diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index b4f0f3ef7e3a4230c09ea6f766c4017946ac0b5a..b9889e483e27e9dad3310a34b5306f073ad1887d 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -105,7 +105,16 @@ PYBIND11_PLUGIN(core) { .def("set", PyCUDATensorSetFromArray) .def("set", PyCUDATensorSetFromArray) #endif - .def("shape", [](Tensor &self) { return vectorize(self.dims()); }); + .def("shape", [](Tensor &self) { return vectorize(self.dims()); }) + .def("set_float_element", + [](Tensor &self, size_t offset, float f) { + // TODO(yuyang18): Only support GPU now. + self.data()[offset] = f; + }) + .def("get_float_element", [](Tensor &self, size_t offset) -> float { + // TODO(yuyang18): Only support GPU now. + return self.data()[offset]; + }); py::class_(m, "Variable", R"DOC(Variable Class. diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index 4619b0edc3dd7e253e01f7fee5e6a8641340d291..e66197030e2dd9e113e4564aaacb1c5dab25771b 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -13,4 +13,5 @@ add_python_test(test_framework test_sigmoid_op.py test_softmax_op.py test_rowwise_add_op.py - test_network.py) + test_network.py + gradient_checker.py) diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py new file mode 100644 index 0000000000000000000000000000000000000000..4022de1c40e41aa77a7f31d82b55b63585cbd5f5 --- /dev/null +++ b/python/paddle/v2/framework/tests/gradient_checker.py @@ -0,0 +1,90 @@ +import paddle.v2.framework.core as core +from paddle.v2.framework.create_op_creation_methods import op_creations +import numpy +import unittest + +__all__ = ['get_numeric_gradient'] + + +def get_numeric_gradient(op, + input_values, + output_name, + input_to_check, + delta=1e-2, + local_scope=None): + """ + Get Numeric Gradient for an operator's input. + + :param op: C++ operator instance, could be an network + :param input_values: The input variables. Should be an dictionary, key is + variable name. Value is numpy array. + :param output_name: The final output variable name. + :param input_to_check: The input variable need to get gradient. + :param delta: The perturbation value for numeric gradient method. The + smaller delta is, the more accurate result will get. But if that delta is + too small, it could occur numerical stability problem. + :param local_scope: The local scope used for get_numeric_gradient. + :return: The gradient array in numpy format. + """ + if local_scope is None: + local_scope = core.Scope() + + # Create all input variable in local_scope + for var_name in input_values: + var = local_scope.new_var(var_name) + tensor = var.get_tensor() + tensor.set_dims(input_values[var_name].shape) + tensor.alloc_float(core.CPUPlace()) + tensor.set(input_values[var_name], core.CPUPlace()) + + # Create all output variable in local_scope + for output in op.outputs(): + if local_scope.find_var(output) is None: + local_scope.new_var(output).get_tensor() + + op.infer_shape(local_scope) + + # allocate output memory + for output in op.outputs(): + local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace()) + + # TODO(yuyang18): Only CPU is support now. + cpu_ctx = core.DeviceContext.create(core.CPUPlace()) + + def get_output(): + op.run(local_scope, cpu_ctx) + return numpy.array(local_scope.find_var(output_name).get_tensor()).sum() + + def product(dim): + return reduce(lambda a, b: a * b, dim, 1) + + tensor_to_check = local_scope.find_var(input_to_check).get_tensor() + tensor_size = product(tensor_to_check.get_dims()) + gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32') + for i in xrange(tensor_size): + origin = tensor_to_check.get_float_element(i) + x_pos = origin + delta + tensor_to_check.set_float_element(i, x_pos) + y_pos = get_output() + + x_neg = origin - delta + tensor_to_check.set_float_element(i, x_neg) + y_neg = get_output() + + tensor_to_check.set_float_element(i, origin) # restore old value + gradient_flat[i] = (y_pos - y_neg) / delta / 2 + return gradient_flat.reshape(tensor_to_check.get_dims()) + + +if __name__ == '__main__': + + class GetNumericGradientTest(unittest.TestCase): + def test_add_op(self): + add_op = op_creations.add_two(X="X", Y="Y", Out="Z") + x = numpy.random.random((10, 1)).astype("float32") + y = numpy.random.random((10, 1)).astype("float32") + + arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X') + self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2) + + unittest.main()