Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
63ec4ba0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
63ec4ba0
编写于
2月 12, 2018
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
91aac572
上级
90c06ac6
变更
2
展开全部
显示空白变更内容
内联
并排
Showing
2 changed file
with
12 addition
and
12 deletion
+12
-12
develop/api_doc/searchindex.js
develop/api_doc/searchindex.js
+1
-1
develop/api_doc/v2/fluid/layers.html
develop/api_doc/v2/fluid/layers.html
+11
-11
未找到文件。
develop/api_doc/searchindex.js
浏览文件 @
63ec4ba0
此差异已折叠。
点击以展开。
develop/api_doc/v2/fluid/layers.html
浏览文件 @
63ec4ba0
...
...
@@ -1547,7 +1547,7 @@ Default: ‘sigmoid’</li>
<h3>
cos_sim
<a
class=
"headerlink"
href=
"#cos-sim"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cos_sim
</code><span
class=
"sig-paren"
>
(
</span><em>
X
</em>
,
<em>
Y
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cos_sim
</code><span
class=
"sig-paren"
>
(
</span><em>
X
</em>
,
<em>
Y
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function performs the cosine similarity between two tensors
X and Y and returns that as the output.
</p>
</dd></dl>
...
...
@@ -1557,7 +1557,7 @@ X and Y and returns that as the output.</p>
<h3>
cross_entropy
<a
class=
"headerlink"
href=
"#cross-entropy"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cross_entropy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
**kwargs
</em><span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
cross_entropy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
soft_label=False
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p><strong>
Cross Entropy Layer
</strong></p>
<p>
This layer computes the cross entropy between
<cite>
input
</cite>
and
<cite>
label
</cite>
. It
supports both standard cross-entropy and soft-label cross-entropy loss
...
...
@@ -1606,7 +1606,7 @@ a softmax operator.</li>
tensor
<
int64
>
with shape [N x 1]. When
<cite>
soft_label
</cite>
is set to
<cite>
True
</cite>
,
<cite>
label
</cite>
is a
tensor
<
float/double
>
with shape [N x D].
</li>
<li><strong>
soft_label
</strong>
(
bool, via
<cite>
**kwargs
</cite
>
)
–
a flag indicating whether to
<li><strong>
soft_label
</strong>
(
<em>
bool
</em
>
)
–
a flag indicating whether to
interpretate the given labels as soft
labels, default
<cite>
False
</cite>
.
</li>
</ul>
...
...
@@ -1640,7 +1640,7 @@ labels, default <cite>False</cite>.</li>
<h3>
square_error_cost
<a
class=
"headerlink"
href=
"#square-error-cost"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
square_error_cost
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
square_error_cost
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p><strong>
Square error cost layer
</strong></p>
<p>
This layer accepts input predictions and target label and returns the
squared error cost.
</p>
...
...
@@ -1686,7 +1686,7 @@ squared error cost.</p>
<h3>
accuracy
<a
class=
"headerlink"
href=
"#accuracy"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
accuracy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
k=1
</em>
,
<em>
correct=None
</em>
,
<em>
total=None
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
accuracy
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
k=1
</em>
,
<em>
correct=None
</em>
,
<em>
total=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
</p>
</dd></dl>
...
...
@@ -1696,7 +1696,7 @@ The output is the top_k inputs and their indices.</p>
<h3>
chunk_eval
<a
class=
"headerlink"
href=
"#chunk-eval"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
chunk_eval
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
chunk_scheme
</em>
,
<em>
num_chunk_types
</em>
,
<em>
excluded_chunk_types=None
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
chunk_eval
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
chunk_scheme
</em>
,
<em>
num_chunk_types
</em>
,
<em>
excluded_chunk_types=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function computes and outputs the precision, recall and
F1-score of chunk detection.
</p>
</dd></dl>
...
...
@@ -1814,7 +1814,7 @@ groups mismatch.</p>
<h3>
sequence_pool
<a
class=
"headerlink"
href=
"#sequence-pool"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_pool
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
pool_type
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_pool
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
pool_type
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.
</p>
...
...
@@ -2389,7 +2389,7 @@ will be named automatically.</li>
<h3>
sequence_first_step
<a
class=
"headerlink"
href=
"#sequence-first-step"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_first_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_first_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This funciton get the first step of sequence.
</p>
<div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
...
...
@@ -2425,7 +2425,7 @@ then output is a Tensor:
<h3>
sequence_last_step
<a
class=
"headerlink"
href=
"#sequence-last-step"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_last_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
sequence_last_step
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
This funciton get the last step of sequence.
</p>
<div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
x is a 1-level LoDTensor:
x.lod = [[0, 2, 5, 7]]
...
...
@@ -2461,7 +2461,7 @@ then output is a Tensor:
<h3>
dropout
<a
class=
"headerlink"
href=
"#dropout"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
dropout
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
dropout_prob
</em>
,
<em>
is_test=False
</em>
,
<em>
seed=None
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
dropout
</code><span
class=
"sig-paren"
>
(
</span><em>
x
</em>
,
<em>
dropout_prob
</em>
,
<em>
is_test=False
</em>
,
<em>
seed=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Computes dropout.
</p>
<p>
Drop or keep each element of
<cite>
x
</cite>
independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
...
...
@@ -2798,7 +2798,7 @@ will be named automatically.</li>
<h3>
warpctc
<a
class=
"headerlink"
href=
"#warpctc"
title=
"Permalink to this headline"
>
¶
</a></h3>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
warpctc
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
blank=0
</em>
,
<em>
norm_by_times=False
</em>
,
<em>
**kwargs
</em>
<span
class=
"sig-paren"
>
)
</span></dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
warpctc
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
label
</em>
,
<em>
blank=0
</em>
,
<em>
norm_by_times=False
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
An operator integrating the open source Warp-CTC library
(
<a
class=
"reference external"
href=
"https://github.com/baidu-research/warp-ctc"
>
https://github.com/baidu-research/warp-ctc
</a>
)
to compute Connectionist Temporal Classification (CTC) loss.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录