Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6512e087
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6512e087
编写于
10月 10, 2022
作者:
W
Wangzheee
提交者:
GitHub
10月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference]fix embedding fused (#46789)
* fix embedding fused
上级
ae6b4713
变更
6
展开全部
显示空白变更内容
内联
并排
Showing
6 changed file
with
1203 addition
and
275 deletion
+1203
-275
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
...fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
+3
-3
paddle/fluid/inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
...inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
+1
-1
paddle/fluid/inference/tensorrt/plugin/many_emb_Layernorm_varseqlen_kernelHFace.cu
...nsorrt/plugin/many_emb_Layernorm_varseqlen_kernelHFace.cu
+403
-61
paddle/fluid/inference/tensorrt/plugin/many_emb_Layernorm_varseqlen_kernelMTron.cu
...nsorrt/plugin/many_emb_Layernorm_varseqlen_kernelMTron.cu
+419
-71
paddle/fluid/inference/tensorrt/plugin/many_emb_layernorm_varseqlen_plugin.cu
...ce/tensorrt/plugin/many_emb_layernorm_varseqlen_plugin.cu
+263
-115
paddle/fluid/inference/tensorrt/plugin/many_emb_layernorm_varseqlen_plugin.h
...nce/tensorrt/plugin/many_emb_layernorm_varseqlen_plugin.h
+114
-24
未找到文件。
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
浏览文件 @
6512e087
...
...
@@ -210,14 +210,14 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
"max_seqlen_tensor"
));
// max_seqlen, eval_placeholder_3
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"ManyEmbLayerNormPluginDynamic"
,
"
2
"
);
"ManyEmbLayerNormPluginDynamic"
,
"
1
"
);
auto
plugin_obj
=
creator
->
createPlugin
(
"ManyEmbLayerNormPluginDynamic"
,
plugin_ptr
);
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin_obj
);
plugin_layer
->
setName
((
"ManyEmbLayerNormPluginDynamic_V
2
(Output: "
+
plugin_layer
->
setName
((
"ManyEmbLayerNormPluginDynamic_V
1
(Output: "
+
op_desc
.
Output
(
"Out"
)[
0
]
+
")"
)
.
c_str
());
free
(
plugin_ptr
);
...
...
@@ -248,7 +248,7 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
layer
=
plugin_layer
;
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"ManyEmbLayerNormPluginDynamic_V
2
"
,
"ManyEmbLayerNormPluginDynamic_V
1
"
,
{
output_name
,
std
::
string
(
"qkv_plugin_mask"
)},
test_mode
);
}
...
...
paddle/fluid/inference/tensorrt/convert/preln_emb_eltwise_layernorm.cc
浏览文件 @
6512e087
...
...
@@ -194,7 +194,7 @@ class PrelnEmbEltwiseLayerNormOpConverter : public OpConverter {
"max_seqlen_tensor"
));
// max_seqlen, eval_placeholder_3
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"ManyEmbLayerNormPluginDynamic"
,
"
3
"
);
"ManyEmbLayerNormPluginDynamic"
,
"
2
"
);
auto
plugin_obj
=
creator
->
createPlugin
(
"ManyEmbLayerNormPluginDynamic"
,
plugin_ptr
);
...
...
paddle/fluid/inference/tensorrt/plugin/many_emb_Layernorm_varseqlen_kernelHFace.cu
浏览文件 @
6512e087
此差异已折叠。
点击以展开。
paddle/fluid/inference/tensorrt/plugin/many_emb_Layernorm_varseqlen_kernelMTron.cu
浏览文件 @
6512e087
此差异已折叠。
点击以展开。
paddle/fluid/inference/tensorrt/plugin/many_emb_layernorm_varseqlen_plugin.cu
浏览文件 @
6512e087
...
...
@@ -37,8 +37,8 @@ constexpr size_t xmmasM384 = 24;
constexpr
size_t
packedMaskSize128
=
xmmasM128
*
threadsPerCta128
;
constexpr
size_t
packedMaskSize256
=
xmmasM256
*
threadsPerCta256
;
constexpr
size_t
packedMaskSize384
=
xmmasM384
*
threadsPerCta384
;
char
const
*
EMB_LAYER_NORM_VAR_SEQLEN_VERSION_HFACE
{
"
2
"
};
char
const
*
EMB_LAYER_NORM_VAR_SEQLEN_VERSION_MTRON
{
"
3
"
};
char
const
*
EMB_LAYER_NORM_VAR_SEQLEN_VERSION_HFACE
{
"
1
"
};
char
const
*
EMB_LAYER_NORM_VAR_SEQLEN_VERSION_MTRON
{
"
2
"
};
char
const
*
EMB_LAYER_NORM_VAR_SEQLEN_NAME
{
"ManyEmbLayerNormPluginDynamic"
};
// Static class fields initialization
nvinfer1
::
PluginFieldCollection
EmbLayerNormVarSeqlenPluginBaseCreator
::
mFC
{};
...
...
@@ -74,7 +74,7 @@ EmbLayerNormVarSeqlenPluginBase::EmbLayerNormVarSeqlenPluginBase(
tem_weight
.
values
,
getWeightsSize
(
tem_weight
,
mType
),
cudaMemcpyHostToDevice
));
mIdsEmb
Dev
.
push_back
(
cudaMem
);
mIdsEmb
Ptrs
.
push_back
(
cudaMem
);
}
}
...
...
@@ -83,7 +83,7 @@ EmbLayerNormVarSeqlenPluginBase::EmbLayerNormVarSeqlenPluginBase(
:
mLayerName
(
name
),
mGammaDev
(
nullptr
),
mBetaDev
(
nullptr
),
mIdsEmb
Dev
{},
mIdsEmb
Ptrs
{},
mIdsEmb_
{}
{
// Deserialize in the same order as serialization
deserialize_value
(
&
data
,
&
length
,
&
mType
);
...
...
@@ -141,8 +141,8 @@ EmbLayerNormVarSeqlenPluginMTron::EmbLayerNormVarSeqlenPluginMTron(
// IPluginV2DynamicExt Methods
nvinfer1
::
IPluginV2DynamicExt
*
EmbLayerNormVarSeqlenPluginHFace
::
clone
()
const
noexcept
{
TRANSFORMER_DEBUG_MSG
(
"EmbLayerNormVarSeqlenPlugin
MTron
clone"
);
auto
p
=
new
EmbLayerNormVarSeqlenPlugin
MTron
(
TRANSFORMER_DEBUG_MSG
(
"EmbLayerNormVarSeqlenPlugin
HFace
clone"
);
auto
p
=
new
EmbLayerNormVarSeqlenPlugin
HFace
(
mLayerName
,
mType
,
mBeta
,
mGamma
,
mIdsEmb_
);
p
->
setPluginNamespace
(
mNamespace
.
c_str
());
return
p
;
...
...
@@ -333,7 +333,7 @@ int32_t EmbLayerNormVarSeqlenPluginHFace::enqueue(
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
noexcept
{
int32_t
const
batchSize
=
inputDesc
[
0
].
dims
.
d
[
0
]
-
1
;
int32_t
batchSize
=
inputDesc
[
0
].
dims
.
d
[
0
]
-
1
;
// read out the maximum sequence length from the dummy input
int32_t
const
maxSeqlen
=
inputDesc
[
nbLookupTables_
].
dims
.
d
[
0
];
int32_t
S
=
384
;
...
...
@@ -346,60 +346,132 @@ int32_t EmbLayerNormVarSeqlenPluginHFace::enqueue(
}
const
float
*
beta
=
mBetaDev
.
get
();
const
float
*
gamma
=
mGammaDev
.
get
();
int32_t
**
tem_inputs_ptr_dev
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
tem_inputs_ptr_dev
),
sizeof
(
void
*
)
*
nbLookupTables_
);
cudaMemcpy
(
tem_inputs_ptr_dev
,
inputs
,
sizeof
(
void
*
)
*
nbLookupTables_
,
cudaMemcpyHostToDevice
);
int32_t
*
mIdsVocabSize_dev
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
mIdsVocabSize_dev
),
sizeof
(
int32_t
)
*
mIdsVocabSize
.
size
());
cudaMemcpy
(
mIdsVocabSize_dev
,
&
(
mIdsVocabSize
[
0
]),
sizeof
(
int32_t
)
*
mIdsVocabSize
.
size
(),
cudaMemcpyHostToDevice
);
if
(
mType
==
nvinfer1
::
DataType
::
kFLOAT
)
{
auto
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
float
**
mIdsEmbDev_float
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
mIdsEmbDev_float
),
sizeof
(
void
*
)
*
nbLookupTables_
);
cudaMemcpy
(
mIdsEmbDev_float
,
&
(
mIdsEmbDev
[
0
]),
sizeof
(
void
*
)
*
nbLookupTables_
,
cudaMemcpyHostToDevice
);
return
embSkipLayerNormHFace
<
float
>
(
stream
,
if
(
nbLookupTables_
==
2
)
{
return
embSkipLayerNormHFace_2
<
float
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
1
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
output
);
}
else
if
(
nbLookupTables_
==
3
)
{
return
embSkipLayerNormHFace_3
<
float
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
tem_inputs_ptr_dev
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
nbLookupTables_
,
beta
,
gamma
,
mIdsEmbDev_float
,
mIdsVocabSize_dev
,
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
2
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
output
);
}
else
if
(
nbLookupTables_
==
4
)
{
return
embSkipLayerNormHFace_4
<
float
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
static_cast
<
int32_t
const
*>
(
inputs
[
3
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
2
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
3
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
mIdsVocabSize
[
3
],
output
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support 2,3,4 lookup_tables fused "
));
}
}
else
if
(
mType
==
nvinfer1
::
DataType
::
kHALF
)
{
auto
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
half
**
mIdsEmbDev_half
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
mIdsEmbDev_half
),
sizeof
(
void
*
)
*
nbLookupTables_
);
cudaMemcpy
(
mIdsEmbDev_half
,
&
(
mIdsEmbDev
[
0
]),
sizeof
(
void
*
)
*
nbLookupTables_
,
cudaMemcpyHostToDevice
);
return
embSkipLayerNormHFace
<
half
>
(
stream
,
if
(
nbLookupTables_
==
2
)
{
return
embSkipLayerNormHFace_2
<
half
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
tem_inputs_ptr_dev
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
nbLookupTables_
,
beta
,
gamma
,
mIdsEmbDev_half
,
mIdsVocabSize_dev
,
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
1
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
output
);
}
else
if
(
nbLookupTables_
==
3
)
{
return
embSkipLayerNormHFace_3
<
half
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
2
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
output
);
}
else
if
(
nbLookupTables_
==
4
)
{
return
embSkipLayerNormHFace_4
<
half
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
static_cast
<
int32_t
const
*>
(
inputs
[
3
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
2
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
3
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
mIdsVocabSize
[
3
],
output
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support 2,3,4 lookup_tables fused "
));
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported type error, expected [kHALF,kFLOAT]"
));
...
...
@@ -414,7 +486,7 @@ int32_t EmbLayerNormVarSeqlenPluginMTron::enqueue(
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
noexcept
{
int32_t
const
batchSize
=
inputDesc
[
0
].
dims
.
d
[
0
]
-
1
;
int32_t
batchSize
=
inputDesc
[
0
].
dims
.
d
[
0
]
-
1
;
// read out the maximum sequence length from the dummy input
int32_t
const
maxSeqlen
=
inputDesc
[
nbLookupTables_
].
dims
.
d
[
0
];
int32_t
S
=
384
;
...
...
@@ -427,64 +499,141 @@ int32_t EmbLayerNormVarSeqlenPluginMTron::enqueue(
}
const
float
*
beta
=
mBetaDev
.
get
();
const
float
*
gamma
=
mGammaDev
.
get
();
int32_t
**
tem_inputs_ptr_dev
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
tem_inputs_ptr_dev
),
sizeof
(
void
*
)
*
nbLookupTables_
);
cudaMemcpy
(
tem_inputs_ptr_dev
,
inputs
,
sizeof
(
void
*
)
*
nbLookupTables_
,
cudaMemcpyHostToDevice
);
int32_t
*
mIdsVocabSize_dev
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
mIdsVocabSize_dev
),
sizeof
(
int32_t
)
*
mIdsVocabSize
.
size
());
cudaMemcpy
(
mIdsVocabSize_dev
,
&
(
mIdsVocabSize
[
0
]),
sizeof
(
int32_t
)
*
mIdsVocabSize
.
size
(),
cudaMemcpyHostToDevice
);
if
(
mType
==
nvinfer1
::
DataType
::
kFLOAT
)
{
auto
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
auto
skip
=
static_cast
<
float
*>
(
outputs
[
1
]);
float
**
mIdsEmbDev_float
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
mIdsEmbDev_float
),
sizeof
(
void
*
)
*
nbLookupTables_
);
cudaMemcpy
(
mIdsEmbDev_float
,
&
(
mIdsEmbDev
[
0
]),
sizeof
(
void
*
)
*
nbLookupTables_
,
cudaMemcpyHostToDevice
);
return
embSkipLayerNormMTron
<
float
>
(
stream
,
if
(
nbLookupTables_
==
2
)
{
return
embSkipLayerNormMTron_2
<
float
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
1
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
output
,
skip
);
}
else
if
(
nbLookupTables_
==
3
)
{
return
embSkipLayerNormMTron_3
<
float
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
tem_inputs_ptr_dev
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
nbLookupTables_
,
beta
,
gamma
,
mIdsEmbDev_float
,
mIdsVocabSize_dev
,
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
2
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
output
,
skip
);
}
else
if
(
nbLookupTables_
==
4
)
{
return
embSkipLayerNormMTron_4
<
float
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
static_cast
<
int32_t
const
*>
(
inputs
[
3
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
2
]),
static_cast
<
float
const
*>
(
mIdsEmbPtrs
[
3
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
mIdsVocabSize
[
3
],
output
,
skip
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support 2,3,4 lookup_tables fused "
));
}
}
else
if
(
mType
==
nvinfer1
::
DataType
::
kHALF
)
{
auto
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
auto
skip
=
static_cast
<
half
*>
(
outputs
[
1
]);
half
**
mIdsEmbDev_half
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
mIdsEmbDev_half
),
sizeof
(
void
*
)
*
nbLookupTables_
);
cudaMemcpy
(
mIdsEmbDev_half
,
&
(
mIdsEmbDev
[
0
]),
sizeof
(
void
*
)
*
nbLookupTables_
,
cudaMemcpyHostToDevice
);
return
embSkipLayerNormMTron
<
half
>
(
stream
,
if
(
nbLookupTables_
==
2
)
{
return
embSkipLayerNormMTron_2
<
half
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
1
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
output
,
skip
);
}
else
if
(
nbLookupTables_
==
3
)
{
return
embSkipLayerNormMTron_3
<
half
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
tem_inputs_ptr_dev
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
nbLookupTables_
,
beta
,
gamma
,
mIdsEmbDev_half
,
mIdsVocabSize_dev
,
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
2
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
output
,
skip
);
}
else
if
(
nbLookupTables_
==
4
)
{
return
embSkipLayerNormMTron_4
<
half
>
(
stream
,
static_cast
<
int32_t
>
(
mLd
),
batchSize
,
S
,
static_cast
<
int32_t
const
*>
(
inputs
[
0
]),
static_cast
<
int32_t
const
*>
(
inputs
[
1
]),
static_cast
<
int32_t
const
*>
(
inputs
[
2
]),
static_cast
<
int32_t
const
*>
(
inputs
[
3
]),
nbLookupTables_
,
beta
,
gamma
,
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
0
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
1
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
2
]),
static_cast
<
half
const
*>
(
mIdsEmbPtrs
[
3
]),
mIdsVocabSize
[
0
],
mIdsVocabSize
[
1
],
mIdsVocabSize
[
2
],
mIdsVocabSize
[
3
],
output
,
skip
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only support 2,3,4 lookup_tables fused "
));
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported type error, expected [kHALF,kFLOAT]"
));
...
...
@@ -566,9 +715,9 @@ void EmbLayerNormVarSeqlenPluginBase::serialize(void* buffer) const noexcept {
size_t
const
wordSize
=
getElementSize
(
mType
);
serFromDev
(
&
d
,
mBetaDev
.
get
(),
mLd
);
serFromDev
(
&
d
,
mGammaDev
.
get
(),
mLd
);
for
(
size_t
i
=
0
;
i
<
mIdsEmb
Dev
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
mIdsEmb
Ptrs
.
size
();
++
i
)
{
serFromDev
(
&
d
,
static_cast
<
char
*>
(
mIdsEmb
Dev
[
i
]),
static_cast
<
char
*>
(
mIdsEmb
Ptrs
[
i
]),
mLd
*
mIdsVocabSize
[
i
]
*
wordSize
);
}
}
...
...
@@ -577,8 +726,8 @@ void EmbLayerNormVarSeqlenPluginBase::destroy() noexcept {
// This gets called when the network containing plugin is destroyed
mBetaDev
.
reset
(
nullptr
);
mGammaDev
.
reset
(
nullptr
);
for
(
size_t
i
=
0
;
i
<
mIdsEmb
Dev
.
size
();
++
i
)
{
cudaFree
(
mIdsEmb
Dev
[
i
]);
for
(
size_t
i
=
0
;
i
<
mIdsEmb
Ptrs
.
size
();
++
i
)
{
cudaFree
(
mIdsEmb
Ptrs
[
i
]);
}
delete
this
;
}
...
...
@@ -680,7 +829,6 @@ nvinfer1::IPluginV2* EmbLayerNormVarSeqlenPluginHFaceCreator::createPlugin(
beta
,
gamma
,
IdsEmb
);
return
p
;
}
...
...
paddle/fluid/inference/tensorrt/plugin/many_emb_layernorm_varseqlen_plugin.h
浏览文件 @
6512e087
...
...
@@ -31,32 +31,121 @@ namespace tensorrt {
namespace
plugin
{
template
<
typename
T
>
int32_t
embSkipLayerNormHFace
(
cudaStream_t
stream
,
int32_t
ld
,
int32_t
B
,
int32_t
S
,
int32_t
**
inputIds
,
int32_t
const
nbLookupTables
,
float
const
*
beta
,
float
const
*
gamma
,
T
**
idsEmb
,
int32_t
*
,
T
*
output
);
int32_t
embSkipLayerNormHFace_2
(
cudaStream_t
,
int32_t
,
int32_t
,
int32_t
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
,
float
const
*
,
float
const
*
,
T
const
*
,
T
const
*
,
int32_t
,
int32_t
,
T
*
);
template
<
typename
T
>
int32_t
embSkipLayerNormMTron
(
cudaStream_t
stream
,
int32_t
ld
,
int32_t
B
,
int32_t
S
,
int32_t
**
inputIds
,
int32_t
const
nbLookupTables
,
float
const
*
beta
,
float
const
*
gamma
,
T
**
idsEmb
,
int32_t
*
,
T
*
output
,
T
*
skip
);
int32_t
embSkipLayerNormHFace_3
(
cudaStream_t
,
int32_t
,
int32_t
,
int32_t
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
,
float
const
*
,
float
const
*
,
T
const
*
,
T
const
*
,
T
const
*
,
int32_t
,
int32_t
,
int32_t
,
T
*
);
template
<
typename
T
>
int32_t
embSkipLayerNormHFace_4
(
cudaStream_t
,
int32_t
,
int32_t
,
int32_t
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
,
float
const
*
,
float
const
*
,
T
const
*
,
T
const
*
,
T
const
*
,
T
const
*
,
int32_t
,
int32_t
,
int32_t
,
int32_t
,
T
*
);
template
<
typename
T
>
int32_t
embSkipLayerNormMTron_2
(
cudaStream_t
,
int32_t
,
int32_t
,
int32_t
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
,
float
const
*
,
float
const
*
,
T
const
*
,
T
const
*
,
int32_t
,
int32_t
,
T
*
,
T
*
);
template
<
typename
T
>
int32_t
embSkipLayerNormMTron_3
(
cudaStream_t
,
int32_t
,
int32_t
,
int32_t
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
,
float
const
*
,
float
const
*
,
T
const
*
,
T
const
*
,
T
const
*
,
int32_t
,
int32_t
,
int32_t
,
T
*
,
T
*
);
template
<
typename
T
>
int32_t
embSkipLayerNormMTron_4
(
cudaStream_t
,
int32_t
,
int32_t
,
int32_t
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
const
*
,
int32_t
,
float
const
*
,
float
const
*
,
T
const
*
,
T
const
*
,
T
const
*
,
T
const
*
,
int32_t
,
int32_t
,
int32_t
,
int32_t
,
T
*
,
T
*
);
class
EmbLayerNormVarSeqlenPluginBase
:
public
nvinfer1
::
IPluginV2DynamicExt
{
public:
EmbLayerNormVarSeqlenPluginBase
(
...
...
@@ -104,7 +193,8 @@ class EmbLayerNormVarSeqlenPluginBase : public nvinfer1::IPluginV2DynamicExt {
std
::
string
mNamespace
;
cuda_unique_ptr
<
float
>
mGammaDev
;
cuda_unique_ptr
<
float
>
mBetaDev
;
std
::
vector
<
void
*>
mIdsEmbDev
;
std
::
vector
<
void
*>
mIdsEmbPtrs
;
// std::vector<void*> mIdsEmbDev;
size_t
mLd
;
// leading dim = hidden size
std
::
vector
<
int32_t
>
mIdsVocabSize
;
WeightsWithOwnership
mBeta
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录