Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
64adfe7a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
64adfe7a
编写于
4月 28, 2023
作者:
Z
Zhang Jun
提交者:
GitHub
4月 28, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[inference][trt]trt support 0 dims (#53383)
* trt support 0 dim * trt support 0 dim * update activation ut
上级
6d9bbee3
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
34 addition
and
602 deletion
+34
-602
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+9
-7
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+3
-2
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+6
-30
test/ir/inference/test_trt_convert_activation.py
test/ir/inference/test_trt_convert_activation.py
+16
-4
test/ir/inference/test_trt_convert_celu.py
test/ir/inference/test_trt_convert_celu.py
+0
-142
test/ir/inference/test_trt_convert_logsigmoid.py
test/ir/inference/test_trt_convert_logsigmoid.py
+0
-139
test/ir/inference/test_trt_convert_silu.py
test/ir/inference/test_trt_convert_silu.py
+0
-139
test/ir/inference/test_trt_convert_tanhshrink.py
test/ir/inference/test_trt_convert_tanhshrink.py
+0
-139
未找到文件。
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
64adfe7a
...
...
@@ -306,13 +306,15 @@ class OpConverter {
auto
max_input_shape
=
engine
->
max_input_shape
()[
input
];
auto
optim_input_shape
=
engine
->
optim_input_shape
()[
input
];
size_t
ranks
=
min_input_shape
.
size
();
if
(
ranks
==
0
)
{
all_dynamic_shape_set
=
false
;
LOG
(
INFO
)
<<
"trt input ["
<<
input
.
c_str
()
<<
"] dynamic shape info not set, please check and retry."
;
// check other input
continue
;
}
// allow 0 dim for dynamic shape input
// if (ranks == 0) {
// all_dynamic_shape_set = false;
// LOG(INFO) << "trt input [" << input.c_str()
// << "] dynamic shape info not set, please check and
// retry.";
// // check other input
// continue;
// }
std
::
vector
<
int64_t
>
input_shape
;
// input_shape.push_back(-1);
for
(
size_t
i
=
0
;
i
<
ranks
;
i
++
)
{
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
64adfe7a
...
...
@@ -116,9 +116,10 @@ struct SimpleOpTypeSetTeller : public Teller {
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var_desc
=
block
->
FindVar
(
x_var_name
);
const
auto
x_shape
=
x_var_desc
->
GetShape
();
if
(
x_shape
.
size
()
==
1
)
{
if
(
!
with_dynamic_shape
&&
(
x_shape
.
size
()
==
1
||
x_shape
.
size
()
==
0
)
)
{
VLOG
(
3
)
<<
op_type
<<
" op does not support input's dim is 1 in tensorrt."
;
<<
" op does not support input's dim is 1 or 0 in tensorrt "
"static shape mode."
;
return
false
;
}
#if !IS_TRT_VERSION_GE(7000)
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
64adfe7a
...
...
@@ -39,6 +39,7 @@
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/utils/io_utils.h"
#include "paddle/utils/string/string_helper.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -64,19 +65,10 @@ using inference::tensorrt::TRTInt8Calibrator;
static
void
RuntimeStaticShapeCheck
(
std
::
vector
<
int64_t
>
runtime_input_shape
,
std
::
vector
<
int64_t
>
model_input_shape
)
{
auto
comma_fold
=
[](
std
::
string
a
,
int
b
)
{
return
std
::
move
(
a
)
+
", "
+
std
::
to_string
(
b
);
};
std
::
string
model_input_shape_str
=
std
::
accumulate
(
std
::
next
(
model_input_shape
.
begin
()),
model_input_shape
.
end
(),
std
::
to_string
(
model_input_shape
[
0
]),
comma_fold
);
string
::
join_strings
(
model_input_shape
,
','
);
std
::
string
runtime_input_shape_str
=
std
::
accumulate
(
std
::
next
(
runtime_input_shape
.
begin
()),
runtime_input_shape
.
end
(),
std
::
to_string
(
runtime_input_shape
[
0
]),
comma_fold
);
string
::
join_strings
(
runtime_input_shape
,
','
);
PADDLE_ENFORCE_EQ
(
model_input_shape
==
runtime_input_shape
,
true
,
...
...
@@ -137,24 +129,10 @@ static void RuntimeDynamicShapeCheck(
}
return
true
;
};
auto
comma_fold
=
[](
std
::
string
a
,
int
b
)
{
return
std
::
move
(
a
)
+
", "
+
std
::
to_string
(
b
);
};
std
::
string
runtime_input_shape_str
=
std
::
accumulate
(
std
::
next
(
runtime_input_shape
.
begin
()),
runtime_input_shape
.
end
(),
std
::
to_string
(
runtime_input_shape
[
0
]),
comma_fold
);
std
::
string
min_input_shape_str
=
std
::
accumulate
(
std
::
next
(
min_input_shape
.
begin
()),
min_input_shape
.
end
(),
std
::
to_string
(
min_input_shape
[
0
]),
comma_fold
);
std
::
string
max_input_shape_str
=
std
::
accumulate
(
std
::
next
(
max_input_shape
.
begin
()),
max_input_shape
.
end
(),
std
::
to_string
(
max_input_shape
[
0
]),
comma_fold
);
string
::
join_strings
(
runtime_input_shape
,
','
);
std
::
string
min_input_shape_str
=
string
::
join_strings
(
min_input_shape
,
','
);
std
::
string
max_input_shape_str
=
string
::
join_strings
(
max_input_shape
,
','
);
PADDLE_ENFORCE_EQ
(
is_input_shape_valid
(
runtime_input_shape
,
min_input_shape
,
max_input_shape
),
true
,
...
...
@@ -551,7 +529,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
stream
=
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
).
stream
();
std
::
vector
<
std
::
string
>
output_maps
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
...
...
@@ -566,7 +543,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
trt_context
=
engine
->
context
();
binding_offset
=
engine
->
GetBindingsOffset
();
}
// Bind input tensor to TRT.
for
(
const
auto
&
x
:
runtime_input_names_
)
{
#if IS_TRT_VERSION_LT(8000)
...
...
test/ir/inference/test_trt_convert_activation.py
浏览文件 @
64adfe7a
...
...
@@ -33,7 +33,9 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
if
dims
==
0
:
return
np
.
random
.
random
([]).
astype
(
np
.
float32
)
elif
dims
==
1
:
return
np
.
random
.
random
([
32
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
random
.
random
([
3
,
32
]).
astype
(
np
.
float32
)
...
...
@@ -42,7 +44,7 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
else
:
return
np
.
random
.
random
([
batch
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
0
,
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
4
]:
for
op_type
in
[
"relu"
,
...
...
@@ -51,9 +53,13 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
"relu6"
,
"elu"
,
"selu"
,
"silu"
,
"softsign"
,
"stanh"
,
"thresholded_relu"
,
"celu"
,
"logsigmoid"
,
"tanh_shrink"
,
"softplus"
,
]:
# few samples to reduce time
...
...
@@ -63,6 +69,8 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
for
alpha
in
[
0.67
]:
self
.
dims
=
dims
dics
=
[{}]
if
op_type
==
"celu"
:
dics
=
[{
"alpha"
:
1.0
}]
if
op_type
==
"elu"
:
dics
=
[{
"alpha"
:
alpha
}]
if
op_type
==
"selu"
:
...
...
@@ -103,7 +111,11 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
if
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[]}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
32
]}
...
...
@@ -132,7 +144,7 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
if
not
dynamic_shape
and
(
self
.
dims
==
1
or
self
.
dims
==
0
)
:
return
0
,
3
return
1
,
2
...
...
test/ir/inference/test_trt_convert_celu.py
已删除
100644 → 0
浏览文件 @
6d9bbee3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertCeluTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
alpha
in
[
1.0
,
2.0
,
3.0
]:
self
.
dims
=
dims
dics
=
[{
"alpha"
:
alpha
}]
ops_config
=
[
{
"op_type"
:
"celu"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
dics
)
)
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
10
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
test/ir/inference/test_trt_convert_logsigmoid.py
已删除
100755 → 0
浏览文件 @
6d9bbee3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertLogSigmoidTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
self
.
dims
=
dims
ops_config
=
[
{
"op_type"
:
"logsigmoid"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
{},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
{})
)
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
10
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
test/ir/inference/test_trt_convert_silu.py
已删除
100755 → 0
浏览文件 @
6d9bbee3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertSiluTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
self
.
dims
=
dims
ops_config
=
[
{
"op_type"
:
"silu"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
{},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
{})
)
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
10
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
test/ir/inference/test_trt_convert_tanhshrink.py
已删除
100755 → 0
浏览文件 @
6d9bbee3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertTanhshrinkTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
return
np
.
ones
([
3
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
self
.
dims
=
dims
ops_config
=
[
{
"op_type"
:
"tanh_shrink"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
{},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
{})
)
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
10
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录