Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
654344b9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
654344b9
编写于
9月 14, 2017
作者:
T
Tao Luo
提交者:
GitHub
9月 14, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4032 from tensor-tang/mkldnn-conv
Add MKLDNNConvLayer
上级
c86e7e2a
f2317b67
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
934 addition
and
3 deletion
+934
-3
paddle/gserver/layers/MKLDNNConvLayer.cpp
paddle/gserver/layers/MKLDNNConvLayer.cpp
+543
-0
paddle/gserver/layers/MKLDNNConvLayer.h
paddle/gserver/layers/MKLDNNConvLayer.h
+253
-0
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+78
-0
paddle/math/MKLDNNMatrix.cpp
paddle/math/MKLDNNMatrix.cpp
+21
-0
paddle/math/MKLDNNMatrix.h
paddle/math/MKLDNNMatrix.h
+25
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+14
-3
未找到文件。
paddle/gserver/layers/MKLDNNConvLayer.cpp
0 → 100644
浏览文件 @
654344b9
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNConvLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
namespace
paddle
{
REGISTER_LAYER
(
mkldnn_conv
,
MKLDNNConvLayer
);
bool
MKLDNNConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
if
(
!
MKLDNNLayer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
CHECK_EQ
(
inputLayers_
.
size
(),
1
)
<<
"Only support one input layer yet"
;
CHECK_EQ
(
inputLayers_
.
size
(),
parameters_
.
size
());
CHECK
(
config_
.
shared_biases
())
<<
"Only support shared biases yet"
;
oc_
=
config_
.
num_filters
();
const
ConvConfig
&
conf
=
config_
.
inputs
(
0
).
conv_conf
();
ic_
=
conf
.
channels
();
fw_
=
conf
.
filter_size
();
fh_
=
conf
.
filter_size_y
();
pw_
=
conf
.
padding
();
ph_
=
conf
.
padding_y
();
dw_
=
conf
.
dilation
();
dh_
=
conf
.
dilation_y
();
sw_
=
conf
.
stride
();
sh_
=
conf
.
stride_y
();
gp_
=
conf
.
groups
();
oh_
=
conf
.
output_y
();
ow_
=
conf
.
output_x
();
ih_
=
conf
.
img_size_y
();
iw_
=
conf
.
img_size
();
caffeMode_
=
conf
.
caffe_mode
();
CHECK
(
caffeMode_
)
<<
"Only support caffe mode yet"
;
CHECK
(
dh_
==
1
&&
dw_
==
1
)
<<
"Only support dilation 1 yet"
;
// check group setting
CHECK_EQ
((
oc_
/
gp_
)
*
gp_
,
oc_
)
<<
"group is indivisible for oc"
;
CHECK_EQ
((
ic_
/
gp_
)
*
gp_
,
ic_
)
<<
"group is indivisible for ic"
;
// create weight
size_t
height
=
oc_
/
gp_
;
size_t
width
=
ic_
*
fh_
*
fw_
;
CHECK_EQ
(
parameters_
[
0
]
->
getSize
(),
height
*
width
);
weight_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
height
,
width
,
parameters_
[
0
],
0
));
// create biases
if
(
biasParameter_
.
get
()
!=
NULL
)
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
oc_
,
biasParameter_
));
}
return
true
;
}
void
MKLDNNConvLayer
::
convertWeightsFromPaddle
()
{
if
(
hasInitedWgt_
)
{
return
;
}
CHECK
(
wgtVal_
)
<<
"should have been initialized"
;
// the paddle weight format is oihw or goihw
auto
targetDim
=
wgtVal_
->
getDims
();
auto
srcFmt
=
(
gp_
==
1
)
?
memory
::
format
::
oihw
:
memory
::
format
::
goihw
;
wgtVal_
->
reorderDataFrom
(
wgtVal_
,
srcFmt
,
targetDim
);
hasInitedWgt_
=
true
;
}
void
MKLDNNConvLayer
::
convertWeightsToPaddle
()
{
CHECK
(
wgtVal_
)
<<
"should have been initialized"
;
auto
targetDim
=
wgtVal_
->
getDims
();
auto
dstFmt
=
(
gp_
==
1
)
?
memory
::
format
::
oihw
:
memory
::
format
::
goihw
;
wgtVal_
->
reorderDataTo
(
wgtVal_
,
dstFmt
,
targetDim
);
}
void
MKLDNNConvLayer
::
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
{
reshapeInput
(
bs
,
ih
,
iw
);
// cal output sizes
// oc can not be changed
int
fh
=
(
fh_
-
1
)
*
dh_
+
1
;
int
fw
=
(
fw_
-
1
)
*
dw_
+
1
;
oh
=
outputSize
(
ih
,
fh
,
ph_
,
sh_
,
caffeMode_
);
ow
=
outputSize
(
iw
,
fw
,
pw_
,
sw_
,
caffeMode_
);
reshapeOutput
(
oh
,
ow
);
resizeOutput
(
bs
,
oc
*
oh
*
ow
);
printSizeInfo
();
}
void
MKLDNNConvLayer
::
resetFwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetFwdPD
(
fwdPD_
);
resetFwdBuffers
(
fwdPD_
,
in
,
wgt
,
bias
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD_
,
in
,
wgt
,
bias
,
out
);
printValueFormatFlow
();
}
void
MKLDNNConvLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>
bwdWgtPD
;
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>
bwdDataPD
;
resetBwdWgtPD
(
bwdWgtPD
);
resetBwdDataPD
(
bwdDataPD
);
resetBwdBuffers
(
bwdWgtPD
,
bwdDataPD
,
in
,
wgt
,
bias
,
out
);
resetBwdPipeline
(
pipeline
,
bwdWgtPD
,
bwdDataPD
,
in
,
wgt
,
bias
,
out
);
printGradFormatFlow
();
}
void
MKLDNNConvLayer
::
updateInputData
()
{
cpuInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
void
MKLDNNConvLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
weight_
->
getParameterPtr
()
->
incUpdate
(
callback
);
if
(
biases_
&&
biases_
->
getWGrad
())
{
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
void
MKLDNNConvLayer
::
loadConvSettings
(
memory
::
dims
&
wgt
,
memory
::
dims
&
bias
,
memory
::
dims
&
stride
,
memory
::
dims
&
dilation
,
memory
::
dims
&
padL
,
memory
::
dims
&
padR
)
{
wgt
=
(
gp_
==
1
)
?
memory
::
dims
{
oc_
,
ic_
,
fh_
,
fw_
}
:
memory
::
dims
{
gp_
,
oc_
/
gp_
,
ic_
/
gp_
,
fh_
,
fw_
};
bias
=
memory
::
dims
{
oc_
};
stride
=
memory
::
dims
{
sh_
,
sw_
};
padL
=
memory
::
dims
{
ph_
,
pw_
};
padR
=
getPaddingR
();
// note: mkldnn dilation start from 0
dilation
=
memory
::
dims
{
dh_
-
1
,
dw_
-
1
};
}
void
MKLDNNConvLayer
::
resetFwdPD
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
)
{
// dims for conv
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
prop_kind
pk
=
passType_
==
PASS_TEST
?
prop_kind
::
forward_scoring
:
prop_kind
::
forward_training
;
algorithm
algo
=
algorithm
::
convolution_direct
;
padding_kind
padKind
=
padding_kind
::
zero
;
conv_fwd
::
desc
fwdDesc
=
biases_
&&
biases_
->
getW
()
?
conv_fwd
::
desc
(
pk
,
algo
,
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
biasDims
),
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
strides
,
dilations
,
padL
,
padR
,
padKind
)
:
conv_fwd
::
desc
(
pk
,
algo
,
MKLDNNMatrix
::
createMemoryDesc
(
inDims
),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
MKLDNNMatrix
::
createMemoryDesc
(
outDims
),
strides
,
dilations
,
padL
,
padR
,
padKind
);
pd
.
reset
(
new
conv_fwd
::
primitive_desc
(
fwdDesc
,
engine_
));
}
void
MKLDNNConvLayer
::
resetFwdBuffers
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
pd
);
resetInValue
(
pd
,
in
);
resetWgtBiasValue
(
pd
,
wgt
,
bias
);
resetOutValue
(
pd
,
out
);
}
void
MKLDNNConvLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtInVal_
)
{
pipeline
.
push_back
(
*
cvtInVal_
);
}
if
(
bias
)
{
fwd_
.
reset
(
new
conv_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
bias
,
*
out
));
}
else
{
fwd_
.
reset
(
new
conv_fwd
(
*
pd
,
*
in
,
*
wgt
,
*
out
));
}
pipeline
.
push_back
(
*
fwd_
);
if
(
cvtOutVal_
)
{
pipeline
.
push_back
(
*
cvtOutVal_
);
}
}
void
MKLDNNConvLayer
::
resetInValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
)
{
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutput
().
value
;
in
=
MKLDNNMatrix
::
create
(
inMat
,
pd
->
src_primitive_desc
());
// create buffer and reorder if input value do not match
cpuInVal_
=
nullptr
;
cvtInVal_
=
nullptr
;
if
(
inputIsOnlyMKLDNN
())
{
MKLDNNMatrixPtr
dnnIn
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK
(
dnnIn
)
<<
"Input should be MKLDNNMatrix"
;
if
(
dnnIn
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
CHECK_EQ
(
dnnIn
->
getFormat
(),
format
::
nc
);
CHECK
(
ih_
==
1
&&
iw_
==
1
)
<<
"when input is nc format"
;
// create a new one with nchw format and same data
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
1
,
1
};
dnnIn
=
MKLDNNMatrix
::
create
(
inMat
,
inDims
,
format
::
nchw
,
engine_
);
CHECK
(
dnnIn
->
getPrimitiveDesc
()
==
in
->
getPrimitiveDesc
());
}
in
=
dnnIn
;
}
else
{
const
MatrixPtr
&
cpuIn
=
getInputValue
(
0
,
CPU_DEVICE
);
memory
::
dims
inDims
=
memory
::
dims
{
bs_
,
ic_
,
ih_
,
iw_
};
cpuInVal_
=
MKLDNNMatrix
::
create
(
cpuIn
,
inDims
,
format
::
nchw
,
engine_
);
if
(
cpuInVal_
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
// create new mkldnn matrix
in
=
MKLDNNMatrix
::
create
(
nullptr
,
pd
->
src_primitive_desc
());
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
cpuInVal_
,
in
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
}
else
{
in
=
cpuInVal_
;
}
}
}
void
MKLDNNConvLayer
::
resetWgtBiasValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
)
{
wgt
=
MKLDNNMatrix
::
create
(
weight_
->
getW
(),
pd
->
weights_primitive_desc
());
VLOG
(
MKLDNN_FMTS
)
<<
"Weight value format: "
<<
wgt
->
getFormat
();
bias
=
nullptr
;
if
(
biases_
&&
biases_
->
getW
())
{
bias
=
MKLDNNMatrix
::
create
(
biases_
->
getW
(),
pd
->
bias_primitive_desc
());
}
}
void
MKLDNNConvLayer
::
resetOutValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
out
)
{
out
=
MKLDNNMatrix
::
create
(
output_
.
value
,
pd
->
dst_primitive_desc
());
// change original output value from cpu matrix to mkldnn matrix
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
out
);
// create reorder if output value has cpu device and pd do not match
cpuOutVal_
=
nullptr
;
cpuOutVal_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
value
;
memory
::
dims
outDims
=
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
};
cpuOutVal_
=
MKLDNNMatrix
::
create
(
cpuOut
,
outDims
,
format
::
nchw
,
engine_
);
if
(
cpuOutVal_
->
getPrimitiveDesc
()
!=
out
->
getPrimitiveDesc
())
{
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
cpuOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be emptry"
;
}
else
{
// CPU output share the same data of MKLDNN output
cpuOut
->
setData
(
out
->
getData
());
cpuOutVal_
=
out
;
}
}
}
void
MKLDNNConvLayer
::
resetBwdWgtPD
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
pd
)
{
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
// create backward weight using input, output and weight value memory desc
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
CHECK
(
wgtVal_
)
<<
"Should have weight value"
;
algorithm
algo
=
algorithm
::
convolution_direct
;
padding_kind
padKind
=
padding_kind
::
zero
;
auto
bwdWgtDesc
=
biasVal_
!=
nullptr
?
conv_bwdWgt
::
desc
(
algo
,
inVal_
->
getMemoryDesc
(),
wgtVal_
->
getMemoryDesc
(),
biasVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
strides
,
padL
,
padR
,
padKind
)
:
conv_bwdWgt
::
desc
(
algo
,
inVal_
->
getMemoryDesc
(),
wgtVal_
->
getMemoryDesc
(),
outVal_
->
getMemoryDesc
(),
strides
,
padL
,
padR
,
padKind
);
pd
.
reset
(
new
conv_bwdWgt
::
primitive_desc
(
bwdWgtDesc
,
engine_
,
*
fwdPD_
));
CHECK
(
pd
->
src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in value should equal"
;
CHECK
(
pd
->
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal the out value"
;
CHECK
(
pd
->
diff_weights_primitive_desc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad should equal the weight value"
;
}
void
MKLDNNConvLayer
::
resetBwdDataPD
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
pd
)
{
if
(
inputLayers_
[
0
]
->
getOutput
().
grad
==
nullptr
)
{
return
;
}
memory
::
dims
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
;
loadConvSettings
(
wgtDims
,
biasDims
,
strides
,
dilations
,
padL
,
padR
);
CHECK
(
inVal_
)
<<
"Should have input value"
;
CHECK
(
outVal_
)
<<
"Should have output value"
;
// create backward data using input and output value memory desc
// but using weight memory desc with any format
auto
bwdDataDesc
=
conv_bwdData
::
desc
(
algorithm
::
convolution_direct
,
inVal_
->
getMemoryDesc
(),
MKLDNNMatrix
::
createMemoryDesc
(
wgtDims
),
outVal_
->
getMemoryDesc
(),
strides
,
padL
,
padR
,
padding_kind
::
zero
);
pd
.
reset
(
new
conv_bwdData
::
primitive_desc
(
bwdDataDesc
,
engine_
,
*
fwdPD_
));
CHECK
(
pd
->
diff_src_primitive_desc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of in grad should equal the in value"
;
CHECK
(
pd
->
diff_dst_primitive_desc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad should equal"
;
}
void
MKLDNNConvLayer
::
resetBwdBuffers
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
wgtPD
);
resetOutGrad
(
wgtPD
,
out
);
resetWgtBiasGrad
(
wgtPD
,
wgt
,
bias
);
resetInGrad
(
dataPD
,
in
);
resetWgtValBwdData
(
dataPD
,
wgtValBwdData_
);
}
void
MKLDNNConvLayer
::
resetBwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
pipeline
.
clear
();
if
(
cvtOutGrad_
)
{
pipeline
.
push_back
(
*
cvtOutGrad_
);
}
// add bwdWgt handle
if
(
bias
)
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
*
wgtPD
,
*
inVal_
,
*
out
,
*
wgt
,
*
bias
));
}
else
{
bwdWgt_
.
reset
(
new
conv_bwdWgt
(
*
wgtPD
,
*
inVal_
,
*
out
,
*
wgt
));
}
pipeline
.
push_back
(
*
bwdWgt_
);
if
(
dataPD
==
nullptr
)
{
return
;
}
if
(
cvtWgtVal_
)
{
pipeline
.
push_back
(
*
cvtWgtVal_
);
}
// add bwdData handle
CHECK
(
wgtValBwdData_
)
<<
"Should have weight memory"
;
bwdData_
.
reset
(
new
conv_bwdData
(
*
dataPD
,
*
out
,
*
wgtValBwdData_
,
*
in
));
pipeline
.
push_back
(
*
bwdData_
);
if
(
cvtInGrad_
)
{
pipeline
.
push_back
(
*
cvtInGrad_
);
}
}
void
MKLDNNConvLayer
::
resetOutGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
out
)
{
const
MatrixPtr
&
outMat
=
output_
.
grad
;
out
=
MKLDNNMatrix
::
create
(
outMat
,
wgtPD
->
diff_dst_primitive_desc
());
CHECK
(
outVal_
!=
nullptr
&&
out
->
getPrimitiveDesc
()
==
outVal_
->
getPrimitiveDesc
())
<<
"primitive desc of out grad and value should be equal"
;
// TODO(TJ): merge outgrad
// create reorder if has output grad does not match
cpuOutGrad_
=
nullptr
;
cvtOutGrad_
=
nullptr
;
if
(
!
outputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuOut
=
getOutput
(
CPU_DEVICE
).
grad
;
// same PrimitiveDesc with cpuInVal_
CHECK
(
cpuOutVal_
);
cpuOutGrad_
=
MKLDNNMatrix
::
create
(
cpuOut
,
cpuOutVal_
->
getPrimitiveDesc
());
if
(
cpuOutGrad_
->
getPrimitiveDesc
()
==
out
->
getPrimitiveDesc
())
{
outMat
->
setData
(
cpuOut
->
getData
());
out
=
cpuOutGrad_
;
}
else
{
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
cpuOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
}
}
}
void
MKLDNNConvLayer
::
resetWgtBiasGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
)
{
wgt
=
MKLDNNMatrix
::
create
(
weight_
->
getWGrad
(),
wgtPD
->
diff_weights_primitive_desc
());
CHECK
(
nullptr
!=
wgtVal_
&&
wgt
->
getPrimitiveDesc
()
==
wgtVal_
->
getPrimitiveDesc
())
<<
"primitive desc of weight grad and value should be equal"
;
VLOG
(
MKLDNN_FMTS
)
<<
"weight grad format: "
<<
wgt
->
getFormat
();
if
(
biasVal_
==
nullptr
)
{
return
;
}
bias
=
MKLDNNMatrix
::
create
(
biases_
->
getWGrad
(),
wgtPD
->
diff_bias_primitive_desc
());
CHECK
(
bias
->
getPrimitiveDesc
()
==
biasVal_
->
getPrimitiveDesc
())
<<
"primitive desc of bias grad should equal the bias value"
;
}
void
MKLDNNConvLayer
::
resetInGrad
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
)
{
if
(
dataPD
==
nullptr
)
{
return
;
}
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
in
=
MKLDNNMatrix
::
create
(
inputLayers_
[
0
]
->
getOutput
().
grad
,
dataPD
->
diff_src_primitive_desc
());
CHECK
(
nullptr
!=
inVal_
&&
in
->
getPrimitiveDesc
()
==
inVal_
->
getPrimitiveDesc
())
<<
"primitive desc of input grad and value should be equal"
;
// create reorder if has output grad does not match
cpuInGrad_
=
nullptr
;
cvtInGrad_
=
nullptr
;
if
(
!
inputIsOnlyMKLDNN
())
{
const
MatrixPtr
&
cpuIn
=
getInputGrad
(
0
,
CPU_DEVICE
);
// same PrimitiveDesc with cpuInVal_
CHECK
(
cpuInVal_
);
cpuInGrad_
=
MKLDNNMatrix
::
create
(
cpuIn
,
cpuInVal_
->
getPrimitiveDesc
());
if
(
cpuInGrad_
->
getPrimitiveDesc
()
!=
in
->
getPrimitiveDesc
())
{
const
MatrixPtr
&
dnnIn
=
getInputGrad
(
0
,
MKLDNN_DEVICE
);
in
=
MKLDNNMatrix
::
create
(
dnnIn
,
in
->
getPrimitiveDesc
());
cvtInGrad_
=
MKLDNNMatrix
::
createReorder
(
in
,
cpuInGrad_
);
CHECK
(
cvtInGrad_
);
}
else
{
in
=
cpuInGrad_
;
}
}
}
void
MKLDNNConvLayer
::
resetWgtValBwdData
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
wgt
)
{
if
(
dataPD
==
nullptr
)
{
return
;
}
// create new weight value for backward data, and create reorder if necessary
// since the primitive_desc would be different with wgtVal_
CHECK
(
wgtVal_
)
<<
"should have weight value"
;
if
(
dataPD
->
weights_primitive_desc
()
!=
wgtVal_
->
getPrimitiveDesc
())
{
wgtValBwdData_
=
MKLDNNMatrix
::
create
(
nullptr
,
dataPD
->
weights_primitive_desc
());
cvtWgtVal_
=
MKLDNNMatrix
::
createReorder
(
wgtVal_
,
wgtValBwdData_
);
CHECK
(
cvtWgtVal_
);
}
else
{
wgtValBwdData_
=
wgtVal_
;
}
VLOG
(
MKLDNN_FMTS
)
<<
"weight value format for backward data"
<<
wgtValBwdData_
->
getFormat
();
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNConvLayer.h
0 → 100644
浏览文件 @
654344b9
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace
paddle
{
typedef
mkldnn
::
convolution_forward
conv_fwd
;
typedef
mkldnn
::
convolution_backward_weights
conv_bwdWgt
;
typedef
mkldnn
::
convolution_backward_data
conv_bwdData
;
/**
* @brief A subclass of MKLDNNLayer conv layer.
*
* The config file api is mkldnn_conv
*/
class
MKLDNNConvLayer
:
public
MKLDNNLayer
{
protected:
// padding height and width
int
ph_
,
pw_
;
// stride height and width
int
sh_
,
sw_
;
// dilation height and width
int
dh_
,
dw_
;
// filter(kenerl) height and width
int
fh_
,
fw_
;
// group number
int
gp_
;
// in resetBwdData, the format of wgtValBwdData_ is different with wgtVal_
MKLDNNMatrixPtr
wgtValBwdData_
;
// convert handle from wgtVal_ to wgtValBwdData_
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtWgtVal_
;
// save forward primitive_desc, which can be used backward
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>
fwdPD_
;
// MKLDNNMatrixPtr which should be created from CPU Device
MKLDNNMatrixPtr
cpuInVal_
;
MKLDNNMatrixPtr
cpuInGrad_
;
MKLDNNMatrixPtr
cpuOutVal_
;
MKLDNNMatrixPtr
cpuOutGrad_
;
// convert handle between CPU device and MKLDNN device
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtInVal_
;
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtInGrad_
;
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtOutVal_
;
std
::
shared_ptr
<
mkldnn
::
reorder
>
cvtOutGrad_
;
// whether the weight has been init
bool
hasInitedWgt_
;
// true by default, which impact the calculation of output image size.
// details can refer to mathUtil.h
bool
caffeMode_
;
// weight and bias
std
::
unique_ptr
<
Weight
>
weight_
;
std
::
unique_ptr
<
Weight
>
biases_
;
public:
explicit
MKLDNNConvLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
),
hasInitedWgt_
(
false
),
caffeMode_
(
true
)
{}
~
MKLDNNConvLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
reshape
(
int
&
bs
,
int
&
ic
,
int
&
ih
,
int
&
iw
,
int
oc
,
int
&
oh
,
int
&
ow
)
override
;
void
resetFwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
resetBwd
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
override
;
void
updateInputData
()
override
;
void
updateWeights
(
const
UpdateCallback
&
callback
)
override
;
void
convertWeightsFromPaddle
()
override
;
void
convertWeightsToPaddle
()
override
;
void
printSizeInfo
()
override
{
MKLDNNLayer
::
printSizeInfo
();
VLOG
(
MKLDNN_SIZES
)
<<
getName
()
<<
": fh: "
<<
fh_
<<
", fw: "
<<
fw_
<<
": ph: "
<<
ph_
<<
", pw: "
<<
pw_
<<
", sh: "
<<
sh_
<<
", sw: "
<<
sw_
<<
", dh: "
<<
dh_
<<
", dw: "
<<
dw_
;
}
void
printValueFormatFlow
()
override
{
if
(
cpuInVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
cpuInVal_
->
getFormat
()
<<
" >>>"
;
}
MKLDNNLayer
::
printValueFormatFlow
();
if
(
cpuOutVal_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
" >>> "
<<
cpuOutVal_
->
getFormat
();
}
}
void
printGradFormatFlow
()
override
{
if
(
cpuInGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
cpuInGrad_
->
getFormat
()
<<
" <<<"
;
}
MKLDNNLayer
::
printGradFormatFlow
();
if
(
cpuOutGrad_
)
{
VLOG
(
MKLDNN_FMTS
)
<<
" <<< "
<<
cpuOutGrad_
->
getFormat
();
}
}
protected:
/**
* load the dims settings of this conv
*/
void
loadConvSettings
(
mkldnn
::
memory
::
dims
&
wgt
,
mkldnn
::
memory
::
dims
&
bias
,
mkldnn
::
memory
::
dims
&
stride
,
mkldnn
::
memory
::
dims
&
dilation
,
mkldnn
::
memory
::
dims
&
padL
,
mkldnn
::
memory
::
dims
&
padR
);
/**
* reset the forward primitive descriptor.
*/
void
resetFwdPD
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
);
/**
* reset the MKLDNNMatrix buffers used in forward.
*/
void
resetFwdBuffers
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the forward pipeline.
*/
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of input value
*/
void
resetInValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
in
);
/**
* reset MKLDNNMatrix of weight and bias value
*/
void
resetWgtBiasValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
);
/**
* reset MKLDNNMatrix of output value
*/
void
resetOutValue
(
std
::
shared_ptr
<
conv_fwd
::
primitive_desc
>&
pd
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the backward weight primitive descriptor.
*/
void
resetBwdWgtPD
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
pd
);
/**
* reset the backward data primitive descriptor.
*/
void
resetBwdDataPD
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
pd
);
/**
* reset the MKLDNNMatrix buffers used in backward.
*/
void
resetBwdBuffers
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset the backward pipeline.
*/
void
resetBwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of output grad
*/
void
resetOutGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
out
);
/**
* reset MKLDNNMatrix of weight and bias grad
*/
void
resetWgtBiasGrad
(
std
::
shared_ptr
<
conv_bwdWgt
::
primitive_desc
>&
wgtPD
,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
);
/**
* reset MKLDNNMatrix of input grad
*/
void
resetInGrad
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
in
);
/**
* reset MKLDNNMatrix of weight value for backward data
* since the primitive_desc would be different with wgtVal_
*/
void
resetWgtValBwdData
(
std
::
shared_ptr
<
conv_bwdData
::
primitive_desc
>&
dataPD
,
MKLDNNMatrixPtr
&
wgt
);
/**
* get padding_r according to
* https://github.com/01org/mkl-dnn/blob/master/tests/gtests/
* test_convolution_forward_common.hpp
* @note: mkldnn dilation start from 0 while paddle start from 1
*/
mkldnn
::
memory
::
dims
getPaddingR
()
const
{
mkldnn
::
memory
::
dims
padR
=
{
ph_
,
pw_
};
for
(
int
i
=
0
;
i
<
2
;
++
i
)
{
if
((
ih_
-
((
fh_
-
1
)
*
dh_
+
1
)
+
ph_
+
padR
[
0
])
/
sh_
+
1
!=
oh_
)
{
++
padR
[
0
];
}
if
((
iw_
-
((
fw_
-
1
)
*
dw_
+
1
)
+
pw_
+
padR
[
1
])
/
sw_
+
1
!=
ow_
)
{
++
padR
[
1
];
}
}
return
padR
;
}
};
}
// namespace paddle
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
654344b9
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
#include "paddle/math/MathUtils.h"
using
namespace
paddle
;
// NOLINT
...
...
@@ -63,6 +64,83 @@ TEST(MKLDNNLayer, FcLayer) {
testFcLayer
({
/*bs*/
15
,
/*ic*/
3
,
/*oc*/
6
,
/*ih*/
16
,
/*iw*/
16
});
}
struct
testConvDesc
{
int
bs
,
gp
;
int
ic
,
ih
,
iw
;
int
oc
,
oh
,
ow
;
int
fh
,
fw
;
int
ph
,
pw
;
int
sh
,
sw
;
int
dh
,
dw
;
};
void
testConvLayer
(
const
testConvDesc
&
pm
)
{
const
std
::
string
compareTypes
[]
=
{
"mkldnn_conv"
,
"exconv"
};
TestConfig
cfg
;
cfg
.
layerConfig
.
set_type
(
compareTypes
[
0
]);
cfg
.
layerConfig
.
set_num_filters
(
pm
.
oc
);
cfg
.
layerConfig
.
set_size
(
pm
.
oc
*
pm
.
oh
*
pm
.
ow
);
// cfg.layerConfig.set_partial_sum(1); // TODO: check it
cfg
.
layerConfig
.
set_shared_biases
(
true
);
cfg
.
inputDefs
.
push_back
(
{
INPUT_DATA
,
"layer_0"
,
/* size of input layer= */
size_t
(
pm
.
ic
*
pm
.
ih
*
pm
.
iw
),
/* size of weight= */
size_t
(
pm
.
oc
*
pm
.
ic
*
pm
.
fh
*
pm
.
fw
/
pm
.
gp
)});
LayerInputConfig
*
input
=
cfg
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_groups
(
pm
.
gp
);
conv
->
set_img_size
(
pm
.
iw
);
conv
->
set_img_size_y
(
pm
.
ih
);
conv
->
set_output_x
(
pm
.
ow
);
conv
->
set_output_y
(
pm
.
oh
);
conv
->
set_filter_size
(
pm
.
fw
);
conv
->
set_filter_size_y
(
pm
.
fh
);
conv
->
set_channels
(
pm
.
ic
);
conv
->
set_padding
(
pm
.
pw
);
conv
->
set_padding_y
(
pm
.
ph
);
conv
->
set_stride
(
pm
.
sw
);
conv
->
set_stride_y
(
pm
.
sh
);
conv
->
set_dilation
(
pm
.
dw
);
conv
->
set_dilation_y
(
pm
.
dh
);
conv
->
set_caffe_mode
(
true
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
CHECK_EQ
(
conv
->
filter_channels
()
*
pm
.
gp
,
conv
->
channels
())
<<
"it is indivisible"
;
int
fh
=
(
pm
.
fh
-
1
)
*
pm
.
dh
+
1
;
int
fw
=
(
pm
.
fw
-
1
)
*
pm
.
dw
+
1
;
int
ow
=
outputSize
(
pm
.
iw
,
fw
,
pm
.
pw
,
pm
.
sw
,
true
);
int
oh
=
outputSize
(
pm
.
ih
,
fh
,
pm
.
ph
,
pm
.
sh
,
true
);
CHECK_EQ
(
ow
,
pm
.
ow
)
<<
"output size check failed"
;
CHECK_EQ
(
oh
,
pm
.
oh
)
<<
"output size check failed"
;
MKLDNNTester
tester
;
for
(
auto
biasSize
:
{
pm
.
oc
,
0
})
{
cfg
.
biasSize
=
biasSize
;
TestConfig
ref
=
cfg
;
ref
.
layerConfig
.
set_type
(
compareTypes
[
1
]);
for
(
auto
bs
:
{
pm
.
bs
,
1
})
{
tester
.
run
(
cfg
,
ref
,
bs
,
pm
.
ih
,
pm
.
iw
);
}
}
}
TEST
(
MKLDNNLayer
,
ConvLayer
)
{
/* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
testConvLayer
({
2
,
1
,
3
,
32
,
32
,
16
,
32
,
32
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
testConvLayer
({
2
,
1
,
8
,
16
,
16
,
8
,
16
,
16
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
testConvLayer
({
3
,
1
,
16
,
32
,
32
,
3
,
32
,
32
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
testConvLayer
({
8
,
1
,
16
,
18
,
18
,
32
,
18
,
18
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
testConvLayer
({
16
,
1
,
1
,
42
,
31
,
32
,
23
,
11
,
4
,
5
,
3
,
2
,
2
,
3
,
1
,
1
});
testConvLayer
({
2
,
1
,
8
,
16
,
16
,
8
,
8
,
8
,
3
,
3
,
1
,
1
,
2
,
2
,
1
,
1
});
testConvLayer
({
3
,
1
,
8
,
13
,
13
,
8
,
7
,
7
,
3
,
3
,
1
,
1
,
2
,
2
,
1
,
1
});
// with groups
testConvLayer
({
2
,
2
,
4
,
5
,
5
,
8
,
5
,
5
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
testConvLayer
({
2
,
3
,
3
,
5
,
5
,
3
,
5
,
5
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
testConvLayer
({
4
,
4
,
16
,
3
,
3
,
16
,
3
,
3
,
3
,
3
,
1
,
1
,
1
,
1
,
1
,
1
});
}
// TODO(TJ): add branch test
int
main
(
int
argc
,
char
**
argv
)
{
...
...
paddle/math/MKLDNNMatrix.cpp
浏览文件 @
654344b9
...
...
@@ -49,6 +49,27 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
return
create
(
m
,
memory
::
primitive_desc
(
memory
::
desc
(
dims
,
dtype
,
fmt
),
eg
));
}
std
::
shared_ptr
<
reorder
>
MKLDNNMatrix
::
createReorder
(
const
MKLDNNMatrixPtr
&
src
,
const
MKLDNNMatrixPtr
&
dst
,
bool
checkData
)
{
if
(
src
==
dst
||
src
->
getPrimitiveDesc
()
==
dst
->
getPrimitiveDesc
())
{
return
nullptr
;
}
if
(
checkData
&&
(
src
->
getData
()
==
dst
->
getData
()))
{
LOG
(
FATAL
)
<<
"can not create reorder with inplace data"
;
return
nullptr
;
}
memory
::
dims
srcDims
=
src
->
getDims
();
memory
::
dims
dstDims
=
dst
->
getDims
();
CHECK_EQ
(
srcDims
.
size
(),
dstDims
.
size
());
for
(
size_t
i
=
0
;
i
<
srcDims
.
size
();
++
i
)
{
CHECK_EQ
(
srcDims
[
i
],
dstDims
[
i
]);
}
return
std
::
make_shared
<
reorder
>
(
*
src
,
*
dst
);
}
void
MKLDNNMatrix
::
reorderDataFrom
(
const
MKLDNNMatrixPtr
&
m
,
memory
::
format
srcFmt
,
memory
::
dims
targetDim
)
{
...
...
paddle/math/MKLDNNMatrix.h
浏览文件 @
654344b9
...
...
@@ -52,6 +52,31 @@ public:
mkldnn
::
engine
&
eg
,
mkldnn
::
memory
::
data_type
dtype
=
mkldnn
::
memory
::
data_type
::
f32
);
/**
* Create Memory descriptor.
* default with any format and f32 dtype
*/
static
mkldnn
::
memory
::
desc
createMemoryDesc
(
const
mkldnn
::
memory
::
dims
&
dims
,
const
mkldnn
::
memory
::
format
&
fmt
=
mkldnn
::
memory
::
format
::
any
,
const
mkldnn
::
memory
::
data_type
&
dtype
=
mkldnn
::
memory
::
data_type
::
f32
)
{
return
mkldnn
::
memory
::
desc
(
dims
,
dtype
,
fmt
);
}
/**
* Create reorder primitive.
* Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst.
* checkData: for whether to check the data handle of src and dst is the same.
* if true, means check it and do not want support inplace reorder;
* otherwise do not check data which means the created reorder
* maybe inplace buffer and do not guarantee the logical is correct
* since not all format or conversion support inplace.
*/
static
std
::
shared_ptr
<
mkldnn
::
reorder
>
createReorder
(
const
MKLDNNMatrixPtr
&
src
,
const
MKLDNNMatrixPtr
&
dst
,
bool
checkData
=
true
);
public:
/**
* Reorder this MKLDNNMatrix from other format.
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
654344b9
...
...
@@ -2055,20 +2055,26 @@ class ConvLayerBase(LayerBase):
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
use_mkldnn
=
int
(
g_command_config_args
.
get
(
"use_mkldnn"
,
0
))
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# Automatically select cudnn_type for GPU and exconv for CPU
# Automatically select cudnn_type for GPU, exconv for CPU
# and mkldnn_conv for MKLDNN
# if set type=conv, but still reserve the way user specify
# exconv or cudnn_conv manually.
# exconv
, mkldnn_conv
or cudnn_conv manually.
if
self
.
layer_type
==
"cudnn_conv"
:
config_assert
(
use_gpu
,
"cudnn_conv only support GPU"
)
if
self
.
layer_type
==
"mkldnn_conv"
:
config_assert
(
use_mkldnn
,
"mkldnn_conv only support MKLDNN"
)
if
(
use_gpu
==
1
and
self
.
layer_type
!=
"exconv"
and
self
.
layer_type
!=
"mkldnn_conv"
and
(
parallel_nn
==
0
or
self
.
config
.
device
>
-
1
)):
self
.
layer_type
=
"cudnn_conv"
else
:
self
.
layer_type
=
"exconv"
self
.
layer_type
=
"
mkldnn_conv"
if
use_mkldnn
else
"
exconv"
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
...
...
@@ -2100,6 +2106,11 @@ class ConvLayer(ConvLayerBase):
layer_type
=
'exconv'
@
config_layer
(
'mkldnn_conv'
)
class
ConvLayer
(
ConvLayerBase
):
layer_type
=
'mkldnn_conv'
@
config_layer
(
'cudnn_conv'
)
class
ConvLayer
(
ConvLayerBase
):
layer_type
=
'cudnn_conv'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录