提交 62d597c1 编写于 作者: Y Yu Yang

Merge branch 'develop' of github.com:baidu/Paddle into feature/pybind_for_protobuf_desc

...@@ -9,11 +9,9 @@ function train() { ...@@ -9,11 +9,9 @@ function train() {
bs=$2 bs=$2
use_mkldnn=$3 use_mkldnn=$3
if [ $3 == "True" ]; then if [ $3 == "True" ]; then
use_mkldnn=$3
thread=1 thread=1
log="logs/${topology}-mkldnn-${bs}.log" log="logs/${topology}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then elif [ $3 == "False" ]; then
use_mkldnn=$3
thread=`nproc` thread=`nproc`
log="logs/${topology}-${thread}mklml-${bs}.log" log="logs/${topology}-${thread}mklml-${bs}.log"
else else
...@@ -39,8 +37,7 @@ if [ ! -d "logs" ]; then ...@@ -39,8 +37,7 @@ if [ ! -d "logs" ]; then
mkdir logs mkdir logs
fi fi
#========= mkldnn =========# #========== mkldnn ==========#
# vgg
train vgg 64 True train vgg 64 True
train vgg 128 True train vgg 128 True
train vgg 256 True train vgg 256 True
......
# Design Doc: Distributed Training Architecture
## Abstract
PaddlePaddle v0.10.0 uses the "trainer-parameter server"
architecture. We run multiple replicated instances of trainers (runs
the same code written by the user) and parameter servers for
distributed training. This architecture served us well, but has some
limitations:
1. Need to write special code to handle tasks which should only be run
by a single trainer. E.g., initializing model and saving model.
2. Model parallelism is hard: need to write if-else branches conditioned
on the trainer ID to partition model onto each trainer, and manually
write the inter-model-shard communication code.
3. The user can not directly specify the parameter update rule: need
to modify the parameter server C++ code and compile a new
binary. This adds complication for researchers: A lot of extra
effort is required. Besides, the training job submission program
may not allow running arbitrary binaries.
This design doc discusses PaddlePaddle's new distributed training
architecture that addresses the above limitations.
## Analysis
We will assume the user writes the trainer program by Python, the same
analysis holds if the trainer program is written in C++.
### Limitation 1
If we look at the Python code that the user writes, there are two
kinds of functionalities:
- The training logic such as load / save model and print log.
- The neural network definition such as the definition of the data
layer, the fully connected layer, the cost function and the
optimizer.
When we training with PaddlePaddle v0.10.0 distributedly, multiple
replicated Python instances are running on different nodes: both the
training logic and the neural network computation is replicated.
The tasks that should only run once all belong to the training logic,
if we only replicate the neural network computation, but do **not**
replicate the training logic, the limitation could be solved.
### Limitation 2
Model parallelism means running a single model on multiple nodes by
partitioning the model onto different nodes and managing the
inter-model-shard communications.
PaddlePaddle should be able to modify the nerual network computation
definition to support model parallelism automatically. However, the
computation is only specified in Python code, and PaddlePaddle can not
modify Python code.
Just like compiler uses a intermediate representation (IR) so that
programmer does not need to manually optimize their code in most of
the cases - the compiler will optimize the IR:
<img src="src/compiler.png"/>
We can have our own IR too: PaddlePaddle can support model parallel by
converting the IR so the user no longer need to manually do it in
Python:
<img src="src/paddle-compile.png"/>
The IR for PaddlePaddle after refactor is called `Block`, it specifies
the computation dependency graph and the variables used in the
computation.
### Limitation 3
The user can not directly specify the parameter update rule for the
parameter server because the parameter server does not use the same
computation definition as the trainer. Instead, the update rule is
baked in the parameter server. The user can not specify the update
rule in the same way of specifying the trainer computation.
This could be fixed by making the parameter server run the same
computation definition as the trainer. For a detailed explanation,
please
see
[Design Doc: Operation Graph Based Parameter Server](./dist_train.md)
## Distributed Training Architecture
The new distributed training architecture can address the above
limitations. Below is the illustration:
<img src="src/distributed_architecture.png"/>
The architecture includes major components: *PaddlePaddle Python*,
*PaddlePaddle converter* and *PaddlePaddle runtime*:
### PaddlePaddle Python
PaddlePaddle Python is the Python library that user's Python trainer
invoke to build the neural network topology, start training, etc.
```Python
paddle.init()
input = paddle.op.recordIO("/home/data/mnist.recordio") # file stored on the cluster
img, label = input[0], input[1]
hidden = paddle.layer.fc(input=img, size=200, act=paddle.activation.Tanh())
prediction = paddle.layer.fc(input=img, size=10, act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=prediction, label=label)
optimizer = paddle.optimizer.SGD(cost, learning_rate=0.01)
session = paddle.session.NewRemote(num_trainer=3, num_ps=2, GPU_per_trainer=1)
for i in range(1000):
_, cost_val = session.eval(targets=[cost, optimizer])
print cost_val
```
The code above is a typical Python trainer code, the neural network
topology is built using helper functions such as
`paddle.layer.fc`. The training is done by calling `session.eval`
iteratively.
#### session.eval
As shown in the graph, `session.eval` sends the IR and the evaluation
inputs/targets to the PaddlePaddle cluster for evaluation. The
targets can be any variable in the computation graph. When the target
is the `optimizer` variable, the neural network will be optimized
once. When the target is the `cost` variable, `session.eval` returns
the cost value.
The Python `session` is a wrapper of the C++ `Session` class. For more
information about `Session`, please
see [Design Doc: Session](./session.md).
### PaddlePaddle Converter
PaddlePaddle converter automatically converts the IR in the request
(IR and evaluation inputs/targets) from PaddlePaddle Python to new
partitioned IRs and dispatch the new IRs and evaluation inputs/targets
to different PaddlePaddle runtimes. Below are the steps:
1. Add `feed` OP that feeds the eval inputs, and `fetch` OP that
fetches the eval targets to the IR.
1. Extract a new computation (sub)graph with `feed` and `fetch` OP as
the boundary. The runtime does not need to run the OP that is not
dependent by the `fetch` OP.
1. Optimizes the computation graph.
1. Place the OPs in the graph onto different devices on different
PaddlePaddle runtime according to a placement algorithm and device
constraint specified by the user.
1. Partition the graph according to runtime boundaries and add `send` /
`recv` OP pair on the runtime boundaries.
1. Dispatch the partitioned graph to different PaddlePaddle runtimes.
1. PaddlePaddle runtimes with the `fetch` OP reports evaluation
results back to the converter, the convert reports the evaluation
results back to the PaddlePaddle Python.
The output IRs will be cached to optimize the conversion latency.
#### Placement Algorithm
Our first implementation will only support "trainer-parameter server"
placement: the parameters, initializers, and optimizers are placed on
the PaddlePaddle runtimes with the parameter server role. And
everything else will be placed on the PaddlePaddle runtimes with the
trainer role. This has the same functionality of our
"trainer-parameter server" architecture of PaddlePaddle v0.10.0, but
is more general and flexible.
In the future, we will implement the general placement algorithm,
which makes placements according to the input IR, and a model of
device computation time and device communication time. Model
parallelism requires the general placement algorithm.
### PaddlePaddle Runtime
The PaddlePaddle runtime owns multiple devices (e.g., CPUs, GPUs) and
runs the IR. The runtime does not need to do OP placement since it's
already done by the converter.
### Local Training Architecture
The local training architecture will be the same as the distributed
training architecture, the differences are everything runs locally,
and there is just one PaddlePaddle runtime:
<img src="src/local_architecture.png"/>
### Training Data
In PaddlePaddle v0.10.0, training data is typically read
with [data reader](../reader/README.md) from Python. This approach is
no longer efficient when training distributedly since the Python
process no longer runs on the same node with the trainer processes,
the Python reader will need to read from the distributed filesystem
(assuming it has the access) and send to the trainers, doubling the
network traffic.
When doing distributed training, the user can still use Python data
reader: the training data are sent with `session.eval`. However should
be used for debugging purpose only. The users are encouraged to use
the read data OPs.
## References:
[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
[2] [TensorFlow: A System for Large-Scale Machine Learning](https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf)
...@@ -251,7 +251,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字 ...@@ -251,7 +251,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。 那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。
12. A protocol message was rejected because it was too big 12. A protocol message was rejected because it was too big
---------------------------------------------------------- ------------------------------------------------------------
如果在训练NLP相关模型时,出现以下错误: 如果在训练NLP相关模型时,出现以下错误:
...@@ -316,10 +316,42 @@ Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异 ...@@ -316,10 +316,42 @@ Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异
* 模型一直不收敛,发散到了一个数值特别大的地方。 * 模型一直不收敛,发散到了一个数值特别大的地方。
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。 * 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
主要的解决办法是减小学习率或者对数据进行归一化处理。 这里有两种有效的解决方法:
1. 设置 :code:`gradient_clipping_threshold` 参数,示例代码如下:
.. code-block:: python
optimizer = paddle.optimizer.RMSProp(
learning_rate=1e-3,
gradient_clipping_threshold=10.0,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
具体可以参考 `nmt_without_attention <https://github.com/PaddlePaddle/models/blob/develop/nmt_without_attention/train.py#L35>`_ 示例。
2. 设置 :code:`error_clipping_threshold` 参数,示例代码如下:
.. code-block:: python
decoder_inputs = paddle.layer.fc(
act=paddle.activation.Linear(),
size=decoder_size * 3,
bias_attr=False,
input=[context, current_word],
layer_attr=paddle.attr.ExtraLayerAttribute(
error_clipping_threshold=100.0))
完整代码可以参考示例 `machine translation <https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/train.py#L66>`_ 。
两种方法的区别:
1. 两者都是对梯度的截断,但截断时机不同,前者在 :code:`optimzier` 更新网络参数时应用;后者在激活函数反向计算时被调用;
2. 截断对象不同:前者截断可学习参数的梯度,后者截断回传给前层的梯度;
除此之外,还可以通过减小学习律或者对数据进行归一化处理来解决这类问题。
15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2 15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2
------------------------------------------------------------------------ ------------------------------------------------------------------------------------------
先查看一下是否曾经安装过paddle v1版本,有的话需要先卸载: 先查看一下是否曾经安装过paddle v1版本,有的话需要先卸载:
pip uninstall py_paddle paddle pip uninstall py_paddle paddle
...@@ -329,7 +361,7 @@ pip uninstall py_paddle paddle ...@@ -329,7 +361,7 @@ pip uninstall py_paddle paddle
pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
16. PaddlePaddle存储的参数格式是什么,如何和明文进行相互转化 16. PaddlePaddle存储的参数格式是什么,如何和明文进行相互转化
--------------------------------------------------------- ---------------------------------------------------------------------
PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中,1~4字节表示PaddlePaddle版本信息,请直接填充0;5~8字节表示每个参数占用的字节数,当保存的网络参数为float类型时为4,double类型时为8;9~16字节表示保存的参数总个数。 PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中,1~4字节表示PaddlePaddle版本信息,请直接填充0;5~8字节表示每个参数占用的字节数,当保存的网络参数为float类型时为4,double类型时为8;9~16字节表示保存的参数总个数。
...@@ -381,7 +413,7 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数 ...@@ -381,7 +413,7 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
parameters.set('emb', load_parameter(emb_param_file, 30000, 256)) parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
18. 集群多节点训练,日志中保存均为网络通信类错误 18. 集群多节点训练,日志中保存均为网络通信类错误
------------------------------ -----------------------------------------------------------
集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。 集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。
此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查: 此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查:
...@@ -392,8 +424,8 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数 ...@@ -392,8 +424,8 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
* 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。 * 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。
19. PaddlePaddle如何输出多个层 19. 如何调用 infer 接口输出多个layer的预测结果
------------------------------ -----------------------------------------------------------
* 将需要输出的层作为 :code:`paddle.inference.Inference()` 接口的 :code:`output_layer` 参数输入,代码如下: * 将需要输出的层作为 :code:`paddle.inference.Inference()` 接口的 :code:`output_layer` 参数输入,代码如下:
...@@ -405,9 +437,28 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数 ...@@ -405,9 +437,28 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
.. code-block:: python .. code-block:: python
out = inferer.infer(input=data_batch, flatten_result=False, field=["value"]) out = inferer.infer(input=data_batch, field=["value"])
需要注意的是:
* 如果指定了2个layer作为输出层,实际上需要的输出结果是两个矩阵;
* 假设第一个layer的输出A是一个 N1 * M1 的矩阵,第二个 Layer 的输出B是一个 N2 * M2 的矩阵;
* paddle.v2 默认会将A和B 横向拼接,当N1 和 N2 大小不一样时,会报如下的错误:
.. code-block:: python
ValueError: all the input array dimensions except for the concatenation axis must match exactly
多个层的输出矩阵的高度不一致导致拼接失败,这种情况常常发生在:
这里设置 :code:`flatten_result=False`,得到的输出结果是元素个数等于输出字段数的 :code:`list`,该 :code:`list` 的每个元素是由所有输出层相应字段结果组成的 :code:`list`,每个字段结果的类型是 :code:`numpy.array`。:code:`flatten_result` 的默认值为 :code:`True`,该情况下,PaddlePaddle会分别对每个字段将所有输出层的结果按行进行拼接,如果各输出层该字段 :code:`numpy.array` 结果的相应维数不匹配,程序将不能正常运行。 * 同时输出序列层和非序列层;
* 多个输出层处理多个不同长度的序列;
此时可以在调用infer接口时通过设置 :code:`flatten_result=False` , 跳过“拼接”步骤,来解决上面的问题。这时,infer接口的返回值是一个python list:
* list 中元素的个数等于网络中输出层的个数;
* list 中每个元素是一个layer的输出结果矩阵,类型是numpy的ndarray;
* 每一个layer输出矩阵的高度,在非序列输入时:等于样本数;序列输入时等于:输入序列中元素的总数;宽度等于配置中layer的size;
20. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用 20. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用
------------------------------------------------------------- -------------------------------------------------------------
...@@ -416,8 +467,8 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数 ...@@ -416,8 +467,8 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
* PaddlePaddle的所有layer都有唯一的name,用户通过参数 :code:`name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。而 :code:`paddle.layer.memory` 不是真正的layer,其name由参数 :code:`memory_name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。:code:`paddle.layer.memory` 的参数 :code:`name` 用于指定其要关联的layer,需要用户显式设定。 * PaddlePaddle的所有layer都有唯一的name,用户通过参数 :code:`name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。而 :code:`paddle.layer.memory` 不是真正的layer,其name由参数 :code:`memory_name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。:code:`paddle.layer.memory` 的参数 :code:`name` 用于指定其要关联的layer,需要用户显式设定。
21. dropout 使用 21. 两种使用 drop_out 的方法有何区别?
----------------- -----------------------------------------------------
* 在PaddlePaddle中使用dropout有两种方式 * 在PaddlePaddle中使用dropout有两种方式
...@@ -512,3 +563,30 @@ PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedu ...@@ -512,3 +563,30 @@ PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedu
出现该错误的原因一般是用户对不同layer的参数 :code:`name` 设置了相同的取值。遇到该错误时,先找出参数 :code:`name` 取值相同的layer,然后将这些layer的参数 :code:`name` 设置为不同的值。 出现该错误的原因一般是用户对不同layer的参数 :code:`name` 设置了相同的取值。遇到该错误时,先找出参数 :code:`name` 取值相同的layer,然后将这些layer的参数 :code:`name` 设置为不同的值。
24. PaddlePaddle 中不同的 recurrent layer 的区别
--------------------------------------------------
以LSTM为例,在PaddlePaddle中包含以下 recurrent layer:
* :code:`paddle.layer.lstmemory`
* :code:`paddle.networks.simple_lstm`
* :code:`paddle.networks.lstmemory_group`
* :code:`paddle.networks.bidirectional_lstm`
按照具体实现方式可以归纳为2类:
1. 由 recurrent_group 实现的 recurrent layer:
* 用户在使用这一类recurrent layer时,可以访问由recurrent unit在一个时间步内计算得到的中间值(例如:hidden states, memory cells等);
* 上述的 :code:`paddle.networks.lstmemory_group` 是这一类的 recurrent layer ;
2. 将recurrent layer作为一个整体来实现:
* 用户在使用这一类recurrent layer,只能访问它们的输出值;
* 上述的 :code:`paddle.networks.lstmemory_group` 、 :code:`paddle.networks.simple_lstm` 和 :code:`paddle.networks.bidirectional_lstm` 属于这一类的实现;
将recurrent layer作为一个整体来实现, 能够针对CPU和GPU的计算做更多优化, 所以相比于recurrent group的实现方式, 第二类 recurrent layer 计算效率更高。 在实际应用中,如果用户不需要访问LSTM的中间变量,而只需要获得recurrent layer计算的输出,我们建议使用第二类实现。
此外,关于LSTM, PaddlePaddle中还包含 :code:`paddle.networks.lstmemory_unit` 这一计算单元:
* 不同于上述介绍的recurrent layer , :code:`paddle.networks.lstmemory_unit` 定义了LSTM单元在一个时间步内的计算过程,它并不是一个完整的recurrent layer,也不能接收序列数据作为输入;
* :code:`paddle.networks.lstmemory_unit` 只能在recurrent_group中作为step function使用;
...@@ -20,7 +20,7 @@ Docker使用入门 ...@@ -20,7 +20,7 @@ Docker使用入门
docker pull paddlepaddle/paddle:0.10.0 docker pull paddlepaddle/paddle:0.10.0
来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用ocker.paddlepaddle.org/paddle下载。 来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用docker.paddlepaddle.org/paddle下载。
- *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。 - *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。
实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。 实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。
......
...@@ -27,31 +27,53 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar; ...@@ -27,31 +27,53 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation #define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation
/** /**
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION * @def BEGIN_MKLDNN_ACTIVATION
*/
#define BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) : public BASE_CLASS {
/**
* @def END_MKLDNN_ACTIVATION
*/ */
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION(ACT_TYPE, ALPHA, BWD_ALPHA) \ #define END_MKLDNN_ACTIVATION(ACT_TYPE) \
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) \ private: \
: public MKLDNNEltwiseActivation { \
private: \
static const std::string name; \ static const std::string name; \
static const float alpha; \
static const float bwdAlpha; \
\ \
public: \ public: \
const std::string& getName() const { return name; } \ const std::string& getName() const { return name; } \
float getAlpha() const { return alpha; } \ } \
float getBwdAlpha() const { return bwdAlpha; } \ ; \
}; \
const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \ const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \
"mkldnn_" #ACT_TYPE; \ "mkldnn_" #ACT_TYPE; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA; \
static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \ static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \
gMKLDNNActivationRegistrar \ gMKLDNNActivationRegistrar \
.registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \ .registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \
"mkldnn_" #ACT_TYPE); \ "mkldnn_" #ACT_TYPE); \
}); });
/**
* @def DEFINE_MKLDNN_ACTIVATION
*/
#define DEFINE_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
END_MKLDNN_ACTIVATION(ACT_TYPE)
/**
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
*/
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION( \
ACT_TYPE, BASE_CLASS, ALPHA, BWD_ALPHA) \
BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
private: \
static const float alpha; \
static const float bwdAlpha; \
\
public: \
float getAlpha() const { return alpha; } \
float getBwdAlpha() const { return bwdAlpha; } \
END_MKLDNN_ACTIVATION(ACT_TYPE) \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA;
/** /**
* @brief MKLDNN Relu Activation. * @brief MKLDNN Relu Activation.
* Actually mkldnn_relu is Leaky Relu. * Actually mkldnn_relu is Leaky Relu.
...@@ -59,19 +81,129 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar; ...@@ -59,19 +81,129 @@ static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
* f(x) = negative_slope * x (x < 0) * f(x) = negative_slope * x (x < 0)
* @note the negative_slope should be -0.f in forward * @note the negative_slope should be -0.f in forward
*/ */
DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, -0.f, 0.f) DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, MKLDNNEltwiseActivation, -0.f, 0.f)
/** /**
* @brief MKLDNN Tanh Activation. * @brief MKLDNN Tanh Activation.
*/ */
DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, 0.f, 0.f) DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, MKLDNNEltwiseActivation, 0.f, 0.f)
/** /**
* @brief MKLDNN ELU(Exponential Linear Unit) Activation. * @brief MKLDNN ELU(Exponential Linear Unit) Activation.
* f(x) = x (x >= 0) * f(x) = x (x >= 0)
* f(x) = negative_slope * (exp(x) - 1) (x < 0) * f(x) = negative_slope * (exp(x) - 1) (x < 0)
*/ */
DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, 0.f, 0.f) DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, MKLDNNEltwiseActivation, 0.f, 0.f)
mkldnn::algorithm MKLDNNEltwiseActivation::getAlgo(std::string type) const {
const std::map<std::string, mkldnn::algorithm> algoMap = {
{"relu", algorithm::eltwise_relu},
{"tanh", algorithm::eltwise_tanh},
{"elu", algorithm::eltwise_elu}};
type.erase(0, 7); // remove mkldnn_
algorithm algo = (algorithm)0;
mapGet(type, algoMap, &algo);
return algo;
}
void MKLDNNEltwiseActivation::resetFwd(Argument& act) {
if (cnt_ == act.value->getElementCnt()) {
return;
}
MKLDNNActivation::resetFwd(act);
// note: alpha represents the NegativeSlope when used in relu.
float alpha = getAlpha();
float beta = getBeta();
algorithm algo = getAlgo(this->getName());
auto fwdDesc = eltwise_fwd::desc(mkldnn::prop_kind::forward_training,
algo,
val_->getMemoryDesc(),
alpha,
beta);
fwdPD_.reset(new eltwise_fwd::primitive_desc(fwdDesc, *engine_));
// use inplace for forward but save input value before submit
inVal_ = val_;
copyInVal_ = nullptr;
if (act.grad && algo == algorithm::eltwise_tanh) {
// tanh need save src input for backward
inVal_ = MKLDNNMatrix::create(nullptr, val_->getPrimitiveDesc());
copyInVal_ = std::make_shared<mkldnn::reorder>(*val_, *inVal_);
CHECK(copyInVal_) << "should not be emptry";
pipelineFwd_.push_back(*copyInVal_);
}
fwd_.reset(new eltwise_fwd(*fwdPD_, *val_, *val_));
pipelineFwd_.push_back(*fwd_);
needResetBwd_ = true;
}
void MKLDNNEltwiseActivation::resetBwd(Argument& act) {
if (!needResetBwd_) {
return;
}
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
needResetBwd_ = false;
algorithm algo = getAlgo(this->getName());
float alpha = getBwdAlpha();
float beta = getBeta();
grad_ = MKLDNNMatrix::create(act.grad, val_->getPrimitiveDesc());
auto eng = CPUEngine::Instance().getEngine();
auto bwdDesc = eltwise_bwd::desc(
algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta);
auto bwdPD = eltwise_bwd::primitive_desc(bwdDesc, eng, *fwdPD_);
CHECK(inVal_);
bwd_.reset(new eltwise_bwd(bwdPD, *inVal_, *grad_, *grad_));
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwd_);
}
/**
* @brief MKLDNN Softmax Activation
*/
DEFINE_MKLDNN_ACTIVATION(softmax, MKLDNNSoftmaxActivation)
void MKLDNNSoftmaxActivation::resetFwd(Argument& act) {
if (cnt_ == act.value->getElementCnt()) {
return;
}
MKLDNNActivation::resetFwd(act);
int axis = 1;
auto fwdDesc = softmax_fwd::desc(
mkldnn::prop_kind::forward_scoring, val_->getMemoryDesc(), axis);
auto fwdPD = softmax_fwd::primitive_desc(fwdDesc, *engine_);
fwd_.reset(new softmax_fwd(fwdPD, *val_, *val_));
pipelineFwd_.push_back(*fwd_);
}
Error __must_check MKLDNNSoftmaxActivation::forward(Argument& act) {
resetFwd(act);
stream_->submit(pipelineFwd_);
real* v = act.value->getData();
real threshold = exp(-64);
#pragma omp parallel for
for (size_t i = 0; i < act.value->getElementCnt(); ++i) {
v[i] = v[i] < threshold ? threshold : v[i];
}
return Error();
}
Error __must_check MKLDNNSoftmaxActivation::backward(Argument& act) {
MatrixPtr outputV = act.value;
MatrixPtr outputG = act.grad;
Matrix::resizeOrCreate(sftMaxDot_,
outputG->getHeight(),
outputG->getWidth(),
/* trans */ false,
/* useGpu */ false);
Matrix::resizeOrCreate(sftMaxSum_,
outputG->getHeight(),
1,
/* trans */ false,
/* useGpu */ false);
sftMaxDot_->dotMul(*outputG, *outputV);
sftMaxSum_->colMerge(*sftMaxDot_);
act.grad->softmaxDerivative(*act.value, *sftMaxSum_);
return Error();
}
ActivationFunction* MKLDNNActivation::create(const std::string& type) { ActivationFunction* MKLDNNActivation::create(const std::string& type) {
return gMKLDNNActivationRegistrar.createByType(type); return gMKLDNNActivationRegistrar.createByType(type);
...@@ -84,4 +216,34 @@ std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() { ...@@ -84,4 +216,34 @@ std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
return types; return types;
} }
void MKLDNNActivation::resetFwd(Argument& act) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
cnt_ = act.value->getElementCnt();
pipelineFwd_.clear();
stream_.reset(new MKLDNNStream());
engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0));
val_ = std::dynamic_pointer_cast<MKLDNNMatrix>(act.value);
if (val_ == nullptr) {
int bs = act.getBatchSize();
int ih = act.getFrameHeight() > 0 ? act.getFrameHeight() : 1;
int iw = act.getFrameWidth() > 0 ? act.getFrameWidth() : 1;
int ic = cnt_ / bs / ih / iw;
CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw);
val_ = MKLDNNMatrix::create(
act.value, {bs, ic, ih, iw}, mkldnn::memory::format::nchw, *engine_);
CHECK(val_);
val_->downSpatial();
}
}
Error __must_check MKLDNNActivation::forward(Argument& act) {
resetFwd(act);
stream_->submit(pipelineFwd_);
return Error();
}
Error __must_check MKLDNNActivation::backward(Argument& act) {
resetBwd(act);
stream_->submit(pipelineBwd_);
return Error();
}
} // namespace paddle } // namespace paddle
...@@ -36,6 +36,7 @@ protected: ...@@ -36,6 +36,7 @@ protected:
// mkldnn matrix, primitive, stream and pipeline // mkldnn matrix, primitive, stream and pipeline
MKLDNNMatrixPtr val_; MKLDNNMatrixPtr val_;
MKLDNNMatrixPtr grad_; MKLDNNMatrixPtr grad_;
std::shared_ptr<mkldnn::engine> engine_;
std::shared_ptr<MKLDNNStream> stream_; std::shared_ptr<MKLDNNStream> stream_;
std::shared_ptr<mkldnn::primitive> fwd_; std::shared_ptr<mkldnn::primitive> fwd_;
std::shared_ptr<mkldnn::primitive> bwd_; std::shared_ptr<mkldnn::primitive> bwd_;
...@@ -48,8 +49,18 @@ public: ...@@ -48,8 +49,18 @@ public:
static ActivationFunction* create(const std::string& type); static ActivationFunction* create(const std::string& type);
static std::vector<std::string> getAllRegisteredTypes(); static std::vector<std::string> getAllRegisteredTypes();
virtual const std::string& getName() const = 0; virtual const std::string& getName() const = 0;
virtual Error __must_check forward(Argument& act) = 0; /**
virtual Error __must_check backward(Argument& act) = 0; * reset the forward primitives
*/
virtual void resetFwd(Argument& act);
/**
* reset the backward primitives,
* can not merge this functions into resetFwd as the grad data
* would be changing before backward.
*/
virtual void resetBwd(Argument& act) {}
virtual Error __must_check forward(Argument& act);
virtual Error __must_check backward(Argument& act);
}; };
/** /**
...@@ -59,6 +70,7 @@ public: ...@@ -59,6 +70,7 @@ public:
class MKLDNNEltwiseActivation : public MKLDNNActivation { class MKLDNNEltwiseActivation : public MKLDNNActivation {
typedef mkldnn::eltwise_forward eltwise_fwd; typedef mkldnn::eltwise_forward eltwise_fwd;
typedef mkldnn::eltwise_backward eltwise_bwd; typedef mkldnn::eltwise_backward eltwise_bwd;
typedef mkldnn::algorithm algorithm;
protected: protected:
// save the forward primitive desc, which can be used backward // save the forward primitive desc, which can be used backward
...@@ -70,9 +82,7 @@ protected: ...@@ -70,9 +82,7 @@ protected:
public: public:
MKLDNNEltwiseActivation() {} MKLDNNEltwiseActivation() {}
~MKLDNNEltwiseActivation() {} ~MKLDNNEltwiseActivation() {}
virtual const std::string& getName() const = 0; virtual const std::string& getName() const = 0;
// in common, the alpha of forward and backward should be equal. // in common, the alpha of forward and backward should be equal.
...@@ -80,105 +90,30 @@ public: ...@@ -80,105 +90,30 @@ public:
virtual float getAlpha() const = 0; virtual float getAlpha() const = 0;
virtual float getBwdAlpha() const = 0; virtual float getBwdAlpha() const = 0;
virtual float getBeta() const { return 0.f; } virtual float getBeta() const { return 0.f; }
virtual mkldnn::algorithm getAlgo(const std::string& type) const { virtual algorithm getAlgo(std::string type) const;
if (type == "mkldnn_relu") { void resetFwd(Argument& act) override;
return mkldnn::algorithm::eltwise_relu; void resetBwd(Argument& act) override;
} else if (type == "mkldnn_tanh") { };
return mkldnn::algorithm::eltwise_tanh;
} else if (type == "mkldnn_elu") {
return mkldnn::algorithm::eltwise_elu;
} else {
LOG(FATAL) << "Unkown eltwise activation type: " << type;
}
return (mkldnn::algorithm)0;
}
/**
* reshape and reset the forward primitives
*/
void resetFwd(Argument& act) {
if (cnt_ == act.value->getElementCnt()) {
return;
}
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
cnt_ = act.value->getElementCnt();
stream_.reset(new MKLDNNStream());
auto eng = CPUEngine::Instance().getEngine();
// get algo setting
mkldnn::algorithm algo = getAlgo(this->getName());
// note: alpha represents the NegativeSlope when used in relu.
float alpha = getAlpha();
float beta = getBeta();
pipelineFwd_.clear();
val_ = std::dynamic_pointer_cast<MKLDNNMatrix>(act.value);
if (val_ == nullptr) {
int bs = act.getBatchSize();
int ih = act.getFrameHeight() > 0 ? act.getFrameHeight() : 1;
int iw = act.getFrameWidth() > 0 ? act.getFrameWidth() : 1;
int ic = cnt_ / bs / ih / iw;
CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw);
val_ = MKLDNNMatrix::create(
act.value, {bs, ic, ih, iw}, mkldnn::memory::format::nchw, eng);
CHECK(val_);
}
auto fwdDesc = eltwise_fwd::desc(mkldnn::prop_kind::forward_training,
algo,
val_->getMemoryDesc(),
alpha,
beta);
fwdPD_.reset(new eltwise_fwd::primitive_desc(fwdDesc, eng));
// use inplace for forward but save input value before submit
inVal_ = val_;
copyInVal_ = nullptr;
if (act.grad && algo == mkldnn::algorithm::eltwise_tanh) {
// tanh need save src input for backward
inVal_ = MKLDNNMatrix::create(nullptr, val_->getPrimitiveDesc());
copyInVal_ = std::make_shared<mkldnn::reorder>(*val_, *inVal_);
CHECK(copyInVal_) << "should not be emptry";
pipelineFwd_.push_back(*copyInVal_);
}
fwd_.reset(new eltwise_fwd(*fwdPD_, *val_, *val_));
pipelineFwd_.push_back(*fwd_);
needResetBwd_ = true;
}
/** /**
* reset the backward primitives, can not merge into resetFwd as the grad data * @brief Base class of MKLDNN softmax Activation,
* would be changing before backward. * only have mkldnn forward, use cpu implement for backward.
*/ */
void resetBwd(Argument& act) { class MKLDNNSoftmaxActivation : public MKLDNNActivation {
if (!needResetBwd_) { typedef mkldnn::softmax_forward softmax_fwd;
return;
}
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
needResetBwd_ = false;
mkldnn::algorithm algo = getAlgo(this->getName());
float alpha = getBwdAlpha();
float beta = getBeta();
grad_ = MKLDNNMatrix::create(act.grad, val_->getPrimitiveDesc());
auto eng = CPUEngine::Instance().getEngine();
auto bwdDesc = eltwise_bwd::desc(
algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta);
auto bwdPD = eltwise_bwd::primitive_desc(bwdDesc, eng, *fwdPD_);
CHECK(inVal_);
bwd_.reset(new eltwise_bwd(bwdPD, *inVal_, *grad_, *grad_));
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwd_);
}
Error __must_check forward(Argument& act) { private:
resetFwd(act); // for backward
stream_->submit(pipelineFwd_); MatrixPtr sftMaxSum_;
return Error(); MatrixPtr sftMaxDot_;
}
Error __must_check backward(Argument& act) { public:
resetBwd(act); MKLDNNSoftmaxActivation() {}
stream_->submit(pipelineBwd_); ~MKLDNNSoftmaxActivation() {}
return Error(); virtual const std::string& getName() const = 0;
} void resetFwd(Argument& act) override;
Error __must_check forward(Argument& act) override;
Error __must_check backward(Argument& act) override;
}; };
} // namespace paddle } // namespace paddle
...@@ -222,8 +222,8 @@ static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) { ...@@ -222,8 +222,8 @@ static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
} }
void testActivation(std::string& actType, const testActDesc& pm) { void testActivation(std::string& actType, const testActDesc& pm) {
// TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation // TODO(TJ): remove me when paddle support elu activation
if (actType == "mkldnn_softmax" || actType == "mkldnn_elu") { if (actType == "mkldnn_elu") {
return; return;
} }
const std::string compareTypes[] = {actType, actType.erase(0, 7)}; const std::string compareTypes[] = {actType, actType.erase(0, 7)};
......
...@@ -69,8 +69,12 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { ...@@ -69,8 +69,12 @@ class AccuracyOpCUDAKernel : public framework::OpKernel {
return; return;
} }
AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS>>>( AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<
num_samples, infer_width, inference_data, label_data, accuracy_data); 1, PADDLE_CUDA_NUM_THREADS, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(num_samples, infer_width, inference_data, label_data,
accuracy_data);
} }
}; };
......
...@@ -23,27 +23,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel { ...@@ -23,27 +23,28 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) must not be null."); "Input(Label) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"), "Output(Y) must not be null."); PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
"Output(Y) should be not null.");
auto x = ctx.Input<Tensor>("X"); auto x = ctx.Input<Tensor>("X");
auto label = ctx.Input<Tensor>("Label"); auto label = ctx.Input<Tensor>("Label");
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2."); PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2, PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2."); "Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0], PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must " "The 1st dimension of Input(X) and Input(Label) should "
"be equal."); "be equal.");
if (ctx.Attr<bool>("soft_label")) { if (ctx.Attr<bool>("softLabel")) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1], PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == true, The 2nd dimension of " "If Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) must be equal."); "Input(X) and Input(Label) should be equal.");
} else { } else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1, PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == false, The 2nd dimension of " "If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) must be 1."); "Input(Label) should be 1.");
} }
ctx.Output<Tensor>("Y")->Resize({x->dims()[0], 1}); ctx.Output<Tensor>("Y")->Resize({x->dims()[0], 1});
...@@ -57,35 +58,38 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { ...@@ -57,35 +58,38 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) must not be null."); "Input(Label) should be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
"Input(Y@GRAD) must not be null."); "Input(Y@GRAD) shoudl be not null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(framework::GradVarName("X")),
"Output(X@GRAD) should be not null.");
auto x = ctx.Input<Tensor>("X"); auto x = ctx.Input<Tensor>("X");
auto label = ctx.Input<Tensor>("Label"); auto label = ctx.Input<Tensor>("Label");
auto dy = ctx.Input<Tensor>(framework::GradVarName("Y")); auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2."); PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2."); PADDLE_ENFORCE_EQ(dy->dims().size(), 2,
"Input(Y@Grad)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2, PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2."); "Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0], PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must " "The 1st dimension of Input(X) and Input(Label) should "
"be equal."); "be equal.");
PADDLE_ENFORCE_EQ(x->dims()[0], dy->dims()[0], PADDLE_ENFORCE_EQ(x->dims()[0], dy->dims()[0],
"The 1st dimension of Input(X) and Input(Y@Grad) must " "The 1st dimension of Input(X) and Input(Y@Grad) should "
"be equal."); "be equal.");
PADDLE_ENFORCE_EQ(dy->dims()[1], 1, PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
"The 2nd dimension of Input(Y@Grad) must be 1."); "The 2nd dimension of Input(Y@Grad) should be 1.");
if (ctx.Attr<bool>("soft_label")) { if (ctx.Attr<bool>("softLabel")) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1], PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == true, The 2nd dimension of " "When Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) must be equal."); "Input(X) and Input(Label) should be equal.");
} else { } else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1, PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == false, The 2nd dimension of " "When Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) must be 1."); "Input(Label) should be 1.");
} }
auto dx = ctx.Output<Tensor>(framework::GradVarName("X")); auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
...@@ -98,24 +102,39 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -98,24 +102,39 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
CrossEntropyOpMaker(framework::OpProto *proto, CrossEntropyOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker) framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of CrossEntropyOp"); AddInput("X",
AddInput("Label", "The second input of CrossEntropyOp"); "(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
AddOutput("Y", "The output of CrossEntropyOp"); "where N is the batch size and D is the number of classes. "
AddAttr<bool>("soft_label", "Is soft label. Default zero.") "This input is a probability computed by the previous operator, "
"which is almost always the result of a softmax operator.");
AddInput(
"Label",
"(Tensor, default Tensor<int>), the ground truth which is "
"a 2-D tensor. "
"When softLabel is set to false, `Label` is a Tensor<int> with shape "
"[N x 1]. "
"When softLabel is set to true, `Label` is a Tensor<float/double> "
"with shape [N x K].");
AddOutput("Y",
"(Tensor, default Tensor<float>), a 2-D tensor "
"with shape [N x 1]. The cross entropy loss.");
AddAttr<bool>(
"softLabel",
"(bool, default false), a flag to indicate whether to interpretate "
"the given labels as soft labels.")
.SetDefault(false); .SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
CrossEntropy Operator. CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss It supports both standard cross-entropy and soft-label cross-entropy loss
computation. computation.
1) One-hot cross-entropy: 1) One-hot cross-entropy:
soft_label = False, Label[i, 0] indicates the class index for sample i: softLabel = false, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]]) Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy: 2) Soft-label cross-entropy:
soft_label = True, Label[i, j] indicates the soft label of class j softLabel = true, Label[i, j] indicates the soft label of class j
for sample i: for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])} Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
......
...@@ -28,26 +28,49 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, ...@@ -28,26 +28,49 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) { i += blockDim.x * gridDim.x) {
PADDLE_ASSERT(label[i] >= 0 && label[i] < D); PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
Y[i] = -tolerable_value(log(X[i * D + label[i]])); Y[i] = -TolerableValue<T>()(log(X[i * D + label[i]]));
} }
} }
template <typename T>
__device__ __forceinline__ T sum_single_warp(T val) {
val += __shfl_down(val, 16);
val += __shfl_down(val, 8);
val += __shfl_down(val, 4);
val += __shfl_down(val, 2);
val += __shfl_down(val, 1);
return val;
}
template <typename T> template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label, __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
const int N, const int D) { const int class_num) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; int tid = threadIdx.x;
i += blockDim.x * gridDim.x) { extern __shared__ T d_sum[];
T sum = static_cast<T>(0); d_sum[tid] = 0;
for (int j = 0; j < D; j++) {
sum += label[i * D + j] * tolerable_value(log(X[i * D + j])); int cur_idx = tid;
int next_idx = blockIdx.x * class_num + tid;
while (cur_idx < class_num) {
d_sum[tid] += TolerableValue<T>()(std::log(X[next_idx])) * label[next_idx];
next_idx += blockDim.x;
cur_idx += blockDim.x;
} }
Y[i] = -sum; __syncthreads();
for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) {
if (tid < stride) d_sum[tid] += d_sum[tid + stride];
__syncthreads();
} }
T val = d_sum[tid];
val = sum_single_warp<T>(val);
if (tid == 0) Y[blockIdx.x] = -val;
} }
// TODO(qingqing): make zero setting an common function. // TODO(qingqing): make zero setting a common function.
template <typename T> template <typename T>
__global__ void zero(T* X, const int N) { __global__ void Zero(T* X, const int N) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) { i += blockDim.x * gridDim.x) {
X[i] = 0.0; X[i] = 0.0;
...@@ -71,13 +94,10 @@ template <typename T> ...@@ -71,13 +94,10 @@ template <typename T>
__global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X, __global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
const T* label, const int N, const T* label, const int N,
const int D) { const int D) {
// TOOD(qingqing): optimize for this kernel int ids = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; if (ids < N * D) {
i += blockDim.x * gridDim.x) { int row_ids = ids / D;
for (int j = 0; j < D; ++j) { dX[ids] = -label[ids] * dY[row_ids] / X[ids];
int idx = i * D + j;
dX[idx] = -label[idx] * dY[i] / X[idx];
}
} }
} }
...@@ -86,29 +106,36 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel { ...@@ -86,29 +106,36 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace."); "This kernel only runs on GPU device.");
auto x = ctx.Input<Tensor>("X"); const Tensor* x = ctx.Input<Tensor>("X");
auto y = ctx.Output<Tensor>("Y"); const Tensor* label = ctx.Input<Tensor>("Label");
auto label = ctx.Input<Tensor>("Label"); Tensor* y = ctx.Output<Tensor>("Y");
auto* x_data = x->data<T>(); const T* x_data = x->data<T>();
y->mutable_data<T>(ctx.GetPlace()); T* y_data = y->mutable_data<T>(ctx.GetPlace());
auto* y_data = y->data<T>();
int n = x->dims()[0]; int batch_size = x->dims()[0];
int d = x->dims()[1]; int class_num = x->dims()[1];
int block = 512;
int grid = (n + block - 1) / block; if (ctx.Attr<bool>("softLabel")) {
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>(); auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
SoftCrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n, int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num)));
d);
SoftCrossEntropyKernel<
T><<<batch_size, block, block * sizeof(T),
reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(y_data, x_data, label_data, class_num);
} else { } else {
auto* label_data = ctx.Input<Tensor>("Label")->data<int>(); auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
CrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n, d); int block = 512;
int grid = (batch_size + block - 1) / block;
CrossEntropyKernel<T><<<
grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(y_data, x_data, label_data,
batch_size, class_num);
} }
} }
}; };
...@@ -118,33 +145,43 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { ...@@ -118,33 +145,43 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace."); "This kernel only runs on GPU device.");
const Tensor* x = ctx.Input<Tensor>("X");
const Tensor* label = ctx.Input<Tensor>("Label");
Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto x = ctx.Input<Tensor>("X"); const T* dy_data =
auto dx = ctx.Output<Tensor>(framework::GradVarName("X")); ctx.Input<Tensor>(framework::GradVarName("Y"))->data<T>();
auto dy = ctx.Input<Tensor>(framework::GradVarName("Y")); T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto label = ctx.Input<Tensor>("Label"); const T* x_data = x->data<T>();
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace()); int batch_size = x->dims()[0];
auto* dy_data = dy->data<T>(); int class_num = x->dims()[1];
auto* x_data = x->data<T>();
int n = x->dims()[0];
int d = x->dims()[1];
int block = 512; int block = 512;
int grid = (n * d + block - 1) / block; int grid = (batch_size * class_num + block - 1) / block;
zero<T><<<grid, block>>>(dx_data, n * d);
grid = (n + block - 1) / block; if (ctx.Attr<bool>("softLabel")) {
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = label->data<T>(); auto* label_data = label->data<T>();
SoftCrossEntropyGradientKernel<T><<<grid, block>>>( SoftCrossEntropyGradientKernel<T><<<
dx_data, dy_data, x_data, label_data, n, d); grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(dx_data, dy_data, x_data, label_data,
batch_size, class_num);
} else { } else {
Zero<T><<<grid, block, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(dx_data, batch_size * class_num);
auto* label_data = label->data<int>(); auto* label_data = label->data<int>();
CrossEntropyGradientKernel<T><<<grid, block>>>(dx_data, dy_data, x_data, grid = (batch_size + block - 1) / block;
label_data, n, d); CrossEntropyGradientKernel<T><<<
grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(dx_data, dy_data, x_data, label_data,
batch_size, class_num);
} }
} }
}; };
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/hostdevice.h" #include "paddle/platform/hostdevice.h"
...@@ -20,53 +21,51 @@ namespace paddle { ...@@ -20,53 +21,51 @@ namespace paddle {
namespace operators { namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename T> template <typename T>
HOSTDEVICE T tolerable_value(const T x) { struct TolerableValue {
HOSTDEVICE T operator()(const T& x) const {
PADDLE_ASSERT(std::is_floating_point<T>::value); PADDLE_ASSERT(std::is_floating_point<T>::value);
const T kApproInf = 1e20; const T kApproInf = 1e20;
if (x == INFINITY) {
return kApproInf; if (x == INFINITY) return kApproInf;
} if (x == -INFINITY) return -kApproInf;
if (x == -INFINITY) {
return -kApproInf;
}
return x; return x;
} }
};
template <typename T> template <typename T>
class CrossEntropyOpKernel : public framework::OpKernel { class CrossEntropyOpKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace."); "This kernel only runs on CPU.");
const Tensor* x = ctx.Input<Tensor>("X");
auto x = ctx.Input<Tensor>("X"); const Tensor* labels = ctx.Input<Tensor>("Label");
auto y = ctx.Output<Tensor>("Y"); Tensor* y = ctx.Output<Tensor>("Y");
T* y_data = y->mutable_data<T>(ctx.GetPlace());
auto* x_data = x->data<T>();
y->mutable_data<T>(ctx.GetPlace()); const int batch_size = x->dims()[0];
auto* y_data = y->data<T>(); if (ctx.Attr<bool>("softLabel")) {
auto prob = EigenMatrix<T>::From(*x);
int batch_size = x->dims()[0]; auto lbl_mat = EigenMatrix<T>::From(*labels);
int class_num = x->dims()[1]; auto loss = EigenMatrix<T>::From(*y);
if (ctx.Attr<bool>("soft_label")) { loss.device(ctx.GetEigenDevice<platform::CPUPlace>()) =
auto* label_data = ctx.Input<Tensor>("Label")->data<T>(); -((lbl_mat * prob.log().unaryExpr(TolerableValue<T>()))
int index = 0; .sum(Eigen::DSizes<int, 1>(1))
for (int i = 0; i < batch_size; ++i) { .reshape(Eigen::DSizes<int, 2>(batch_size, 1)));
T sum = static_cast<T>(0);
for (int j = 0; j < class_num; ++j) {
sum += label_data[index] * tolerable_value(std::log(x_data[index]));
y_data[i] = -sum;
index++;
}
}
} else { } else {
auto* label_data = ctx.Input<Tensor>("Label")->data<int>(); const int class_num = x->dims()[1];
const T* x_data = x->data<T>();
const int* label_data = labels->data<int>();
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
int index = i * class_num + label_data[i]; int index = i * class_num + label_data[i];
y_data[i] = -tolerable_value(std::log(x_data[index])); y_data[i] = -TolerableValue<T>()(std::log(x_data[index]));
} }
} }
} }
...@@ -77,33 +76,32 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { ...@@ -77,33 +76,32 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace."); "This kernel only runs on CPU.");
const Tensor* x = ctx.Input<Tensor>("X");
auto x = ctx.Input<Tensor>("X"); const Tensor* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto dx = ctx.Output<Tensor>(framework::GradVarName("X")); const Tensor* label = ctx.Input<Tensor>("Label");
auto dy = ctx.Input<Tensor>(framework::GradVarName("Y")); Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto label = ctx.Input<Tensor>("Label"); T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto* dy_data = dy->data<T>();
auto* x_data = x->data<T>();
int batch_size = x->dims()[0];
int class_num = x->dims()[1]; int class_num = x->dims()[1];
if (ctx.Attr<bool>("softLabel")) {
// TODO(qingqing): make zero setting an common function. auto x_mat = EigenMatrix<T>::From(*x);
if (ctx.Attr<bool>("soft_label")) { auto dy_mat = EigenMatrix<T>::From(*dy);
auto* label_data = ctx.Input<Tensor>("Label")->data<T>(); auto lbl_mat = EigenMatrix<T>::From(*label);
int index = 0; auto dx_mat = EigenMatrix<T>::From(*dx);
for (int i = 0; i < batch_size; ++i) {
for (int j = 0; j < class_num; ++j) { dx_mat.device(ctx.GetEigenDevice<platform::CPUPlace>()) =
dx_data[index] = -label_data[index] * dy_data[i] / x_data[index]; -(lbl_mat * dy_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) /
index++; x_mat);
}
}
} else { } else {
auto* label_data = label->data<int>(); int batch_size = x->dims()[0];
const T* dy_data = dy->data<T>();
const T* x_data = x->data<T>();
const int* label_data = label->data<int>();
// TODO(qingqing): make zero setting a common function.
memset(dx_data, 0, sizeof(T) * batch_size * class_num); memset(dx_data, 0, sizeof(T) * batch_size * class_num);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
int index = i * class_num + label_data[i]; int index = i * class_num + label_data[i];
......
...@@ -77,7 +77,10 @@ class LookupTableCUDAKernel : public framework::OpKernel { ...@@ -77,7 +77,10 @@ class LookupTableCUDAKernel : public framework::OpKernel {
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grids(8, 1); dim3 grids(8, 1);
LookupTable<T, 128, 8, 8><<<grids, threads>>>(output, table, ids, N, K, D); LookupTable<T, 128, 8, 8><<<
grids, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
context.device_context())
.stream()>>>(output, table, ids, N, K, D);
} }
}; };
...@@ -102,8 +105,10 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { ...@@ -102,8 +105,10 @@ class LookupTableGradCUDAKernel : public framework::OpKernel {
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grids(8, 1); dim3 grids(8, 1);
LookupTableGrad<T, 128, 8, 8><<<grids, threads>>>(d_table, d_output, ids, N, LookupTableGrad<T, 128, 8, 8><<<
K, D); grids, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
context.device_context())
.stream()>>>(d_table, d_output, ids, N, K, D);
} }
}; };
......
...@@ -18,7 +18,6 @@ namespace paddle { ...@@ -18,7 +18,6 @@ namespace paddle {
namespace operators { namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
class MultiplexOp : public framework::OperatorWithKernel { class MultiplexOp : public framework::OperatorWithKernel {
public: public:
...@@ -26,24 +25,31 @@ class MultiplexOp : public framework::OperatorWithKernel { ...@@ -26,24 +25,31 @@ class MultiplexOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Ids"),
"Input(Ids) shouldn't be null.");
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(), PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
"Input(X) should not be null"); "MultiInput(X) shouldn't be empty.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"), PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) shouldn't be null."); "Output(Out) shouldn't be null.");
auto ids_dim = ctx.Input<Tensor>("Ids")->dims();
PADDLE_ENFORCE(
ids_dim.size() == 2 && ids_dim[1] == 1,
"The index tensor must be a vector with size batchSize x 1.");
auto ins = ctx.MultiInput<Tensor>("X"); auto ins = ctx.MultiInput<Tensor>("X");
auto *out = ctx.Output<LoDTensor>("Out"); auto *out = ctx.Output<Tensor>("Out");
auto num_ins = ins.size(); auto num_ins = ins.size();
PADDLE_ENFORCE(num_ins > 2, PADDLE_ENFORCE(num_ins > 1,
"multiplex operator should have more than 2 inputs."); "multiplex operator should have more than "
PADDLE_ENFORCE_EQ(ins[0]->dims().size(), 1, "one candidate input tensors.");
"The first input must be a index vector.");
auto in_dim = ins[1]->dims(); auto in_dim = ins[0]->dims();
PADDLE_ENFORCE(in_dim.size() >= 2,
for (size_t i = 2; i < num_ins; i++) { "The rank of candidate tensors must be not less than 2.");
for (size_t i = 1; i < num_ins; i++) {
auto dim = ins[i]->dims(); auto dim = ins[i]->dims();
PADDLE_ENFORCE( PADDLE_ENFORCE(in_dim == dim,
in_dim == dim, "All the candidate tensors must have the same size.");
"All the input tensors except the first one must have the same size");
} }
out->Resize(in_dim); out->Resize(in_dim);
} }
...@@ -54,25 +60,25 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -54,25 +60,25 @@ class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
MultiplexOpMaker(framework::OpProto *proto, MultiplexOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker) framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensors of multiplex operator.").AsDuplicable(); AddInput("Ids", "The index tensor of multiplex operator.");
AddInput("X", "The candidate tensors of multiplex operator.")
.AsDuplicable();
AddOutput("Out", "The output tensor of multiplex operator."); AddOutput("Out", "The output tensor of multiplex operator.");
AddComment(R"DOC(Multiplex operator AddComment(R"DOC(Multiplex operator
Multiplex multiple tensors according to the index provided by the first Multiplex multiple tensors according to the index provided by the index tensor.
input tensor.
ins[0]: the index tensor. Ids: the index tensor.
ins[1:N]: the candidate output tensors. X[0 : N - 1]: the candidate tensors for output (N >= 2).
For each index i from 0 to batchSize - 1, the output is the i-th row of the For each index i from 0 to batchSize - 1, the output is the i-th row of the
the (index[i] + 1)-th tensor. the (Ids[i])-th tensor.
For i-th row of the output tensor: For i-th row of the output tensor:
y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1) y[i] = x_{k}[i]
where y is the output tensor. `x_{k}` is the k-th input tensor where y is the output tensor. `x_{k}` is the k-th input tensor
and `k = x{0}[i] + 1`. and `k = Ids[i]`.
)DOC"); )DOC");
} }
}; };
...@@ -84,15 +90,15 @@ class MultiplexGradOp : public framework::OperatorWithKernel { ...@@ -84,15 +90,15 @@ class MultiplexGradOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(), PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
"Input(X) should not be null"); "Input(X) should not be null.");
PADDLE_ENFORCE(!ctx.MultiOutputVar(framework::GradVarName("X")).empty(), PADDLE_ENFORCE(!ctx.MultiOutputVar(framework::GradVarName("X")).empty(),
"Output(X@Grad) should not be null"); "Output(X@Grad) should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null."); "Input(Out@GRAD) should not be null.");
auto d_ins = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X")); auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
auto ins = ctx.MultiInput<Tensor>("X"); auto ins = ctx.MultiInput<Tensor>("X");
// don't compute gradient for index (ins[0]) // No need to compute gradient for Input(Ids)
for (size_t i = 1; i < ins.size(); i++) { for (size_t i = 0; i < ins.size(); i++) {
if (d_ins[i]) { if (d_ins[i]) {
d_ins[i]->Resize(ins[i]->dims()); d_ins[i]->Resize(ins[i]->dims());
} }
......
...@@ -18,27 +18,30 @@ ...@@ -18,27 +18,30 @@
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using Tensor = framework::Tensor;
template <typename Place, typename T> template <typename Place, typename T>
class MultiplexGPUKernel : public framework::OpKernel { class MultiplexGPUKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext& ctx) const {
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<Tensor>("X");
auto* out = ctx.Output<framework::LoDTensor>("Out"); auto* ids = ctx.Input<Tensor>("Ids");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace()); out->mutable_data<T>(ctx.GetPlace());
auto rows = ins[1]->dims()[0]; auto rows = ins[0]->dims()[0];
auto cols = ins[1]->dims()[1]; auto cols = ins[0]->numel() / rows;
// copy index to cpu // copy index to cpu
framework::Tensor index_t_cpu; Tensor index_t_cpu;
index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace()); index_t_cpu.CopyFrom<int32_t>(*ids, platform::CPUPlace());
auto* index = index_t_cpu.data<T>(); auto* index = index_t_cpu.data<int32_t>();
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>( auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context()) ctx.device_context())
.stream(); .stream();
Place place = boost::get<Place>(ctx.GetPlace()); Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) { for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1; int32_t k = index[i];
PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative.");
PADDLE_ENFORCE_LT(k, ins.size(), PADDLE_ENFORCE_LT(k, ins.size(),
"index exceeds the number of candidate tensors."); "index exceeds the number of candidate tensors.");
memory::Copy(place, out->data<T>() + i * cols, place, memory::Copy(place, out->data<T>() + i * cols, place,
...@@ -51,11 +54,11 @@ template <typename Place, typename T> ...@@ -51,11 +54,11 @@ template <typename Place, typename T>
class MultiplexGradGPUKernel : public framework::OpKernel { class MultiplexGradGPUKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); auto* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<Tensor>("X");
auto d_ins = auto* ids = ctx.Input<Tensor>("Ids");
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X")); auto d_ins = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
for (size_t i = 1; i < d_ins.size(); i++) { for (size_t i = 0; i < d_ins.size(); i++) {
if (d_ins[i]) { if (d_ins[i]) {
d_ins[i]->mutable_data<T>(ctx.GetPlace()); d_ins[i]->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]); auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
...@@ -63,19 +66,19 @@ class MultiplexGradGPUKernel : public framework::OpKernel { ...@@ -63,19 +66,19 @@ class MultiplexGradGPUKernel : public framework::OpKernel {
} }
} }
auto rows = ins[1]->dims()[0]; auto rows = ins[0]->dims()[0];
auto cols = ins[1]->dims()[1]; auto cols = ins[0]->numel() / rows;
// copy index to cpu // copy index to cpu
framework::Tensor index_t_cpu; Tensor index_t_cpu;
index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace()); index_t_cpu.CopyFrom<int32_t>(*ids, platform::CPUPlace());
auto* index = index_t_cpu.data<T>(); auto* index = index_t_cpu.data<int32_t>();
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>( auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context()) ctx.device_context())
.stream(); .stream();
Place place = boost::get<Place>(ctx.GetPlace()); Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) { for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1; size_t k = static_cast<size_t>(index[i]);
if (d_ins[k]) { if (d_ins[k]) {
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place, memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
d_out->data<T>() + i * cols, cols * sizeof(T), stream); d_out->data<T>() + i * cols, cols * sizeof(T), stream);
......
...@@ -27,16 +27,18 @@ class MultiplexCPUKernel : public framework::OpKernel { ...@@ -27,16 +27,18 @@ class MultiplexCPUKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext& ctx) const {
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::LoDTensor>("Out"); auto ids = ctx.Input<framework::Tensor>("Ids");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace()); out->mutable_data<T>(ctx.GetPlace());
auto rows = ins[1]->dims()[0]; auto rows = ins[0]->dims()[0];
auto cols = ins[1]->dims()[1]; auto cols = ins[0]->numel() / rows;
auto* index = ins[0]->data<T>(); auto index = ids->data<int32_t>();
Place place = boost::get<Place>(ctx.GetPlace()); Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) { for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1; int32_t k = index[i];
PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative.");
PADDLE_ENFORCE_LT(static_cast<size_t>(k), ins.size(), PADDLE_ENFORCE_LT(static_cast<size_t>(k), ins.size(),
"index exceeds the number of candidate tensors."); "index exceeds the number of candidate tensors.");
memory::Copy(place, out->data<T>() + i * cols, place, memory::Copy(place, out->data<T>() + i * cols, place,
...@@ -50,10 +52,11 @@ class MultiplexGradCPUKernel : public framework::OpKernel { ...@@ -50,10 +52,11 @@ class MultiplexGradCPUKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* ids = ctx.Input<framework::Tensor>("Ids");
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<framework::Tensor>("X");
auto d_ins = auto d_ins =
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X")); ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
for (size_t i = 1; i < d_ins.size(); i++) { for (size_t i = 0; i < d_ins.size(); i++) {
if (d_ins[i]) { if (d_ins[i]) {
d_ins[i]->mutable_data<T>(ctx.GetPlace()); d_ins[i]->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]); auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
...@@ -61,12 +64,12 @@ class MultiplexGradCPUKernel : public framework::OpKernel { ...@@ -61,12 +64,12 @@ class MultiplexGradCPUKernel : public framework::OpKernel {
} }
} }
auto rows = ins[1]->dims()[0]; auto rows = ins[0]->dims()[0];
auto cols = ins[1]->dims()[1]; auto cols = ins[0]->numel() / rows;
auto* index = ins[0]->data<T>(); auto* index = ids->data<int32_t>();
Place place = boost::get<Place>(ctx.GetPlace()); Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) { for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1; size_t k = static_cast<size_t>(index[i]);
if (d_ins[k]) { if (d_ins[k]) {
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place, memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
d_out->data<T>() + i * cols, cols * sizeof(T)); d_out->data<T>() + i * cols, cols * sizeof(T));
......
...@@ -301,14 +301,16 @@ class TopkOpCUDAKernel : public framework::OpKernel { ...@@ -301,14 +301,16 @@ class TopkOpCUDAKernel : public framework::OpKernel {
// NOTE: pass lds and dim same to input width. // NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen. // NOTE: old matrix implementation of stride is different to eigen.
// TODO(typhoonzero): launch kernel on specified stream.
// TODO(typhoonzero): refine this kernel. // TODO(typhoonzero): refine this kernel.
dim3 threads(256, 1); dim3 threads(256, 1);
dim3 grid(input_height, 1); dim3 grid(input_height, 1);
KeMatrixTopK<T, 5, 256><<<grid, threads>>>( KeMatrixTopK<T, 5, 256><<<
output_data, output->dims()[1], indices_data, input_data, input_width, grid, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
input_width, int(k)); ctx.device_context())
.stream()>>>(output_data, output->dims()[1],
indices_data, input_data,
input_width, input_width, int(k));
} }
}; };
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include "ParameterOptimizer.h" #include "ParameterOptimizer.h"
#include "ParameterUpdateFunctions.h"
#include "Regularizer.h" #include "Regularizer.h"
namespace paddle { namespace paddle {
...@@ -37,6 +38,15 @@ public: ...@@ -37,6 +38,15 @@ public:
real torch_learningRate = optConfig_.learning_method() == "torch_momentum" real torch_learningRate = optConfig_.learning_method() == "torch_momentum"
? 1.0 - paraConfig.momentum() ? 1.0 - paraConfig.momentum()
: 1.0; : 1.0;
#ifdef PADDLE_USE_MKLDNN
sgdUpdate(learningRate_ * paraConfig.learning_rate() *
(firstTime_ ? 1.0 : torch_learningRate),
paraConfig.momentum(),
applyDecay_ ? paraConfig.decay_rate() : 0,
vecs[PARAMETER_VALUE].get(),
vecs[PARAMETER_GRADIENT].get(),
vecs[PARAMETER_MOMENTUM].get());
#else
vecs[PARAMETER_VALUE]->sgdUpdate( vecs[PARAMETER_VALUE]->sgdUpdate(
*vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_GRADIENT],
*vecs[PARAMETER_MOMENTUM], *vecs[PARAMETER_MOMENTUM],
...@@ -44,6 +54,7 @@ public: ...@@ -44,6 +54,7 @@ public:
(firstTime_ ? 1.0 : torch_learningRate), (firstTime_ ? 1.0 : torch_learningRate),
paraConfig.momentum(), paraConfig.momentum(),
applyDecay_ ? paraConfig.decay_rate() : 0); applyDecay_ ? paraConfig.decay_rate() : 0);
#endif
} }
virtual void finishBatch() { firstTime_ = false; } virtual void finishBatch() { firstTime_ = false; }
}; };
......
...@@ -30,6 +30,9 @@ void sgdUpdateCpu(real learningRate, ...@@ -30,6 +30,9 @@ void sgdUpdateCpu(real learningRate,
const real* grad, const real* grad,
real* momentumVec) { real* momentumVec) {
decayRate *= learningRate; decayRate *= learningRate;
#ifdef PADDLE_USE_MKLDNN
#pragma omp parallel for
#endif
for (size_t i = 0; i < size; ++i) { for (size_t i = 0; i < size; ++i) {
momentumVec[i] = momentum * momentumVec[i] - learningRate * grad[i] - momentumVec[i] = momentum * momentumVec[i] - learningRate * grad[i] -
decayRate * value[i]; decayRate * value[i];
......
...@@ -1566,7 +1566,7 @@ class LayerBase(object): ...@@ -1566,7 +1566,7 @@ class LayerBase(object):
self.config = g_config.model_config.layers.add() self.config = g_config.model_config.layers.add()
assert isinstance(self.config, LayerConfig) assert isinstance(self.config, LayerConfig)
use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
mkldnn_acts = ['relu', 'tanh'] mkldnn_acts = ['relu', 'tanh', 'softmax']
if use_mkldnn and active_type in mkldnn_acts: if use_mkldnn and active_type in mkldnn_acts:
active_type = "mkldnn_" + active_type active_type = "mkldnn_" + active_type
self.config.name = name self.config.name = name
......
...@@ -4,22 +4,24 @@ from op_test import OpTest ...@@ -4,22 +4,24 @@ from op_test import OpTest
class TestCrossEntropyOp1(OpTest): class TestCrossEntropyOp1(OpTest):
"""Test standard cross-entropy, with index representation of labels. """Test cross-entropy with discrete one-hot labels.
""" """
def setUp(self): def setUp(self):
self.op_type = "cross_entropy" self.op_type = "cross_entropy"
batch_size = 30 batch_size = 30
class_num = 10 class_num = 10
X = np.random.uniform(0.1, 1.0, X = np.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32") [batch_size, class_num]).astype("float32")
label = np.random.randint(0, class_num, (batch_size, 1), dtype="int32") label = np.random.randint(0, class_num, (batch_size, 1), dtype="int32")
cross_entropy = np.asmatrix( cross_entropy = np.asmatrix(
[[-np.log(X[i][label[i][0]])] for i in range(X.shape[0])], [[-np.log(X[i][label[i][0]])] for i in range(X.shape[0])],
dtype="float32") dtype="float32")
self.inputs = {"X": X, "Label": label} self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy} self.outputs = {"Y": cross_entropy}
self.attrs = {'soft_label': False} self.attrs = {"softLabel": False}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -29,13 +31,14 @@ class TestCrossEntropyOp1(OpTest): ...@@ -29,13 +31,14 @@ class TestCrossEntropyOp1(OpTest):
class TestCrossEntropyOp2(OpTest): class TestCrossEntropyOp2(OpTest):
"""Test soft-label cross-entropy, with vecterized soft labels. """Test cross-entropy with vectorized soft labels.
""" """
def setUp(self): def setUp(self):
self.op_type = "cross_entropy" self.op_type = "cross_entropy"
batch_size = 10 batch_size = 5
class_num = 5 class_num = 37
X = np.random.uniform(0.1, 1.0, X = np.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32") [batch_size, class_num]).astype("float32")
label = np.random.uniform(0.1, 1.0, label = np.random.uniform(0.1, 1.0,
...@@ -43,46 +46,49 @@ class TestCrossEntropyOp2(OpTest): ...@@ -43,46 +46,49 @@ class TestCrossEntropyOp2(OpTest):
label /= label.sum(axis=1, keepdims=True) label /= label.sum(axis=1, keepdims=True)
cross_entropy = (-label * np.log(X)).sum( cross_entropy = (-label * np.log(X)).sum(
axis=1, keepdims=True).astype("float32") axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy} self.inputs = {"X": X, "Label": label}
self.attrs = {'soft_label': True} self.outputs = {"Y": cross_entropy}
self.attrs = {"softLabel": True}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Y') self.check_grad(["X"], "Y", max_relative_error=0.05)
class TestCrossEntropyOp3(OpTest): class TestCrossEntropyOp3(OpTest):
"""Test one-hot cross-entropy, with vecterized one-hot representation of """Test cross-entropy with vectorized one-hot representation of labels.
labels.
""" """
def setUp(self): def setUp(self):
self.op_type = "cross_entropy" self.op_type = "cross_entropy"
batch_size = 30 batch_size = 5
class_num = 10 class_num = 17
X = np.random.uniform(0.1, 1.0, X = np.random.uniform(0.1, 1.0,
[batch_size, class_num]).astype("float32") [batch_size, class_num]).astype("float32")
label_index = np.random.randint( label_index = np.random.randint(
0, class_num, (batch_size), dtype="int32") 0, class_num, (batch_size), dtype="int32")
label = np.zeros(X.shape) label = np.zeros(X.shape)
label[np.arange(batch_size), label_index] = 1 label[np.arange(batch_size), label_index] = 1
cross_entropy = np.asmatrix( cross_entropy = np.asmatrix(
[[-np.log(X[i][label_index[i]])] for i in range(X.shape[0])], [[-np.log(X[i][label_index[i]])] for i in range(X.shape[0])],
dtype="float32") dtype="float32")
cross_entropy2 = (-label * np.log(X)).sum( cross_entropy2 = (-label * np.log(X)).sum(
axis=1, keepdims=True).astype("float32") axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy} self.inputs = {"X": X, "Label": label}
self.attrs = {'soft_label': True} self.outputs = {"Y": cross_entropy}
self.attrs = {"softLabel": True}
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Y') self.check_grad(["X"], "Y", max_relative_error=0.05)
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -6,20 +6,22 @@ from op_test import OpTest ...@@ -6,20 +6,22 @@ from op_test import OpTest
class TestMultiplexOp(OpTest): class TestMultiplexOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "multiplex" self.op_type = "multiplex"
rows = 3 rows = 4
index = np.array([3, 1, 0]) index = np.arange(0, rows).astype('int32')
np.random.shuffle(index)
index = np.reshape(index, (rows, 1))
ins1 = np.random.random((rows, 10)).astype("float32") ins1 = np.random.random((rows, 10)).astype("float32")
ins2 = np.random.random((rows, 10)).astype("float32") ins2 = np.random.random((rows, 10)).astype("float32")
ins3 = np.random.random((rows, 10)).astype("float32") ins3 = np.random.random((rows, 10)).astype("float32")
ins4 = np.random.random((rows, 10)).astype("float32") ins4 = np.random.random((rows, 10)).astype("float32")
self.inputs = { self.inputs = {
'X': [('index', index), ('x1', ins1), ('x2', ins2), ('x3', ins3), 'Ids': index,
('x4', ins4)] 'X': [('x1', ins1), ('x2', ins2), ('x3', ins3), ('x4', ins4)]
} }
# multiplex output # multiplex output
output = np.zeros_like(ins1) output = np.zeros_like(ins1)
for i in range(0, rows): for i in range(0, rows):
k = index[i] + 1 k = index[i][0]
output[i] = self.inputs['X'][k][1][i] output[i] = self.inputs['X'][k][1][i]
self.outputs = {'Out': output} self.outputs = {'Out': output}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册