Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
643a268e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
643a268e
编写于
12月 21, 2021
作者:
S
sneaxiy
提交者:
GitHub
12月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support FP16 mean (#38289)
* mean first version * fix scalar mean * add fp16 dtype for api
上级
c197d73b
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
205 addition
and
63 deletion
+205
-63
paddle/fluid/operators/kernel_primitives/functor_primitives.h
...le/fluid/operators/kernel_primitives/functor_primitives.h
+11
-4
paddle/fluid/operators/mean_op.cu
paddle/fluid/operators/mean_op.cu
+24
-29
paddle/fluid/operators/reduce_ops/reduce_functor_op.h
paddle/fluid/operators/reduce_ops/reduce_functor_op.h
+1
-1
paddle/fluid/operators/reduce_ops/reduce_mean_op.cu
paddle/fluid/operators/reduce_ops/reduce_mean_op.cu
+2
-0
paddle/fluid/operators/reduce_ops/reduce_mean_op.h
paddle/fluid/operators/reduce_ops/reduce_mean_op.h
+13
-0
paddle/fluid/operators/reduce_ops/reduce_mean_op.part.cu
paddle/fluid/operators/reduce_ops/reduce_mean_op.part.cu
+6
-0
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
+38
-19
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+5
-3
python/paddle/fluid/tests/unittests/test_mean_op.py
python/paddle/fluid/tests/unittests/test_mean_op.py
+103
-6
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+2
-1
未找到文件。
paddle/fluid/operators/kernel_primitives/functor_primitives.h
浏览文件 @
643a268e
...
...
@@ -14,7 +14,10 @@
#pragma once
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/eigen_ext.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -74,16 +77,20 @@ struct IdentityFunctor {
*/
template
<
typename
Tx
,
typename
Ty
=
Tx
>
struct
DivideFunctor
{
HOSTDEVICE
inline
DivideFunctor
()
{
n_inv
=
static_cast
<
Tx
>
(
1.0
f
);
}
private:
using
MPType
=
typename
::
paddle
::
operators
::
details
::
MPTypeTrait
<
Tx
>::
Type
;
public:
HOSTDEVICE
inline
DivideFunctor
()
{
n_inv
=
static_cast
<
MPType
>
(
1.0
f
);
}
HOSTDEVICE
explicit
inline
DivideFunctor
(
int
n
)
:
n_inv
((
Tx
)(
1.0
/
n
))
{}
HOSTDEVICE
explicit
inline
DivideFunctor
(
int
n
)
:
n_inv
((
MPType
)(
1.0
/
n
))
{}
HOSTDEVICE
inline
Ty
operator
()(
const
Tx
&
x
)
const
{
return
static_cast
<
Ty
>
(
x
*
n_inv
);
return
static_cast
<
Ty
>
(
static_cast
<
MPType
>
(
x
)
*
n_inv
);
}
private:
Tx
n_inv
;
MPType
n_inv
;
};
/**
...
...
paddle/fluid/operators/mean_op.cu
浏览文件 @
643a268e
...
...
@@ -18,30 +18,23 @@ limitations under the License. */
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/kernel_primitives/functor_primitives.h"
#include "paddle/fluid/operators/mean_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
struct
DivideFunctor
{
HOSTDEVICE
explicit
inline
DivideFunctor
(
int
n
)
:
n_inv
(
static_cast
<
T
>
(
1.0
/
n
))
{}
HOSTDEVICE
inline
T
operator
()(
const
T
&
x
)
const
{
return
x
*
n_inv
;
}
private:
T
n_inv
;
};
template
<
typename
T
>
__global__
void
MeanRunKernel
(
const
T
*
in_data
,
T
*
out_data
,
int
N
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
T
data
=
in_data
[
0
]
;
auto
data
=
static_cast
<
MT
>
(
in_data
[
0
])
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
out_data
[
idx
]
=
data
/
(
static_cast
<
T
>
(
N
));
out_data
[
idx
]
=
static_cast
<
T
>
(
data
/
(
static_cast
<
MT
>
(
N
)
));
}
}
...
...
@@ -52,27 +45,29 @@ class MeanCUDAKernel : public framework::OpKernel<T> {
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
size_prob
=
input
->
numel
();
const
T
*
in_data
=
input
->
data
<
T
>
();
T
*
out_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
numel
=
input
->
numel
();
auto
rank
=
input
->
dims
().
size
();
auto
place
=
context
.
GetPlace
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
DivideFunctor
<
T
>
transformer
(
size_prob
);
cub
::
TransformInputIterator
<
T
,
DivideFunctor
<
T
>
,
const
T
*>
trans_x
(
in_data
,
transformer
);
size_t
temp_storage_bytes
=
0
;
if
(
rank
==
0
)
{
// scalar
auto
gpu_place
=
BOOST_GET
(
platform
::
CUDAPlace
,
place
);
memory
::
Copy
(
gpu_place
,
out_data
,
gpu_place
,
in_data
,
numel
*
sizeof
(
T
),
stream
);
return
;
}
auto
err
=
cub
::
DeviceReduce
::
Sum
(
nullptr
,
temp_storage_bytes
,
trans_x
,
out_data
,
size_prob
,
stream
);
PADDLE_ENFORCE_GPU_SUCCESS
(
err
);
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
temp_storage_bytes
)}),
context
.
GetPlace
());
err
=
cub
::
DeviceReduce
::
Sum
(
temp_storage
,
temp_storage_bytes
,
trans_x
,
out_data
,
size_prob
,
stream
);
PADDLE_ENFORCE_GPU_SUCCESS
(
err
);
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
Div
=
kernel_primitives
::
DivideFunctor
<
T
,
MT
>
;
std
::
vector
<
int
>
reduce_dims
;
reduce_dims
.
reserve
(
rank
);
for
(
decltype
(
rank
)
i
=
0
;
i
<
rank
;
++
i
)
{
reduce_dims
.
push_back
(
i
);
}
TensorReduceFunctorImpl
<
T
,
T
,
kernel_primitives
::
AddFunctor
,
Div
>
(
*
input
,
output
,
Div
(
numel
),
reduce_dims
,
stream
);
}
};
...
...
paddle/fluid/operators/reduce_ops/reduce_functor_op.h
浏览文件 @
643a268e
...
...
@@ -77,7 +77,7 @@ struct CustomSub {
template
<
typename
Tx
,
typename
Ty
=
Tx
>
struct
CustomMean
{
using
Transformer
=
kps
::
DivideFunctor
<
Tx
>
;
using
Transformer
=
kps
::
DivideFunctor
<
Tx
,
Ty
>
;
inline
Ty
initial
()
{
return
static_cast
<
Ty
>
(
0.0
f
);
}
...
...
paddle/fluid/operators/reduce_ops/reduce_mean_op.cu
浏览文件 @
643a268e
...
...
@@ -19,5 +19,7 @@
REGISTER_OP_CUDA_KERNEL
(
reduce_mean
,
ops
::
ReduceCudaKernel
<
bool
,
kps
::
AddFunctor
,
kps
::
DivideFunctor
>
,
ops
::
ReduceCudaKernel
<
paddle
::
platform
::
float16
,
kps
::
AddFunctor
,
kps
::
DivideFunctor
>
,
ops
::
ReduceCudaKernel
<
float
,
kps
::
AddFunctor
,
kps
::
DivideFunctor
>
,
ops
::
ReduceCudaKernel
<
double
,
kps
::
AddFunctor
,
kps
::
DivideFunctor
>
);
paddle/fluid/operators/reduce_ops/reduce_mean_op.h
浏览文件 @
643a268e
...
...
@@ -35,5 +35,18 @@ struct MeanGradFunctor {
}
};
// TODO(zengjinle): Should refine the numeric stability of FP16 reduce_mean
// and reduce_mean_grad later.
struct
FP16MeanGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
(
dy
->
template
cast
<
float
>().
broadcast
(
dim
)
/
dx
->
template
cast
<
float
>().
constant
(
size
))
.
template
cast
<
platform
::
float16
>();
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reduce_ops/reduce_mean_op.part.cu
浏览文件 @
643a268e
...
...
@@ -20,6 +20,12 @@ using CUDAReduceMeanGradKernel =
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
T
,
ops
::
MeanGradFunctor
,
true
>
;
using
FP16CUDAReduceMeanGradKernel
=
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
,
ops
::
FP16MeanGradFunctor
,
true
>
;
REGISTER_OP_CUDA_KERNEL
(
reduce_mean_grad
,
CUDAReduceMeanGradKernel
<
bool
>
,
FP16CUDAReduceMeanGradKernel
,
CUDAReduceMeanGradKernel
<
float
>
,
CUDAReduceMeanGradKernel
<
double
>
);
paddle/fluid/operators/reduce_ops/reduce_op.cu.h
浏览文件 @
643a268e
...
...
@@ -38,7 +38,9 @@ namespace cub = hipcub;
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/fluid/string/string_helper.h"
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
...
...
@@ -814,11 +816,42 @@ static void LaunchReduceKernel(const Tx* x_data, Ty* y_data,
}
}
template
<
typename
Tx
,
typename
Ty
,
template
<
typename
>
class
ReduceOp
,
typename
TransformOp
>
static
typename
std
::
enable_if
<!
std
::
is_same
<
Tx
,
platform
::
float16
>::
value
,
void
>::
type
CubTensorReduceFunctorImpl
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
TransformOp
&
transform
,
int
reduce_num
,
const
platform
::
Place
&
place
,
gpuStream_t
stream
)
{
auto
reducer
=
ReduceOp
<
Ty
>
();
cub
::
TransformInputIterator
<
Ty
,
TransformOp
,
const
Tx
*>
trans_x
(
x_data
,
transform
);
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceReduce
::
Reduce
(
nullptr
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
reducer
.
initial
(),
stream
);
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
temp_storage_bytes
)}),
place
);
cub
::
DeviceReduce
::
Reduce
(
temp_storage
,
temp_storage_bytes
,
trans_x
,
y_data
,
reduce_num
,
reducer
,
reducer
.
initial
(),
stream
);
}
template
<
typename
Tx
,
typename
Ty
,
template
<
typename
>
class
ReduceOp
,
typename
TransformOp
>
static
typename
std
::
enable_if
<
std
::
is_same
<
Tx
,
platform
::
float16
>::
value
,
void
>::
type
CubTensorReduceFunctorImpl
(
const
Tx
*
x_data
,
Ty
*
y_data
,
const
TransformOp
&
transform
,
int
reduce_num
,
const
platform
::
Place
&
place
,
gpuStream_t
stream
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Tx should not be float16 when using cub::DeviceReduce::Reduce()."
));
}
template
<
typename
Tx
,
typename
Ty
,
template
<
typename
>
class
ReduceOp
,
typename
TransformOp
>
void
TensorReduceFunctorImpl
(
const
framework
::
Tensor
&
x
,
framework
::
Tensor
*
y
,
const
TransformOp
&
transform
,
std
::
vector
<
int
>
origin_reduce_dims
,
const
std
::
vector
<
int
>&
origin_reduce_dims
,
gpuStream_t
stream
)
{
auto
x_dim
=
framework
::
vectorize
<
int
>
(
x
.
dims
());
auto
config
=
ReduceConfig
<
Ty
>
(
origin_reduce_dims
,
x_dim
);
...
...
@@ -848,25 +881,11 @@ void TensorReduceFunctorImpl(const framework::Tensor& x, framework::Tensor* y,
}
config
.
SetOutputData
(
y_data
,
x
.
place
(),
&
tmp
);
bool
use_cub_reduce
=
(
config
.
reduce_num
==
numel
)
&&
(
!
std
::
is_same
<
Tx
,
paddle
::
platform
::
float16
>::
value
)
;
constexpr
bool
kIsTxFP16
=
std
::
is_same
<
Tx
,
paddle
::
platform
::
float16
>::
value
;
bool
use_cub_reduce
=
config
.
reduce_num
==
numel
&&
!
kIsTxFP16
;
if
(
use_cub_reduce
)
{
// launch CUB::Reduce
auto
reducer
=
ReduceOp
<
Ty
>
();
cub
::
TransformInputIterator
<
Ty
,
TransformOp
,
const
Tx
*>
trans_x
(
x_data
,
transform
);
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceReduce
::
Reduce
(
nullptr
,
temp_storage_bytes
,
trans_x
,
y_data
,
config
.
reduce_num
,
reducer
,
reducer
.
initial
(),
stream
);
framework
::
Tensor
tmp
;
auto
*
temp_storage
=
tmp
.
mutable_data
<
uint8_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
temp_storage_bytes
)}),
x
.
place
());
cub
::
DeviceReduce
::
Reduce
(
temp_storage
,
temp_storage_bytes
,
trans_x
,
y_data
,
config
.
reduce_num
,
reducer
,
reducer
.
initial
(),
stream
);
CubTensorReduceFunctorImpl
<
Tx
,
Ty
,
ReduceOp
,
TransformOp
>
(
x_data
,
y_data
,
transform
,
config
.
reduce_num
,
x
.
place
(),
stream
);
return
;
}
...
...
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
643a268e
...
...
@@ -703,7 +703,7 @@ class ReduceCudaKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
reduce_dims
=
GetReduceDim
(
dims
,
input
->
dims
().
size
(),
reduce_all
);
int
reduce_num
=
1
;
for
(
int
i
=
0
;
i
<
input
->
dims
().
size
();
i
++
)
{
for
(
auto
i
:
reduce_dims
)
{
reduce_num
*=
(
input
->
dims
())[
i
];
}
gpuStream_t
stream
=
context
.
cuda_device_context
().
stream
();
...
...
@@ -713,8 +713,10 @@ class ReduceCudaKernel : public framework::OpKernel<T> {
TensorReduceFunc
<
T
,
ReduceOp
,
TransformOp
>
(
*
input
,
output
,
reduce_dims
,
reduce_num
,
stream
));
}
else
{
TensorReduceFunctorImpl
<
T
,
T
,
ReduceOp
,
TransformOp
<
T
,
T
>>
(
*
input
,
output
,
TransformOp
<
T
,
T
>
(
reduce_num
),
reduce_dims
,
stream
);
using
MPType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
TensorReduceFunctorImpl
<
T
,
T
,
ReduceOp
,
TransformOp
<
T
,
MPType
>>
(
*
input
,
output
,
TransformOp
<
T
,
MPType
>
(
reduce_num
),
reduce_dims
,
stream
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_mean_op.py
浏览文件 @
643a268e
...
...
@@ -63,17 +63,25 @@ class TestMeanOpError(unittest.TestCase):
class
TestFP16MeanOp
(
TestMeanOp
):
def
init_dtype_type
(
self
):
self
.
dtype
=
np
.
float16
self
.
__class__
.
no_need_check_grad
=
True
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
2e-3
)
self
.
check_output_with_place
(
place
)
def
test_checkout_grad
(
self
):
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.8
)
with
fluid
.
dygraph
.
guard
():
x_np
=
np
.
random
.
random
((
10
,
10
)).
astype
(
self
.
dtype
)
x
=
paddle
.
to_tensor
(
x_np
)
x
.
stop_gradient
=
False
y
=
fluid
.
layers
.
mean
(
x
)
dx
=
paddle
.
grad
(
y
,
x
)[
0
].
numpy
()
dx_expected
=
self
.
dtype
(
1.0
/
np
.
prod
(
x_np
.
shape
))
*
np
.
ones
(
x_np
.
shape
).
astype
(
self
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
dx
,
dx_expected
))
@
OpTestTool
.
skip_if_not_cpu_bf16
()
...
...
@@ -98,6 +106,14 @@ def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
return
np
.
mean
(
x
,
axis
=
axis
,
keepdims
=
keepdim
)
def
ref_reduce_mean_grad
(
x
,
axis
,
dtype
):
if
reduce_all
:
axis
=
list
(
range
(
x
.
ndim
))
shape
=
[
x
.
shape
[
i
]
for
i
in
axis
]
return
(
1.0
/
np
.
prod
(
shape
)
*
np
.
ones
(
shape
)).
astype
(
dtype
)
class
TestReduceMeanOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'reduce_mean'
...
...
@@ -105,11 +121,13 @@ class TestReduceMeanOp(OpTest):
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
axis
=
[
0
]
self
.
keepdim
=
False
self
.
reduce_all
=
False
self
.
set_attrs
()
np
.
random
.
seed
(
10
)
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
if
not
hasattr
(
self
,
"reduce_all"
):
self
.
reduce_all
=
(
not
self
.
axis
)
or
len
(
self
.
axis
)
==
len
(
x_np
)
out_np
=
ref_reduce_mean
(
x_np
,
self
.
axis
,
self
.
keepdim
,
self
.
reduce_all
)
self
.
inputs
=
{
'X'
:
x_np
}
self
.
outputs
=
{
'Out'
:
out_np
}
...
...
@@ -119,14 +137,39 @@ class TestReduceMeanOp(OpTest):
'reduce_all'
:
self
.
reduce_all
}
if
self
.
dtype
==
'float16'
:
self
.
__class__
.
no_need_check_grad
=
True
def
set_attrs
(
self
):
pass
def
test_check_output
(
self
):
if
self
.
dtype
!=
'float16'
:
self
.
check_output
()
else
:
if
not
core
.
is_compiled_with_cuda
():
return
place
=
paddle
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
=
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
!=
'float16'
:
self
.
check_grad
([
'X'
],
[
'Out'
])
else
:
return
if
not
core
.
is_compiled_with_cuda
():
return
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
return
with
fluid
.
dygraph
.
guard
(
place
=
place
):
x
=
paddle
.
tensor
(
self
.
inputs
[
'X'
])
y
=
paddle
.
mean
(
x
,
axis
=
self
.
attrs
[
'dim'
],
keepdim
=
self
.
attrs
[
'keep_dim'
])
dx
=
paddle
.
grad
(
y
,
x
)[
0
].
numpy
()
dx_expected
=
ref_reduce_mean_grad
(
self
.
inputs
[
'X'
],
self
.
attrs
[
'dim'
],
self
.
dtype
)
self
.
assertTrue
(
np
.
array_equal
(
dx
,
dx_expected
))
class
TestReduceMeanOpDefaultAttrs
(
TestReduceMeanOp
):
...
...
@@ -146,47 +189,101 @@ class TestReduceMeanOpFloat32(TestReduceMeanOp):
self
.
dtype
=
'float32'
class
TestReduceMeanOpFloat16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
dtype
=
'float16'
class
TestReduceMeanOpShape1D
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
shape
=
[
100
]
class
TestReduceMeanOpShape1DFP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
shape
=
[
100
]
self
.
dtype
=
'float16'
class
TestReduceMeanOpShape6D
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
,
6
,
7
]
class
TestReduceMeanOpShape6DFP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
,
6
,
7
]
self
.
dtype
=
'float16'
class
TestReduceMeanOpAxisAll
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
[
0
,
1
,
2
,
3
]
class
TestReduceMeanOpAxisAllFP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
[
0
,
1
,
2
,
3
]
self
.
dtype
=
'float16'
class
TestReduceMeanOpAxisTuple
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
(
0
,
1
,
2
)
class
TestReduceMeanOpAxisTupleFP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
(
0
,
1
,
2
)
self
.
dtype
=
'float16'
class
TestReduceMeanOpAxisNegative
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
[
-
2
,
-
1
]
class
TestReduceMeanOpAxisNegativeFP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
[
-
2
,
-
1
]
self
.
dtype
=
'float16'
class
TestReduceMeanOpKeepdimTrue1
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
keepdim
=
True
class
TestReduceMeanOpKeepdimTrue1FP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
keepdim
=
True
self
.
dtype
=
'float16'
class
TestReduceMeanOpKeepdimTrue2
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
[
0
,
1
,
2
,
3
]
self
.
keepdim
=
True
class
TestReduceMeanOpKeepdimTrue2FP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
axis
=
[
0
,
1
,
2
,
3
]
self
.
keepdim
=
True
self
.
dtype
=
'float16'
class
TestReduceMeanOpReduceAllTrue
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
reduce_all
=
True
class
TestReduceMeanOpReduceAllTrueFP16
(
TestReduceMeanOp
):
def
set_attrs
(
self
):
self
.
reduce_all
=
True
self
.
dtype
=
'float16'
class
TestMeanAPI
(
unittest
.
TestCase
):
# test paddle.tensor.stat.mean
...
...
python/paddle/tensor/stat.py
浏览文件 @
643a268e
...
...
@@ -92,7 +92,8 @@ def mean(x, axis=None, keepdim=False, name=None):
return
_C_ops
.
reduce_mean
(
x
,
'dim'
,
axis
,
'keep_dim'
,
keepdim
,
'reduce_all'
,
reduce_all
)
check_variable_and_dtype
(
x
,
'x/input'
,
[
'uint16'
,
'float32'
,
'float64'
],
check_variable_and_dtype
(
x
,
'x/input'
,
[
'uint16'
,
'float16'
,
'float32'
,
'float64'
],
'mean/reduce_mean'
)
check_type
(
axis
,
'axis/dim'
,
(
int
,
list
,
tuple
),
'mean/reduce_mean'
)
if
isinstance
(
axis
,
(
list
,
tuple
)):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录