var_name, fetch_list)
if i == -1:
# The output is dispensiable or intermediate.
break
out = fetch_outs[i]
if isinstance(out, core.LoDTensor):
lod_level_runtime = len(out.lod())
else:
if isinstance(out, core.LoDTensorArray):
warnings.warn(
"The check of LoDTensorArray's lod_level is not implemented now!"
)
lod_level_runtime = 0
var = self.program.global_block().var(var_name)
if var.type == core.VarDesc.VarType.LOD_TENSOR:
lod_level_compile = var.lod_level
else:
lod_level_compile = 0
self.assertEqual(
lod_level_compile,
lod_level_runtime,
"The lod_level of Output ("
+ name
+ ") is different between compile-time and runtime ("
+ str(lod_level_compile)
+ " vs "
+ str(lod_level_runtime)
+ ")",
)
def _get_places(self):
if self.dtype == np.float16:
if core.is_compiled_with_cuda() and core.op_support_gpu(
self.op_type
):
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
return [place]
else:
return []
else:
return []
places = [fluid.CPUPlace()]
cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
if (
core.is_compiled_with_cuda()
and core.op_support_gpu(self.op_type)
and not cpu_only
):
places.append(core.CUDAPlace(0))
return places
def check_output(
self,
atol=1e-5,
no_check_set=None,
equal_nan=False,
check_dygraph=True,
inplace_atol=None,
):
self.__class__.op_type = self.op_type
if self.is_mkldnn_op():
self.__class__.use_mkldnn = True
if self.is_xpu_op():
self.__class__.use_xpu = True
places = self._get_places()
for place in places:
res = self.check_output_with_place(
place,
atol,
no_check_set,
equal_nan,
check_dygraph=check_dygraph,
inplace_atol=inplace_atol,
)
if check_dygraph:
outs, dygraph_dygraph_outs, fetch_list = res
else:
outs, fetch_list = res
if (
self.op_type
not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST
):
self.check_compile_vs_runtime(fetch_list, outs)
def check_output_customized(self, checker, custom_place=None):
places = self._get_places()
if custom_place:
places.append(custom_place)
for place in places:
outs = self.calc_output(place)
outs = [np.array(out) for out in outs]
outs.sort(key=len)
checker(outs)
def check_output_with_place_customized(self, checker, place):
outs = self.calc_output(place)
outs = [np.array(out) for out in outs]
outs.sort(key=len)
checker(outs)
def _assert_is_close(
self,
numeric_grads,
analytic_grads,
names,
max_relative_error,
msg_prefix,
):
for a, b, name in zip(numeric_grads, analytic_grads, names):
# It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
# max_relative_error is 1e-7. According to the value of np.abs(a), we
# change np.abs(a) to achieve dynamic threshold. For example, if
# the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
# Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
# which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
abs_a = np.abs(a)
if abs_a.ndim > 0:
if (
self.dtype == np.float64
and self.op_type
not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
):
abs_a[abs_a < 1e-10] = 1e-3
abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
elif self.is_bfloat16_op():
abs_a[abs_a < 1e-2] = 1
else:
abs_a[abs_a < 1e-3] = 1
elif abs_a.ndim == 0:
if (
self.dtype == np.float64
and self.op_type
not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
):
if abs_a < 1e-10:
abs_a = 1e-3
elif abs_a > 1e-10 and abs_a <= 1e-8:
abs_a = abs_a * 1e4
elif abs_a > 1e-8 and abs_a <= 1e-6:
abs_a = abs_a * 1e2
elif self.is_bfloat16_op():
abs_a = 1 if abs_a < 1e-2 else abs_a
else:
abs_a = 1 if abs_a < 1e-3 else abs_a
diff_mat = np.abs(a - b) / abs_a
max_diff = np.max(diff_mat)
def err_msg():
offset = np.argmax(diff_mat > max_relative_error)
return (
"Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
"the first error element is %d, expected %e, but got %e."
) % (
self.op_type,
msg_prefix,
name,
str(a.shape),
self.dtype,
max_diff,
max_relative_error,
offset,
a.flatten()[offset],
b.flatten()[offset],
)
self.assertLessEqual(max_diff, max_relative_error, err_msg())
def _check_grad_helper(self):
self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
self.__class__.op_type = self.op_type
self.__class__.exist_check_grad = True
if self.dtype == np.float64:
self.__class__.exist_fp64_check_grad = True
def check_grad(
self,
inputs_to_check,
output_names,
no_grad_set=None,
numeric_grad_delta=0.005,
in_place=False,
max_relative_error=0.005,
user_defined_grads=None,
user_defined_grad_outputs=None,
check_dygraph=True,
):
self._check_grad_helper()
places = self._get_places()
for place in places:
self.check_grad_with_place(
place,
inputs_to_check,
output_names,
no_grad_set,
numeric_grad_delta,
in_place,
max_relative_error,
user_defined_grads,
user_defined_grad_outputs,
check_dygraph=check_dygraph,
)
def check_grad_with_place(
self,
place,
inputs_to_check,
output_names,
no_grad_set=None,
numeric_grad_delta=0.005,
in_place=False,
max_relative_error=0.005,
user_defined_grads=None,
user_defined_grad_outputs=None,
check_dygraph=True,
numeric_place=None,
):
self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_outputs = self.outputs if hasattr(self, "outputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self._check_grad_helper()
if self.is_bfloat16_op() and self.is_mkldnn_op():
check_dygraph = False
if (
self.dtype == np.float64
and self.op_type
not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
):
numeric_grad_delta = 1e-5
max_relative_error = 1e-7
cache_list = None
if hasattr(self, "cache_name_list"):
cache_list = self.cache_name_list
# oneDNN numeric gradient should use CPU kernel
use_onednn = False
if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
op_attrs["use_mkldnn"] = False
use_onednn = True
self.op = create_op(
self.scope,
self.op_type,
op_inputs,
op_outputs,
op_attrs,
cache_list=cache_list,
)
if use_onednn:
op_attrs["use_mkldnn"] = True
if no_grad_set is None:
no_grad_set = set()
else:
if (
(self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
and (
self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
)
and (not self.is_bfloat16_op())
):
raise AssertionError(
"no_grad_set must be None, op_type is "
+ self.op_type
+ " Op."
)
for input_to_check in inputs_to_check:
set_input(self.scope, self.op, self.inputs, place)
tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
tensor_size = functools.reduce(
lambda a, b: a * b, tensor_to_check.shape(), 1
)
tensor_ndim = len(tensor_to_check.shape())
# for 0D Tensor, it's additional case for OP, so not raise error
if tensor_ndim > 0 and tensor_size < 100:
self.__class__.input_shape_is_large = False
if not type(output_names) is list:
output_names = [output_names]
if numeric_place is None:
numeric_place = place
numeric_grads = user_defined_grads or [
get_numeric_gradient(
numeric_place,
self.scope,
self.op,
self.inputs,
input_to_check,
output_names,
delta=numeric_grad_delta,
in_place=in_place,
)
for input_to_check in inputs_to_check
]
analytic_grads = self._get_gradient(
inputs_to_check,
place,
output_names,
no_grad_set,
user_defined_grad_outputs,
)
# comparison of bf16 results will happen as fp32
# loop over list of grads and convert bf16 to fp32
fp32_analytic_grads = []
for grad in analytic_grads:
if grad.dtype == np.uint16:
grad = convert_uint16_to_float(grad)
max_relative_error = (
0.04 if max_relative_error < 0.04 else max_relative_error
)
fp32_analytic_grads.append(grad)
analytic_grads = fp32_analytic_grads
fp32_numeric_grads = []
for grad in numeric_grads:
if grad.dtype == np.uint16:
grad = convert_uint16_to_float(grad)
max_relative_error = (
0.04 if max_relative_error < 0.04 else max_relative_error
)
fp32_numeric_grads.append(grad)
numeric_grads = fp32_numeric_grads
self._assert_is_close(
numeric_grads,
analytic_grads,
inputs_to_check,
max_relative_error,
"Gradient Check On %s" % str(place),
)
if check_dygraph:
with fluid.dygraph.base.guard(place):
dygraph_dygraph_grad = self._get_dygraph_grad(
inputs_to_check,
place,
output_names,
user_defined_grad_outputs,
no_grad_set,
check_dygraph,
)
fp32_grads = []
for grad in dygraph_dygraph_grad:
if grad.dtype == np.uint16:
grad = convert_uint16_to_float(grad)
max_relative_error = (
0.03
if max_relative_error < 0.03
else max_relative_error
)
fp32_grads.append(grad)
dygraph_dygraph_grad = fp32_grads
self._assert_is_close(
numeric_grads,
dygraph_dygraph_grad,
inputs_to_check,
max_relative_error,
"Gradient Check On %s" % str(place),
)
def _find_var_in_dygraph(self, output_vars, name):
if name in output_vars:
return output_vars[name]
else:
for output_vars_index in output_vars:
for output_vars_selected in output_vars[output_vars_index]:
if output_vars_selected.name == name:
return output_vars_selected
def _get_dygraph_grad(
self,
inputs_to_check,
place,
output_names,
user_defined_grad_outputs=None,
no_grad_set=None,
check_dygraph=True,
):
with fluid.dygraph.base.guard(place=place):
block = fluid.default_main_program().global_block()
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
# prepare input variable
inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
op_proto, self.inputs, True, True, block
)
# prepare output variable
outputs = self.append_input_output_for_dygraph(
op_proto, self.outputs, False, False, block
)
# prepare attributes
attrs_outputs = {}
if hasattr(self, "attrs"):
for attrs_name in self.attrs:
if self.attrs[attrs_name] is not None:
attrs_outputs[attrs_name] = self.attrs[attrs_name]
if check_dygraph:
dygraph_outputs = self._calc_python_api_output(
place, inputs, outputs
)
# if outputs is None, kernel sig is empty or other error is happens.
if not check_dygraph or dygraph_outputs is None:
block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=attrs_outputs if hasattr(self, "attrs") else None,
)
else:
outputs = dygraph_outputs
if self.dtype == np.uint16:
cast_inputs = self._find_var_in_dygraph(
outputs, output_names[0]
)
cast_outputs = block.create_var(
dtype="float32", shape=cast_inputs[0].shape
)
cast_op = block.append_op(
inputs={"X": cast_inputs},
outputs={"Out": cast_outputs},
type="cast",
attrs={
"in_dtype": core.VarDesc.VarType.BF16,
"out_dtype": core.VarDesc.VarType.FP32,
},
)
outputs = {output_names[0]: cast_outputs}
outputs_valid = {}
for output_name in output_names:
outputs_valid[output_name] = self._find_var_in_dygraph(
outputs, output_name
)
if user_defined_grad_outputs is None:
if len(outputs_valid) == 1:
loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1],
)
for outputs_valid_key in outputs_valid:
block.append_op(
type="mean",
inputs={"X": outputs_valid[outputs_valid_key]},
outputs={"Out": [loss]},
attrs=None,
)
else:
avg_sum = []
for cur_loss in outputs_valid:
cur_avg_loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
)
block.append_op(
type="mean",
inputs={"X": outputs_valid[cur_loss]},
outputs={"Out": [cur_avg_loss]},
attrs=None,
)
avg_sum.append(cur_avg_loss)
loss_sum = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1],
)
block.append_op(
type='sum',
inputs={"X": avg_sum},
outputs={"Out": loss_sum},
attrs=None,
)
loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1],
)
block.append_op(
type='scale',
inputs={"X": loss_sum},
outputs={"Out": loss},
attrs={'scale': 1.0 / float(len(avg_sum))},
)
loss.backward()
fetch_list_grad = []
for inputs_to_check_name in inputs_to_check:
a = inputs_grad_dict[inputs_to_check_name].gradient()
fetch_list_grad.append(a)
return fetch_list_grad
else:
# user_defined_grad_outputs here are numpy arrays
if not isinstance(user_defined_grad_outputs, list):
user_defined_grad_outputs = [user_defined_grad_outputs]
grad_outputs = []
for grad_out_value in user_defined_grad_outputs:
grad_outputs.append(paddle.to_tensor(grad_out_value))
# delete the inputs which no need to calculate grad
for no_grad_val in no_grad_set:
del inputs[no_grad_val]
if in_dygraph_mode():
core.eager.run_backward(
fluid.layers.utils.flatten(outputs), grad_outputs, False
)
grad_inputs = []
for inputs_list in inputs.values():
for inp in inputs_list:
grad_inputs.append(inp.grad.numpy())
return grad_inputs
else:
grad_inputs = paddle.grad(
outputs=fluid.layers.utils.flatten(outputs),
inputs=fluid.layers.utils.flatten(inputs),
grad_outputs=grad_outputs,
)
return [grad.numpy() for grad in grad_inputs]
@staticmethod
def _numpy_to_lod_tensor(np_value, lod, place):
tensor = core.LoDTensor()
tensor.set(np_value, place)
if lod is not None:
tensor.set_recursive_sequence_lengths(lod)
return tensor
@staticmethod
def np_dtype_to_fluid_dtype(input):
return input
@staticmethod
def fluid_dtype_to_np_dtype(self, dtype):
return dtype
@staticmethod
def np_value_to_fluid_value(input):
return input
def _get_gradient(
self,
input_to_check,
place,
output_names,
no_grad_set,
user_defined_grad_outputs=None,
parallel=False,
):
prog = Program()
scope = core.Scope()
block = prog.global_block()
self._append_ops(block)
inputs = self._get_inputs(block)
outputs = self._get_outputs(block)
feed_dict = self.feed_var(inputs, place)
if user_defined_grad_outputs is None:
if self.dtype == np.uint16:
cast_inputs = list(map(block.var, output_names))
cast_outputs = block.create_var(
dtype="float32", shape=cast_inputs[0].shape
)
cast_op = block.append_op(
inputs={"X": cast_inputs},
outputs={"Out": cast_outputs},
type="cast",
attrs={
"in_dtype": core.VarDesc.VarType.BF16,
"out_dtype": core.VarDesc.VarType.FP32,
},
)
cast_op.desc.infer_var_type(block.desc)
cast_op.desc.infer_shape(block.desc)
output_names = [cast_outputs.name]
loss = append_loss_ops(block, output_names)
param_grad_list = append_backward(
loss=loss,
parameter_list=input_to_check,
no_grad_set=no_grad_set,
)
fetch_list = [g for p, g in param_grad_list]
else:
assert (
parallel is False
), "unsupported parallel mode when giving custom grad outputs."
# user_defined_grad_outputs here are numpy arrays
if not isinstance(user_defined_grad_outputs, list):
user_defined_grad_outputs = [user_defined_grad_outputs]
grad_outputs = []
for grad_out_value in user_defined_grad_outputs:
# `presistable` is used to avoid executor create new var in local scope
var = block.create_var(
shape=grad_out_value.shape,
dtype=grad_out_value.dtype,
persistable=True,
)
true_var = scope.var(var.name)
tensor = true_var.get_tensor()
tensor.set(grad_out_value, place)
grad_outputs.append(var)
targets = [
outputs[name] for name in outputs if name in output_names
]
inputs = [inputs[name] for name in input_to_check if name in inputs]
grad_inputs = paddle.static.gradients(
targets, inputs, grad_outputs, no_grad_set
)
fetch_list = grad_inputs
if parallel:
use_cuda = False
if isinstance(place, fluid.CUDAPlace):
use_cuda = True
compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
loss_name=loss.name, places=place
)
prog = compiled_prog
executor = fluid.Executor(place)
return list(
map(
np.array,
executor.run(
prog, feed_dict, fetch_list, scope=scope, return_numpy=False
),
)
)
class OpTestTool:
@classmethod
def skip_if(cls, condition: object, reason: str):
return unittest.skipIf(condition, reason)
@classmethod
def skip_if_not_cpu_bf16(cls):
return OpTestTool.skip_if(
not (
isinstance(_current_expected_place(), core.CPUPlace)
and core.supports_bfloat16()
),
"Place does not support BF16 evaluation",
)
@classmethod
def skip_if_not_cpu(cls):
return OpTestTool.skip_if(
not isinstance(_current_expected_place(), core.CPUPlace),
"OneDNN supports only CPU for now",
)
......@@ -17,7 +17,7 @@ import unittest
import gradient_checker
import numpy as np
from decorator_helper import prog_scope
from op_test import OpTest
from eager_op_test import OpTest
import paddle
import paddle.fluid as fluid
......@@ -28,6 +28,7 @@ from paddle.fluid import Program, core, program_guard
class TestTileOpRank1(OpTest):
def setUp(self):
self.op_type = "tile"
self.python_api = paddle.tile
self.init_data()
self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
......@@ -105,6 +106,7 @@ class TestTileOpRank4(TestTileOpRank1):
class TestTileOpRank1_tensor_attr(OpTest):
def setUp(self):
self.op_type = "tile"
self.python_api = paddle.tile
self.init_data()
repeat_times_tensor = []
for index, ele in enumerate(self.repeat_times):
......@@ -150,6 +152,7 @@ class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
class TestTileOpRank1_tensor(OpTest):
def setUp(self):
self.op_type = "tile"
self.python_api = paddle.tile
self.init_data()
self.inputs = {
......@@ -181,6 +184,7 @@ class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
class TestTileOpInteger(OpTest):
def setUp(self):
self.op_type = "tile"
self.python_api = paddle.tile
self.inputs = {
'X': np.random.randint(10, size=(4, 4, 5)).astype("int32")
}
......@@ -196,6 +200,7 @@ class TestTileOpInteger(OpTest):
class TestTileOpBoolean(OpTest):
def setUp(self):
self.op_type = "tile"
self.python_api = paddle.tile
self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
self.attrs = {'repeat_times': [2, 1, 4]}
output = np.tile(self.inputs['X'], (2, 1, 4))
......@@ -209,6 +214,7 @@ class TestTileOpBoolean(OpTest):
class TestTileOpInt64_t(OpTest):
def setUp(self):
self.op_type = "tile"
self.python_api = paddle.tile
self.inputs = {
'X': np.random.randint(10, size=(2, 4, 5)).astype("int64")
}
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from op_test import OpTest
from eager_op_test import OpTest
import paddle
import paddle.fluid as fluid
......@@ -24,6 +24,7 @@ import paddle.fluid as fluid
class TestTrilIndicesOp(OpTest):
def setUp(self):
self.op_type = "tril_indices"
self.python_api = paddle.tril_indices
self.inputs = {}
self.init_config()
self.outputs = {'out': self.target}
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from op_test import OpTest
from eager_op_test import OpTest
import paddle
import paddle.fluid as fluid
......@@ -24,6 +24,7 @@ import paddle.fluid as fluid
class TestTriuIndicesOp(OpTest):
def setUp(self):
self.op_type = "triu_indices"
self.python_api = paddle.triu_indices
self.inputs = {}
self.init_config()
self.outputs = {'out': self.target}
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from op_test import OpTest
from eager_op_test import OpTest
import paddle
import paddle.fluid as fluid
......@@ -123,6 +123,7 @@ class TestUnfoldOp(OpTest):
def setUp(self):
self.op_type = 'unfold'
self.python_api = paddle.nn.functional.unfold
self.set_data()
def test_check_output(self):
......@@ -139,6 +140,7 @@ class TestUnfoldAPI(TestUnfoldOp):
def setUp(self):
self.op_type = 'unfold'
self.python_api = paddle.nn.functional.unfold
self.set_data()
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册