Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6588d2e9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6588d2e9
编写于
6月 15, 2018
作者:
Y
yi.wu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
complete dist transpiler doc
上级
4c3eb448
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
207 addition
and
151 deletion
+207
-151
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+197
-149
python/paddle/fluid/transpiler/ps_dispatcher.py
python/paddle/fluid/transpiler/ps_dispatcher.py
+10
-2
未找到文件。
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
6588d2e9
...
...
@@ -12,14 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.
Use different methods to split trainable variables to different
parameter servers.
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
...
...
@@ -118,128 +110,40 @@ def slice_variable(var_list, slice_count, min_block_size=8192):
class
DistributeTranspiler
:
def
_has_distributed_lookup_table
(
self
):
# process lookup_table_op
# 1. check all lookup_table_op is distributed
# 2. check all lookup_table_op share the same table.
distributed_lookup_table_ops
=
[]
# support only one distributed_lookup_table now
self
.
table_name
=
None
for
op
in
self
.
origin_program
.
global_block
().
ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
attrs
[
'is_distributed'
]
is
True
:
if
self
.
table_name
is
None
:
self
.
table_name
=
op
.
input
(
"W"
)[
0
]
if
self
.
table_name
!=
op
.
input
(
"W"
)[
0
]:
raise
RuntimeError
(
"all distributed lookup_table_ops"
" should have only one table"
)
distributed_lookup_table_ops
.
append
(
op
)
else
:
if
self
.
table_name
is
not
None
:
assert
op
.
input
(
"W"
)[
0
]
!=
self
.
table_name
return
len
(
distributed_lookup_table_ops
)
>
0
def
_update_dist_lookup_table_vars
(
self
,
param_list
,
grad_list
,
params_grads
):
# TODO(wuyi): put find a way to put dist lookup table stuff all together.
# update self.table_param_grad and self.trainer_side_table_grad_list
program
=
self
.
origin_program
if
self
.
has_distributed_lookup_table
:
param_list
=
[
param
for
param
in
param_list
if
param
.
name
!=
self
.
table_name
]
grad_list
=
[
grad
for
grad
in
grad_list
if
grad
.
name
!=
grad_var_name
(
self
.
table_name
)
]
self
.
table_param_grad
=
[
param_grad
for
param_grad
in
params_grads
if
param_grad
[
0
].
name
==
self
.
table_name
][
0
]
table_grad_var
=
self
.
table_param_grad
[
1
]
if
self
.
sync_mode
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
self
.
trainer_id
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
else
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.pserver_%d"
%
(
table_grad_var
.
name
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
return
param_list
,
grad_list
def
_init_splited_vars
(
self
,
slice_var_up
):
# update these mappings for further transpile:
# 1. param_var_mapping: param var name -> [splited params vars]
# 2. grad_var_mapping: grad var name -> [splited grads vars]
# 3. grad_param_mapping: grad.blockx -> param.blockx
# 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}
param_list
=
[]
grad_list
=
[]
param_grad_set
=
set
()
for
p
,
g
in
self
.
params_grads
:
# skip parameter marked not trainable
if
type
(
p
)
==
Parameter
and
p
.
trainable
==
False
:
continue
if
p
.
name
not
in
param_grad_set
:
param_list
.
append
(
p
)
param_grad_set
.
add
(
p
.
name
)
if
g
.
name
not
in
param_grad_set
:
grad_list
.
append
(
g
)
param_grad_set
.
add
(
g
.
name
)
param_list
,
grad_list
=
self
.
_update_dist_lookup_table_vars
(
param_list
,
grad_list
,
self
.
params_grads
)
if
slice_var_up
:
# when we slice var up into blocks, we will slice the var according to
# pserver services' count. A pserver may have two or more listening ports.
grad_blocks
=
slice_variable
(
grad_list
,
len
(
self
.
pserver_endpoints
))
param_blocks
=
slice_variable
(
param_list
,
len
(
self
.
pserver_endpoints
))
else
:
# when we do NOT slice var up into blocks, we will always slice params
# grads into one block.
grad_blocks
=
slice_variable
(
grad_list
,
1
)
param_blocks
=
slice_variable
(
param_list
,
1
)
assert
(
len
(
grad_blocks
)
==
len
(
param_blocks
))
# origin_varname -> [splited_var]
self
.
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
param_blocks
)
self
.
grad_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
grad_blocks
,
add_trainer_suffix
=
self
.
trainer_num
>
1
)
self
.
grad_param_mapping
=
dict
()
for
g
,
p
in
zip
(
grad_blocks
,
param_blocks
):
g_name
,
g_bid
,
_
=
g
.
split
(
":"
)
p_name
,
p_bid
,
_
=
p
.
split
(
":"
)
self
.
grad_param_mapping
[
self
.
grad_var_mapping
[
g_name
][
int
(
g_bid
)]]
=
\
self
.
param_var_mapping
[
p_name
][
int
(
p_bid
)]
# create mapping of endpoint -> split var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
[
self
.
param_grad_ep_mapping
.
update
({
ep
:
{
"params"
:
[],
"grads"
:
[]
}
})
for
ep
in
self
.
pserver_endpoints
]
"""
**DistributeTranspiler**
Convert the fluid program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.
Examples:
.. code-block:: python
# Define your model before these codes.
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
role = os.getenv("PADDLE_TRAINING_ROLE")
t = distribute_transpiler.DistributeTranspiler()
t.transpile(
trainer_id, pservers=pserver_endpoints, trainers=trainers)
if role == "PSERVER":
pserver_program = t.get_pserver_program(current_endpoint)
pserver_startup_program = t.get_startup_program(current_endpoint,
pserver_program)
elif role == "TRAINER":
trainer_program = t.get_trainer_program()
"""
def
transpile
(
self
,
trainer_id
,
...
...
@@ -250,20 +154,20 @@ class DistributeTranspiler:
split_method
=
RoundRobin
,
sync_mode
=
True
):
"""
:param trainer_id: one unique id for each trainer in a job
.
:type trainer_id: int
:param program: program to transpile, default is default_main_program
:type program: Program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:param trainers: total number of workers/trainers in the job
:type trainers: int
:param split_method: A function to determin how to split variables
t
o different servers equally
.
:type split_method: function
:type sync_mode: boolean default True
:param sync_mode: if sync_mode is set True, it means that dist transpiler
will transpile the program into sync_mode pserver and trainer program
.
Run the transpiler
.
Args:
trainer_id (int): id for current trainer worker, if you have
n workers, the id may range from 0 ~ n-1
program (Program|None): program to transpile,
default is fluid.default_main_program().
pservers (str): comma separated ip:port string for the pserver
list.
t
rainers (int): number of trainers in the distributed job
.
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used
try to choose the best method to balance loads for pservers.
sync_mode (bool): Do sync training or not, default is True
.
"""
assert
(
split_method
.
__bases__
[
0
]
==
PSDispatcher
)
if
program
is
None
:
...
...
@@ -390,6 +294,12 @@ class DistributeTranspiler:
self
.
_split_table_grad_and_add_send_vars
(
program
,
pserver_endpoints
)
def
get_trainer_program
(
self
):
"""
Get transpiled trainer side program.
Returns:
Program: trainer side program.
"""
# remove optimize ops and add a send op to main_program
delete_ops
(
self
.
origin_program
.
global_block
(),
self
.
optimize_ops
)
# FIXME(typhoonzero): serialize once will fix error occurs when clone.
...
...
@@ -398,12 +308,19 @@ class DistributeTranspiler:
def
get_pserver_program
(
self
,
endpoint
):
"""
Get pserver side program using the endpoint.
TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
NOTE: assume blocks of the same variable is not distributed
on the same pserver, only change param/grad varnames for
trainers to fetch.
Get parameter server side program.
Args:
endpoint (str): current parameter server endpoint.
Returns:
Program: the program for current parameter server to run.
"""
# TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
# NOTE: assume blocks of the same variable is not distributed
# on the same pserver, only change param/grad varnames for
# trainers to fetch.
# step1
pserver_program
=
Program
()
# step2: Create vars to receive vars at parameter servers.
...
...
@@ -556,6 +473,14 @@ class DistributeTranspiler:
Get startup program for current parameter server.
Modify operator input variables if there are variables that
were split to several blocks.
Args:
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
Returns:
Program: parameter server side startup program.
"""
s_prog
=
Program
()
orig_s_prog
=
default_startup_program
()
...
...
@@ -607,6 +532,129 @@ class DistributeTranspiler:
# ====================== private transpiler functions =====================
def
_has_distributed_lookup_table
(
self
):
# process lookup_table_op
# 1. check all lookup_table_op is distributed
# 2. check all lookup_table_op share the same table.
distributed_lookup_table_ops
=
[]
# support only one distributed_lookup_table now
self
.
table_name
=
None
for
op
in
self
.
origin_program
.
global_block
().
ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
attrs
[
'is_distributed'
]
is
True
:
if
self
.
table_name
is
None
:
self
.
table_name
=
op
.
input
(
"W"
)[
0
]
if
self
.
table_name
!=
op
.
input
(
"W"
)[
0
]:
raise
RuntimeError
(
"all distributed lookup_table_ops"
" should have only one table"
)
distributed_lookup_table_ops
.
append
(
op
)
else
:
if
self
.
table_name
is
not
None
:
assert
op
.
input
(
"W"
)[
0
]
!=
self
.
table_name
return
len
(
distributed_lookup_table_ops
)
>
0
def
_update_dist_lookup_table_vars
(
self
,
param_list
,
grad_list
,
params_grads
):
# TODO(wuyi): put find a way to put dist lookup table stuff all together.
# update self.table_param_grad and self.trainer_side_table_grad_list
program
=
self
.
origin_program
if
self
.
has_distributed_lookup_table
:
param_list
=
[
param
for
param
in
param_list
if
param
.
name
!=
self
.
table_name
]
grad_list
=
[
grad
for
grad
in
grad_list
if
grad
.
name
!=
grad_var_name
(
self
.
table_name
)
]
self
.
table_param_grad
=
[
param_grad
for
param_grad
in
params_grads
if
param_grad
[
0
].
name
==
self
.
table_name
][
0
]
table_grad_var
=
self
.
table_param_grad
[
1
]
if
self
.
sync_mode
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d.pserver_%d"
%
(
table_grad_var
.
name
,
self
.
trainer_id
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
else
:
self
.
trainer_side_table_grad_list
=
[
program
.
global_block
().
create_var
(
name
=
"%s.pserver_%d"
%
(
table_grad_var
.
name
,
index
),
type
=
table_grad_var
.
type
,
shape
=
table_grad_var
.
shape
,
dtype
=
table_grad_var
.
dtype
)
for
index
in
range
(
len
(
self
.
pserver_endpoints
))
]
return
param_list
,
grad_list
def
_init_splited_vars
(
self
,
slice_var_up
):
# update these mappings for further transpile:
# 1. param_var_mapping: param var name -> [splited params vars]
# 2. grad_var_mapping: grad var name -> [splited grads vars]
# 3. grad_param_mapping: grad.blockx -> param.blockx
# 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}
param_list
=
[]
grad_list
=
[]
param_grad_set
=
set
()
for
p
,
g
in
self
.
params_grads
:
# skip parameter marked not trainable
if
type
(
p
)
==
Parameter
and
p
.
trainable
==
False
:
continue
if
p
.
name
not
in
param_grad_set
:
param_list
.
append
(
p
)
param_grad_set
.
add
(
p
.
name
)
if
g
.
name
not
in
param_grad_set
:
grad_list
.
append
(
g
)
param_grad_set
.
add
(
g
.
name
)
param_list
,
grad_list
=
self
.
_update_dist_lookup_table_vars
(
param_list
,
grad_list
,
self
.
params_grads
)
if
slice_var_up
:
# when we slice var up into blocks, we will slice the var according to
# pserver services' count. A pserver may have two or more listening ports.
grad_blocks
=
slice_variable
(
grad_list
,
len
(
self
.
pserver_endpoints
))
param_blocks
=
slice_variable
(
param_list
,
len
(
self
.
pserver_endpoints
))
else
:
# when we do NOT slice var up into blocks, we will always slice params
# grads into one block.
grad_blocks
=
slice_variable
(
grad_list
,
1
)
param_blocks
=
slice_variable
(
param_list
,
1
)
assert
(
len
(
grad_blocks
)
==
len
(
param_blocks
))
# origin_varname -> [splited_var]
self
.
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
param_blocks
)
self
.
grad_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
grad_blocks
,
add_trainer_suffix
=
self
.
trainer_num
>
1
)
self
.
grad_param_mapping
=
dict
()
for
g
,
p
in
zip
(
grad_blocks
,
param_blocks
):
g_name
,
g_bid
,
_
=
g
.
split
(
":"
)
p_name
,
p_bid
,
_
=
p
.
split
(
":"
)
self
.
grad_param_mapping
[
self
.
grad_var_mapping
[
g_name
][
int
(
g_bid
)]]
=
\
self
.
param_var_mapping
[
p_name
][
int
(
p_bid
)]
# create mapping of endpoint -> split var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
[
self
.
param_grad_ep_mapping
.
update
({
ep
:
{
"params"
:
[],
"grads"
:
[]
}
})
for
ep
in
self
.
pserver_endpoints
]
# transpiler function for dis lookup_table
def
_replace_lookup_table_op_with_prefetch
(
self
,
program
,
pserver_endpoints
):
...
...
python/paddle/fluid/transpiler/ps_dispatcher.py
浏览文件 @
6588d2e9
...
...
@@ -41,7 +41,11 @@ class PSDispatcher(object):
class
HashName
(
PSDispatcher
):
"""
Hash variable names to several endpoints
Hash variable names to several endpoints using python
"hash()" function.
Args:
pserver_endpoints (list): list of endpoint(ip:port).
"""
def
__init__
(
self
,
pserver_endpoints
):
...
...
@@ -61,7 +65,11 @@ class HashName(PSDispatcher):
class
RoundRobin
(
PSDispatcher
):
"""
Distribute variables to serveral endpoints.
Distribute variables to serveral endpoints using
RondRobin<https://en.wikipedia.org/wiki/Round-robin_scheduling> method.
Args:
pserver_endpoints (list): list of endpoint(ip:port).
"""
def
__init__
(
self
,
pserver_endpoints
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录