Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
620392ef
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
620392ef
编写于
9月 11, 2018
作者:
W
Wu Yi
提交者:
GitHub
9月 11, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13334 from typhoonzero/update_fluid_benchmark_resnet
sync resnet model for fluid_benchmark
上级
dfbd1cc3
5fd5bf9c
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
108 addition
and
117 deletion
+108
-117
benchmark/fluid/models/resnet.py
benchmark/fluid/models/resnet.py
+108
-117
未找到文件。
benchmark/fluid/models/resnet.py
浏览文件 @
620392ef
...
...
@@ -20,6 +20,7 @@ import functools
import
numpy
as
np
import
time
import
os
import
math
import
cProfile
,
pstats
,
StringIO
...
...
@@ -27,128 +28,120 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.profiler
as
profiler
# from recordio_converter import imagenet_train, imagenet_test
from
imagenet_reader
import
train
,
val
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
ResNet
():
def
__init__
(
self
,
layers
=
50
,
is_train
=
True
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
is_train
=
is_train
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
supported_layers
=
[
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
"supported layers are {} but input layer is {}"
.
format
(
supported_layers
,
layers
)
if
layers
==
50
:
depth
=
[
3
,
4
,
6
,
3
]
elif
layers
==
101
:
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
num_filters
=
[
64
,
128
,
256
,
512
]
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
bottleneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
return
out
def
conv_bn_layer
(
input
,
ch_out
,
def
conv_bn_layer
(
self
,
input
,
num_filters
,
filter_size
,
stride
,
padding
,
act
=
'relu'
,
is_train
=
True
):
conv1
=
fluid
.
layers
.
conv2d
(
stride
=
1
,
groups
=
1
,
act
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
act
=
None
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv1
,
act
=
act
,
is_test
=
not
is_train
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
is_test
=
not
self
.
is_train
)
def
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
True
):
ch_in
=
input
.
shape
[
1
]
# if args.data_format == 'NCHW' else input.shape[-1]
if
ch_in
!=
ch_out
:
return
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
None
,
is_train
=
is_train
)
def
shortcut
(
self
,
input
,
ch_out
,
stride
):
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
return
self
.
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
)
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
)
def
basicblock
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
3
,
stride
,
1
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
bottleneck
(
input
,
ch_out
,
stride
,
is_train
=
True
):
short
=
shortcut
(
input
,
ch_out
*
4
,
stride
,
is_train
=
is_train
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
stride
,
0
,
is_train
=
is_train
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
,
3
,
1
,
1
,
is_train
=
is_train
)
conv3
=
conv_bn_layer
(
conv2
,
ch_out
*
4
,
1
,
1
,
0
,
act
=
None
,
is_train
=
is_train
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv3
,
act
=
'relu'
)
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
stride
):
res_out
=
block_func
(
input
,
ch_out
,
stride
)
for
i
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
1
)
return
res_out
def
resnet_imagenet
(
input
,
class_dim
,
depth
=
50
,
data_format
=
'NCHW'
,
is_train
=
True
):
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
50
:
([
3
,
4
,
6
,
3
],
bottleneck
),
101
:
([
3
,
4
,
23
,
3
],
bottleneck
),
152
:
([
3
,
8
,
36
,
3
],
bottleneck
)
}
stages
,
block_func
=
cfg
[
depth
]
conv1
=
conv_bn_layer
(
input
,
ch_out
=
64
,
filter_size
=
7
,
stride
=
2
,
padding
=
3
)
pool1
=
fluid
.
layers
.
pool2d
(
input
=
conv1
,
pool_type
=
'avg'
,
pool_size
=
3
,
pool_stride
=
2
)
res1
=
layer_warp
(
block_func
,
pool1
,
64
,
stages
[
0
],
1
)
res2
=
layer_warp
(
block_func
,
res1
,
128
,
stages
[
1
],
2
)
res3
=
layer_warp
(
block_func
,
res2
,
256
,
stages
[
2
],
2
)
res4
=
layer_warp
(
block_func
,
res3
,
512
,
stages
[
3
],
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
res4
,
pool_size
=
7
,
pool_type
=
'avg'
,
pool_stride
=
1
,
global_pooling
=
True
)
out
=
fluid
.
layers
.
fc
(
input
=
pool2
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
resnet_cifar10
(
input
,
class_dim
,
depth
=
32
,
data_format
=
'NCHW'
):
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
//
6
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
)
conv1
=
conv_bn_layer
(
input
=
input
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
out
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
def
_model_reader_dshape_classdim
(
args
,
is_train
):
model
=
resnet_cifar10
model
=
None
reader
=
None
if
args
.
data_set
==
"cifar10"
:
class_dim
=
10
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
32
,
32
]
else
:
dshape
=
[
32
,
32
,
3
]
model
=
resnet_cifar10
if
is_train
:
reader
=
paddle
.
dataset
.
cifar
.
train10
()
else
:
reader
=
paddle
.
dataset
.
cifar
.
test10
()
elif
args
.
data_set
==
"flowers"
:
if
args
.
data_set
==
"flowers"
:
class_dim
=
102
if
args
.
data_format
==
'NCHW'
:
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
is_train
:
reader
=
paddle
.
dataset
.
flowers
.
train
()
else
:
...
...
@@ -159,7 +152,6 @@ def _model_reader_dshape_classdim(args, is_train):
dshape
=
[
3
,
224
,
224
]
else
:
dshape
=
[
224
,
224
,
3
]
model
=
resnet_imagenet
if
not
args
.
data_path
:
raise
Exception
(
"Must specify --data_path when training with imagenet"
)
...
...
@@ -173,12 +165,11 @@ def _model_reader_dshape_classdim(args, is_train):
reader
=
train
(
xmap
=
False
)
else
:
reader
=
val
(
xmap
=
False
)
return
model
,
reader
,
dshape
,
class_dim
return
reader
,
dshape
,
class_dim
def
get_model
(
args
,
is_train
,
main_prog
,
startup_prog
):
model
,
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
reader
,
dshape
,
class_dim
=
_model_reader_dshape_classdim
(
args
,
is_train
)
pyreader
=
None
trainer_count
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS"
))
...
...
@@ -198,7 +189,8 @@ def get_model(args, is_train, main_prog, startup_prog):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict
=
model
(
input
,
class_dim
,
is_train
=
is_train
)
model
=
ResNet
(
is_train
=
is_train
)
predict
=
model
.
net
(
input
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
...
...
@@ -216,15 +208,14 @@ def get_model(args, is_train, main_prog, startup_prog):
total_images
=
1281167
/
trainer_count
step
=
int
(
total_images
/
args
.
batch_size
+
1
)
epochs
=
[
30
,
60
,
80
,
90
]
epochs
=
[
30
,
60
,
90
]
bd
=
[
step
*
e
for
e
in
epochs
]
base_lr
=
args
.
learning_rate
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
base_lr
,
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录