diff --git a/test/ir/inference/auto_scan_test.py b/test/ir/inference/auto_scan_test.py index 6cb997a14c2a9ce457f670f0a593602cd25f8364..7d55ada50a9d8e66c670163527791967fe591ccb 100755 --- a/test/ir/inference/auto_scan_test.py +++ b/test/ir/inference/auto_scan_test.py @@ -36,7 +36,8 @@ import paddle import paddle.inference as paddle_infer from paddle.fluid.core import PassVersionChecker -logging.basicConfig(level=logging.INFO, format="%(message)s") +LOGLEVEL = os.environ.get("PADDLE_TEST_LOGLEVEL", "INFO").upper() +logging.basicConfig(level=LOGLEVEL, format="%(message)s") settings.register_profile( "ci", @@ -57,8 +58,8 @@ settings.register_profile( report_multiple_bugs=False, ) if ( - float(os.getenv('TEST_NUM_PERCENT_CASES', default='1.0')) < 1 - or os.getenv('HYPOTHESIS_TEST_PROFILE', 'dev') == 'ci' + float(os.getenv("TEST_NUM_PERCENT_CASES", default="1.0")) < 1 + or os.getenv("HYPOTHESIS_TEST_PROFILE", "dev") == "ci" ): settings.load_profile("ci") else: @@ -100,10 +101,10 @@ class AutoScanTest(unittest.TestCase): @abc.abstractmethod def sample_program_configs(self): - ''' + """ Generate all config with the combination of different Input tensor shape and different Attr values. - ''' + """ raise NotImplementedError @abc.abstractmethod @@ -125,9 +126,9 @@ class AutoScanTest(unittest.TestCase): def run_test_config( self, model, params, prog_config, pred_config, feed_data ) -> Dict[str, np.ndarray]: - ''' + """ Test a single case. - ''' + """ pred_config.set_model_buffer(model, len(model), params, len(params)) predictor = paddle_infer.create_predictor(pred_config) self.available_passes_in_framework = ( @@ -136,9 +137,9 @@ class AutoScanTest(unittest.TestCase): ) for name, _ in prog_config.inputs.items(): input_tensor = predictor.get_input_handle(name) - input_tensor.copy_from_cpu(feed_data[name]['data']) - if feed_data[name]['lod'] is not None: - input_tensor.set_lod(feed_data[name]['lod']) + input_tensor.copy_from_cpu(feed_data[name]["data"]) + if feed_data[name]["lod"] is not None: + input_tensor.set_lod(feed_data[name]["lod"]) predictor.run() result = {} for out_name, o_name in zip( @@ -158,10 +159,7 @@ class AutoScanTest(unittest.TestCase): for key, arr in tensor.items(): self.assertTrue( baseline[key].shape == arr.shape, - "The output shapes are not equal, the baseline shape is " - + str(baseline[key].shape) - + ', but got ' - + str(arr.shape), + f"The output shapes are not equal, the baseline shape is {baseline[key].shape}, but got {str(arr.shape)}", ) diff = abs(baseline[key] - arr) np.testing.assert_allclose( @@ -169,9 +167,7 @@ class AutoScanTest(unittest.TestCase): arr, rtol=rtol, atol=atol, - err_msg='Output has diff, Maximum absolute error: {}'.format( - np.amax(diff) - ), + err_msg=f"Output has diff, Maximum absolute error: {np.amax(diff)}", ) @abc.abstractmethod @@ -207,15 +203,19 @@ class AutoScanTest(unittest.TestCase): @abc.abstractmethod def ignore_log(self, msg: str): - logging.warning("SKIP: " + msg) + logging.debug(f"SKIP: {msg}") @abc.abstractmethod def fail_log(self, msg: str): - logging.error("FAIL: " + msg) + logging.error(f"FAIL: {msg}") + + @abc.abstractmethod + def info_log(self, msg: str): + logging.debug(f"INFO: {msg}") @abc.abstractmethod def success_log(self, msg: str): - logging.info("SUCCESS: " + msg) + logging.debug(f"SUCCESS: {msg}") @abc.abstractmethod def create_inference_config( @@ -263,20 +263,22 @@ class MkldnnAutoScanTest(AutoScanTest): feed_data = {} for name, tensor_config in prog_config.inputs.items(): feed_data[name] = { - 'data': tensor_config.data, - 'lod': tensor_config.lod, + "data": tensor_config.data, + "lod": tensor_config.lod, } results: List[Dict[str, np.ndarray]] = [] # baseline: cpu no ir_optim run base_config = self.create_inference_config(ir_optim=False) - logging.info('RUN program_config: ' + str(prog_config)) results.append( self.run_test_config( model, params, prog_config, base_config, feed_data ) ) - self.success_log('RUN_CPU_BASELINE done') + self.success_log(f"basline program_config: {prog_config}") + self.success_log( + f"basline predictor_config: {self.inference_config_str(base_config)}" + ) for pred_config, (atol, rtol) in self.sample_predictor_configs( prog_config @@ -291,11 +293,7 @@ class MkldnnAutoScanTest(AutoScanTest): == IgnoreReasons.MKLDNN_ACCURACY_ERROR ): self.ignore_log( - "[MKLDNN_ACCURACY_ERROR] " - + ignore_info[2] - + ' ' - + ' vs ' - + self.inference_config_str(pred_config) + f"[MKLDNN_ACCURACY_ERROR] {ignore_info[2]} vs {self.inference_config_str(pred_config)}" ) else: raise NotImplementedError @@ -315,28 +313,29 @@ class MkldnnAutoScanTest(AutoScanTest): self.assert_tensors_near( atol, rtol, results[-1], results[0] ) + + self.success_log(f"program_config: {prog_config}") + self.success_log( + f"predictor_config: {self.inference_config_str(pred_config)}" + ) except Exception as e: + self.fail_log(f"program_config: {prog_config}") self.fail_log( - self.inference_config_str(pred_config) - + f'\033[1;31m \nERROR INFO: {str(e)}\033[0m' + f"predictor_config: {self.inference_config_str(pred_config)}" ) + self.fail_log(f"\033[1;31m ERROR INFO: {e}\033[0m") if not ignore_flag: status = False continue - self.success_log( - 'RUN predictor_config ' - + self.inference_config_str(pred_config) - + ' done' - ) self.assertTrue(status) def inference_config_str(self, config) -> str: dic = {} enable_mkldnn = config.mkldnn_enabled() - dic['use_mkldnn'] = enable_mkldnn + dic["use_mkldnn"] = enable_mkldnn enable_gpu = config.use_gpu() - dic['use_gpu'] = enable_gpu + dic["use_gpu"] = enable_gpu return str(dic) @@ -351,7 +350,7 @@ class PassAutoScanTest(AutoScanTest): if pass_name not in self.available_passes_in_framework: continue if not PassVersionChecker.IsCompatible(pass_name): - self.fail_log(f'{pass_name} version check failed.') + self.fail_log(f"{pass_name} version check failed.") status = False return status @@ -368,9 +367,7 @@ class PassAutoScanTest(AutoScanTest): ) if not os.path.exists(last_passed_program): raise ValueError( - "Cannot find file {}, please make sure that your pass name is correct".format( - last_passed_program - ) + f"Cannot find file {last_passed_program}, please make sure that your pass name is correct" ) model_bytes = paddle.static.load_from_file(last_passed_program) pg = paddle.static.deserialize_program(model_bytes) @@ -382,9 +379,7 @@ class PassAutoScanTest(AutoScanTest): after_op_list.append(main_block.op(i).type()) self.assertTrue( op_list_after_fusion == after_op_list, - "Expected operator list after fusion is {}, but now it's {}".format( - op_list_after_fusion, after_op_list - ), + f"Expected operator list after fusion is {op_list_after_fusion}, but now it's {after_op_list}", ) def run_and_statis( @@ -396,10 +391,10 @@ class PassAutoScanTest(AutoScanTest): max_duration=180, passes=None, ): - if os.getenv('HYPOTHESIS_TEST_PROFILE', 'ci') == "dev": + if os.getenv("HYPOTHESIS_TEST_PROFILE", "ci") == "dev": max_examples *= 10 min_success_num *= 10 - # while at ce phase, there's no limit on time + # while at ce phase, there"s no limit on time max_duration = -1 start_time = time.time() settings.register_profile( @@ -431,13 +426,11 @@ class PassAutoScanTest(AutoScanTest): loop_func = reproduce(loop_func) logging.info(f"Start to running test of {type(self)}") loop_func() - logging.info( + self.info_log( "===================Statistical Information===================" ) - logging.info( - "Number of Generated Programs: {}".format( - self.num_ran_programs + self.num_invalid_programs - ) + self.info_log( + f"Number of Generated Programs: {self.num_ran_programs + self.num_invalid_programs}" ) logging.info(f"Number of Invalid Programs: {self.num_invalid_programs}") logging.info(f"Number of Ran Programs: {self.num_ran_programs}") @@ -446,27 +439,21 @@ class PassAutoScanTest(AutoScanTest): self.num_ran_programs - self.num_ignore_tests / max(self.num_predictor_kinds, 1) ) - logging.info( - "Number of successfully ran programs approximately equal to {}".format( - successful_ran_programs - ) + self.info_log( + f"Number of successfully ran programs approximately equal to {successful_ran_programs}" ) if successful_ran_programs < min_success_num: - logging.warning( + self.fail_log( "satisfied_programs = ran_programs - num_ignore_tests / num_predictor_kinds" ) - logging.error( - "At least {} programs need to ran successfully, but now only about {} programs satisfied.".format( - min_success_num, successful_ran_programs - ) + self.fail_log( + f"At least {min_success_num} programs need to ran successfully, but now only about {successful_ran_programs} programs satisfied." ) raise AssertionError() used_time = time.time() - start_time if max_duration > 0 and used_time > max_duration: - logging.error( - "The duration exceeds {} seconds, if this is necessary, try to set a larger number for parameter `max_duration`.".format( - max_duration - ) + self.fail_log( + f"The duration exceeds {max_duration} seconds, if this is necessary, try to set a larger number for parameter `max_duration`." ) raise AssertionError() @@ -486,11 +473,10 @@ class PassAutoScanTest(AutoScanTest): feed_data = {} for name, tensor_config in prog_config.inputs.items(): feed_data[name] = { - 'data': tensor_config.data, - 'lod': tensor_config.lod, + "data": tensor_config.data, + "lod": tensor_config.lod, } - logging.info('RUN program_config: ' + str(prog_config)) self.num_predictor_kinds = 0 for ( pred_config, @@ -507,11 +493,7 @@ class PassAutoScanTest(AutoScanTest): self.num_ignore_tests += 1 if ignore_info[1] == IgnoreReasons.PASS_ACCURACY_ERROR: self.ignore_log( - "[PASS_ACCURACY_ERROR] " - + ignore_info[2] - + ' ' - + ' vs ' - + self.inference_config_str(pred_config) + f"[PASS_ACCURACY_ERROR] {ignore_info[2]} vs {self.inference_config_str(pred_config)}" ) else: raise NotImplementedError @@ -532,9 +514,7 @@ class PassAutoScanTest(AutoScanTest): model, params, prog_config, base_config, feed_data ) self.success_log( - 'RUN_BASELINE ' - + self.inference_config_str(base_config) - + ' done' + f"baseline program_config: {self.inference_config_str(base_config)}" ) if os.path.exists(self.cache_dir): @@ -549,19 +529,19 @@ class PassAutoScanTest(AutoScanTest): if not ignore_flag: self.assert_op_list(op_list) + self.success_log(f"program_config: {prog_config}") + self.success_log( + f"predictor_config: {self.inference_config_str(pred_config)}" + ) except Exception as e: + self.fail_log(f"program_config: {prog_config}") self.fail_log( - self.inference_config_str(pred_config) - + f'\033[1;31m \nERROR INFO: {str(e)}\033[0m' + f"predictor_config: {self.inference_config_str(pred_config)}" ) + self.fail_log(f"\033[1;31m ERROR INFO: {e}\033[0m") if not ignore_flag: status = False continue - self.success_log( - 'RUN predictor_config ' - + self.inference_config_str(pred_config) - + ' done' - ) status = self.check_op_version() and status self.assertTrue(status) @@ -569,23 +549,23 @@ class PassAutoScanTest(AutoScanTest): def inference_config_str(self, config) -> str: dic = {} enable_mkldnn = config.mkldnn_enabled() - dic['use_mkldnn'] = enable_mkldnn + dic["use_mkldnn"] = enable_mkldnn enable_gpu = config.use_gpu() dic['use_gpu'] = enable_gpu enable_xpu = config.use_xpu() dic['use_xpu'] = enable_xpu if not self.passes: - dic['passes'] = self.passes + dic["passes"] = self.passes enable_trt = config.tensorrt_engine_enabled() trt_precison = config.tensorrt_precision_mode() trt_dynamic_shape = config.tensorrt_dynamic_shape_enabled() if enable_trt: - dic['use_trt'] = True - dic['trt_precision'] = trt_precison - dic['use_dynamic_shape'] = trt_dynamic_shape + dic["use_trt"] = True + dic["trt_precision"] = trt_precison + dic["use_dynamic_shape"] = trt_dynamic_shape else: - dic['use_trt'] = False + dic["use_trt"] = False return str(dic) def create_trt_inference_config(self) -> paddle_infer.Config: @@ -599,9 +579,9 @@ class PassAutoScanTest(AutoScanTest): class TrtLayerAutoScanTest(AutoScanTest): class TensorRTParam: - ''' + """ TensorRT subgraph engine parameters. - ''' + """ def __init__( self, @@ -620,9 +600,9 @@ class TrtLayerAutoScanTest(AutoScanTest): self.use_calib_mode = use_calib_mode class DynamicShapeParam: - ''' + """ Prepare TensorRT subgraph engine dynamic shape parameters. - ''' + """ def __init__( self, @@ -648,7 +628,7 @@ class TrtLayerAutoScanTest(AutoScanTest): ) self.dynamic_shape = self.DynamicShapeParam({}, {}, {}, False) self.num_percent_cases = float( - os.getenv('TEST_NUM_PERCENT_CASES', default='1.0') + os.getenv("TEST_NUM_PERCENT_CASES", default="1.0") ) # Use a separate random generator for skipping tests @@ -682,6 +662,9 @@ class TrtLayerAutoScanTest(AutoScanTest): ) return config + def get_avalible_input_type(self) -> List[np.dtype]: + return [np.float32] + def assert_tensors_near( self, atol: float, @@ -693,39 +676,32 @@ class TrtLayerAutoScanTest(AutoScanTest): self.assertEqual( baseline[key].shape, arr.shape, - 'The output shapes are not equal, the baseline shape is ' - + str(baseline[key].shape) - + ', but got ' - + str(arr.shape), + f"The output shapes are not equal, the baseline shape is {baseline[key].shape}, but got {str(arr.shape)}", ) - np.testing.assert_allclose(baseline[key], arr, rtol=rtol, atol=atol) + np.testing.assert_allclose(arr, baseline[key], rtol=rtol, atol=atol) def assert_op_size(self, trt_engine_num, paddle_op_num): last_passed_program = os.path.join( - self.cache_dir, 'transpose_flatten_concat_fuse_pass.pdmodel' + self.cache_dir, "transpose_flatten_concat_fuse_pass.pdmodel" ) model_bytes = paddle.static.load_from_file(last_passed_program) pg = paddle.static.deserialize_program(model_bytes) main_block = pg.desc.block(0) op_size = main_block.op_size() op_types = [ - main_block.op(i).type() == 'tensorrt_engine' for i in range(op_size) + main_block.op(i).type() == "tensorrt_engine" for i in range(op_size) ] trt_engine_size = sum(op_types) paddle_op_size = op_size - trt_engine_size self.assertEqual( trt_engine_num, trt_engine_size, - 'Expected trt_engine_num is {}, but got {}!'.format( - trt_engine_num, trt_engine_size - ), + f"Expected trt_engine_num is {trt_engine_num}, but got {trt_engine_size}!", ) self.assertEqual( paddle_op_num, paddle_op_size, - 'Expected paddle_op_num is {}, but got {}!'.format( - paddle_op_num, paddle_op_size - ), + f"Expected paddle_op_num is {paddle_op_num}, but got {paddle_op_size}!", ) def inference_config_str(self, config: paddle_infer.Config) -> str: @@ -734,11 +710,11 @@ class TrtLayerAutoScanTest(AutoScanTest): trt_precison = config.tensorrt_precision_mode() trt_dynamic_shape = config.tensorrt_dynamic_shape_enabled() if enable_trt: - dic['use_trt'] = True - dic['trt_precision'] = trt_precison - dic['use_dynamic_shape'] = trt_dynamic_shape + dic["use_trt"] = True + dic["trt_precision"] = trt_precison + dic["use_dynamic_shape"] = trt_dynamic_shape else: - dic['use_trt'] = False + dic["use_trt"] = False return str(dic) def run_test(self, quant=False, skip_baseline=False, *args, **kwargs): @@ -765,110 +741,103 @@ class TrtLayerAutoScanTest(AutoScanTest): feed_data = {} for name, tensor_config in prog_config.inputs.items(): feed_data[name] = { - 'data': tensor_config.data, - 'lod': tensor_config.lod, + "data": tensor_config.data, + "lod": tensor_config.lod, } - results: List[Dict[str, np.ndarray]] = [] if not skip_baseline: - # baseline: gpu run - logging.info('RUN program_config: ' + str(prog_config)) + # baseline: gpu run, we only test float32 gpu_config = self.create_inference_config(use_trt=False) - results.append( - self.run_test_config( - model, params, prog_config, gpu_config, feed_data - ) + baseline_result = self.run_test_config( + model, + params, + prog_config.set_input_type(np.float32), + gpu_config, + feed_data, ) - self.success_log('RUN_GPU_BASELINE done') + self.success_log(f"basline program_config: {prog_config}") for ( pred_config, nodes_num, threshold, ) in self.sample_predictor_configs(prog_config): + for input_type in self.get_avalible_input_type(): + prog_config = prog_config.set_input_type(input_type) + if os.path.exists(self.cache_dir): + shutil.rmtree(self.cache_dir) - if os.path.exists(self.cache_dir): - shutil.rmtree(self.cache_dir) - - if isinstance(threshold, float): - atol = threshold - rtol = 1e-8 - elif isinstance(threshold, (list, tuple)): - atol = threshold[0] - rtol = threshold[1] - else: - raise NotImplementedError - - if ( - pred_config.tensorrt_precision_mode() - != paddle_infer.PrecisionType.Int8 - and quant - ): - continue - if ( - pred_config.tensorrt_precision_mode() - == paddle_infer.PrecisionType.Int8 - and not quant - ): - continue - - ignore_flag = False - for teller, reason, note in self.ignore_cases: - if teller(prog_config, pred_config): - ignore_flag = True - if reason == IgnoreReasons.TRT_NOT_IMPLEMENTED: - self.ignore_log( - '[TRT_NOT_IMPLEMENTED] {} vs {}'.format( - note, self.inference_config_str(pred_config) + if isinstance(threshold, float): + atol = threshold + rtol = 1e-8 + elif isinstance(threshold, list) or isinstance( + threshold, tuple + ): + atol = threshold[0] + rtol = threshold[1] + else: + raise NotImplementedError + + is_fp8 = ( + pred_config.tensorrt_precision_mode() + == paddle_infer.PrecisionType.Int8 + ) + if (not is_fp8 and quant) or (is_fp8 and not quant): + continue + + ignore_flag = False + for teller, reason, note in self.ignore_cases: + if teller(prog_config, pred_config): + ignore_flag = True + if reason == IgnoreReasons.TRT_NOT_IMPLEMENTED: + self.ignore_log( + f"[TRT_NOT_IMPLEMENTED] {note} vs {self.inference_config_str(pred_config)}" ) - ) - elif reason == IgnoreReasons.TRT_NOT_SUPPORT: - self.ignore_log( - '[TRT_NOT_SUPPORT] {} vs {}'.format( - note, self.inference_config_str(pred_config) + elif reason == IgnoreReasons.TRT_NOT_SUPPORT: + self.ignore_log( + f"[TRT_NOT_SUPPORT] {note} vs {self.inference_config_str(pred_config)}" ) - ) - else: - raise NotImplementedError - break + else: + raise NotImplementedError + break - if ignore_flag: - continue + if ignore_flag: + continue - try: - pred_config_deserialize = paddle_infer.Config(pred_config) - results.append( - self.run_test_config( + try: + pred_config_deserialize = paddle_infer.Config( + pred_config + ) + trt_result = self.run_test_config( model, params, prog_config, pred_config, feed_data ) - ) - self.assert_tensors_near( - atol, rtol, results[-1], results[0] - ) - trt_engine_num, paddle_op_num = nodes_num - self.assert_op_size(trt_engine_num, paddle_op_num) - - # deserialize test - if trt_engine_num > 0: - self.run_test_config( - model, - params, - prog_config, - pred_config_deserialize, - feed_data, + self.assert_tensors_near( + atol, rtol, trt_result, baseline_result ) + trt_engine_num, paddle_op_num = nodes_num + self.assert_op_size(trt_engine_num, paddle_op_num) + + # deserialize test + if trt_engine_num > 0: + self.run_test_config( + model, + params, + prog_config, + pred_config_deserialize, + feed_data, + ) - self.success_log( - 'RUN predictor_config {} done'.format( - self.inference_config_str(pred_config) + self.success_log(f"program_config: {prog_config}") + self.success_log( + f"predictor_config: {self.inference_config_str(pred_config)}" ) - ) - except Exception as e: - self.fail_log( - self.inference_config_str(pred_config) - + f'\033[1;31m \nERROR INFO: {str(e)}\033[0m' - ) - all_passes = False + except Exception as e: + self.fail_log(f"program_config: {prog_config}") + self.fail_log( + f"predictor_config: {self.inference_config_str(pred_config)}" + ) + self.fail_log(f"\033[1;31m ERROR INFO: {e}\033[0m") + all_passes = False self.assertTrue(all_passes) diff --git a/test/ir/inference/program_config.py b/test/ir/inference/program_config.py index 91670cb62c92e42882a45f5cbef2de437ded8a8a..3dfd9b3f95877ec5bfeaae00f78c93861fc4c440 100644 --- a/test/ir/inference/program_config.py +++ b/test/ir/inference/program_config.py @@ -54,8 +54,8 @@ class TensorConfig: if data_gen is not None: self.data_gen = data_gen self.data = data_gen() - self.dtype = data_gen().dtype - self.shape = data_gen().shape + self.dtype = self.data.dtype + self.shape = self.data.shape else: assert ( shape is not None @@ -67,6 +67,11 @@ class TensorConfig: def __repr__(self): return str({'shape': self.shape, 'lod': self.lod, 'dtype': self.dtype}) + def astype(self, type: np.dtype): + self.data = self.data.astype(type) + self.dtype = self.data.dtype + return self + class VarType(enum.Enum): LOD_TENSOR = 1 @@ -270,6 +275,16 @@ class ProgramConfig: return log_str + def set_input_type(self, type: np.dtype): + for inp in self.inputs.values(): + inp.astype(type) + for weight in self.weights.values(): + weight.astype(type) + return self + + def get_input_type(self) -> np.dtype: + return next(iter(self.inputs.values())).dtype + def create_fake_model(program_config): '''Create a Paddle model(in memory) according to the given config.''' diff --git a/test/ir/inference/test_multihead_matmul_fuse_pass_v3.py b/test/ir/inference/test_multihead_matmul_fuse_pass_v3.py index 81e2e313c93c1d361793cd9bf971dc977df2d613..817527dc40e2d39e7fa67eca57ddf9f34c52bdaa 100644 --- a/test/ir/inference/test_multihead_matmul_fuse_pass_v3.py +++ b/test/ir/inference/test_multihead_matmul_fuse_pass_v3.py @@ -33,6 +33,9 @@ class TestMultiheadMatmulFusePass(PassAutoScanTest): def generate_elewise_input(): return np.random.random([1, 12, 128, 128]).astype(np.float32) + def generate_weight(shape): + return np.random.random(shape).astype(np.float32) + mul_0 = OpConfig( "mul", inputs={"X": ["mul_x"], "Y": ["mul_0_w"]}, @@ -195,13 +198,27 @@ class TestMultiheadMatmulFusePass(PassAutoScanTest): ), }, weights={ - "mul_0_w": TensorConfig(shape=[768, 768]), - "mul_1_w": TensorConfig(shape=[768, 768]), - "mul_2_w": TensorConfig(shape=[768, 768]), - "mul_3_w": TensorConfig(shape=[768, 768]), - "ele_0_w": TensorConfig(shape=[768]), - "ele_1_w": TensorConfig(shape=[768]), - "ele_2_w": TensorConfig(shape=[768]), + "mul_0_w": TensorConfig( + data_gen=partial(generate_weight, [768, 768]) + ), + "mul_1_w": TensorConfig( + data_gen=partial(generate_weight, [768, 768]) + ), + "mul_2_w": TensorConfig( + data_gen=partial(generate_weight, [768, 768]) + ), + "mul_3_w": TensorConfig( + data_gen=partial(generate_weight, [768, 768]) + ), + "ele_0_w": TensorConfig( + data_gen=partial(generate_weight, [768]) + ), + "ele_1_w": TensorConfig( + data_gen=partial(generate_weight, [768]) + ), + "ele_2_w": TensorConfig( + data_gen=partial(generate_weight, [768]) + ), }, outputs=[ops[-1].outputs["Out"][0]], ) diff --git a/test/ir/inference/test_trt_convert_bitwise_not.py b/test/ir/inference/test_trt_convert_bitwise_not.py index d779e1fce556714ee75b3d17885f6470b091aaad..49f00b52237eda094a98962cfa0aab04af9a18ed 100644 --- a/test/ir/inference/test_trt_convert_bitwise_not.py +++ b/test/ir/inference/test_trt_convert_bitwise_not.py @@ -103,11 +103,11 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest): ver = paddle_infer.get_trt_compile_version() trt_version = ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 if trt_version >= 8400: - if self.dims == 1 and not dynamic_shape: + if self.dims == 1: return 0, 3 return 1, 2 else: - if (self.dims == 1 and not dynamic_shape) or ( + if self.dims <= 2 or ( program_config.inputs['input_data'].dtype in ['bool', 'int8', 'uint8'] ):