Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
61162497
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
61162497
编写于
10月 20, 2020
作者:
D
danleifeng
提交者:
GitHub
10月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
raise error if use multi-cards in fleet non_distributed mode;test=develop (#28093)
上级
d4160941
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
176 addition
and
106 deletion
+176
-106
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+9
-2
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/test_fleet_base.py
python/paddle/fluid/tests/unittests/test_fleet_base.py
+18
-104
python/paddle/fluid/tests/unittests/test_fleet_base_single.py
...on/paddle/fluid/tests/unittests/test_fleet_base_single.py
+148
-0
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
61162497
...
@@ -186,6 +186,15 @@ class Fleet(object):
...
@@ -186,6 +186,15 @@ class Fleet(object):
fleet
.
util
.
_set_role_maker
(
self
.
_role_maker
)
fleet
.
util
.
_set_role_maker
(
self
.
_role_maker
)
self
.
strategy_compiler
=
StrategyCompiler
()
self
.
strategy_compiler
=
StrategyCompiler
()
if
self
.
_role_maker
.
_is_non_distributed
()
and
self
.
_is_collective
:
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
():
gpus_num
=
paddle
.
fluid
.
core
.
get_cuda_device_count
()
if
gpus_num
!=
1
:
raise
ValueError
(
"CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
)
if
paddle
.
fluid
.
framework
.
in_dygraph_mode
():
if
paddle
.
fluid
.
framework
.
in_dygraph_mode
():
if
self
.
worker_num
()
==
1
:
if
self
.
worker_num
()
==
1
:
return
return
...
@@ -569,8 +578,6 @@ class Fleet(object):
...
@@ -569,8 +578,6 @@ class Fleet(object):
"""
"""
self
.
user_defined_optimizer
=
optimizer
self
.
user_defined_optimizer
=
optimizer
if
paddle
.
fluid
.
framework
.
in_dygraph_mode
():
return
self
if
strategy
==
None
:
if
strategy
==
None
:
strategy
=
DistributedStrategy
()
strategy
=
DistributedStrategy
()
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
61162497
...
@@ -129,6 +129,7 @@ if (NOT ${WITH_GPU})
...
@@ -129,6 +129,7 @@ if (NOT ${WITH_GPU})
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_transformer
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_transformer
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sync_batch_norm
)
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_dygraph_sync_batch_norm
)
LIST
(
REMOVE_ITEM TEST_OPS test_imperative_auto_mixed_precision
)
LIST
(
REMOVE_ITEM TEST_OPS test_imperative_auto_mixed_precision
)
LIST
(
REMOVE_ITEM TEST_OPS test_fleet_base_single
)
elseif
(
${
CUDNN_VERSION
}
VERSION_LESS 7100
)
elseif
(
${
CUDNN_VERSION
}
VERSION_LESS 7100
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
LIST
(
REMOVE_ITEM TEST_OPS test_conv2d_fusion_op
)
endif
()
endif
()
...
...
python/paddle/fluid/tests/unittests/test_fleet_base.py
浏览文件 @
61162497
...
@@ -171,45 +171,7 @@ class TestFleetDygraph(unittest.TestCase):
...
@@ -171,45 +171,7 @@ class TestFleetDygraph(unittest.TestCase):
final_strategy
=
fleet
.
_final_strategy
()
final_strategy
=
fleet
.
_final_strategy
()
class
LinearNet
(
nn
.
Layer
):
class
TestFleetBaseSingleError
(
unittest
.
TestCase
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
class
TestFleetDygraphSingle
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_CURRENT_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
def
test_dygraph_single
(
self
):
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
layer
=
LinearNet
()
loss_fn
=
nn
.
MSELoss
()
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
layer
.
parameters
())
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
for
step
in
range
(
2
):
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
loss
.
backward
()
adam
.
step
()
adam
.
clear_grad
()
class
TestFleetBaseSingleRunCollective
(
unittest
.
TestCase
):
def
setUp
(
self
):
def
setUp
(
self
):
os
.
environ
.
pop
(
"PADDLE_TRAINER_ENDPOINTS"
)
os
.
environ
.
pop
(
"PADDLE_TRAINER_ENDPOINTS"
)
...
@@ -221,71 +183,23 @@ class TestFleetBaseSingleRunCollective(unittest.TestCase):
...
@@ -221,71 +183,23 @@ class TestFleetBaseSingleRunCollective(unittest.TestCase):
}
}
def
test_single_run_collective_minimize
(
self
):
def
test_single_run_collective_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
def
test_single_error
():
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
(
is_collective
=
True
)
fleet
.
init
(
is_collective
=
True
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
for
i
in
range
(
10
):
# in non_distributed mode(use `python` to launch), raise error if has multi cards
cost_val
=
exe
.
run
(
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
if
fluid
.
core
.
is_compiled_with_cuda
(
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
)
and
fluid
.
core
.
get_cuda_device_count
()
>
1
:
self
.
assertRaises
(
ValueError
,
test_single_error
)
else
:
class
TestFleetBaseSingleRunPS
(
unittest
.
TestCase
):
test_single_error
()
def
setUp
(
self
):
os
.
environ
.
pop
(
"PADDLE_PSERVERS_IP_PORT_LIST"
)
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_ps_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
()
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
fleet
.
is_server
():
fleet
.
init_server
()
fleet
.
run_server
()
elif
fleet
.
is_worker
():
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
step
=
100
for
i
in
range
(
step
):
cost_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"worker_index: %d, step%d cost = %f"
%
(
fleet
.
worker_index
(),
i
,
cost_val
[
0
]))
fleet
.
save_persistables
(
exe
,
"fleet_single_model/"
)
print
(
"save fleet models done."
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_fleet_base_single.py
0 → 100644
浏览文件 @
61162497
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
os
cuda_visible_devices
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
else
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
cuda_visible_devices
.
split
(
','
)[
0
]
import
paddle
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
paddle.fluid
as
fluid
import
unittest
import
paddle.nn
as
nn
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
LinearNet
,
self
).
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
class
TestFleetDygraphSingle
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_CURRENT_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
def
test_dygraph_single
(
self
):
paddle
.
disable_static
()
fleet
.
init
(
is_collective
=
True
)
layer
=
LinearNet
()
loss_fn
=
nn
.
MSELoss
()
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
layer
.
parameters
())
adam
=
fleet
.
distributed_optimizer
(
adam
)
dp_layer
=
fleet
.
distributed_model
(
layer
)
for
step
in
range
(
2
):
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
loss
=
dp_layer
.
scale_loss
(
loss
)
loss
.
backward
()
dp_layer
.
apply_collective_grads
()
adam
.
step
()
adam
.
clear_grad
()
class
TestFleetBaseSingleRunCollective
(
unittest
.
TestCase
):
def
setUp
(
self
):
pass
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_collective_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
(
is_collective
=
True
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
for
i
in
range
(
10
):
cost_val
=
exe
.
run
(
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
class
TestFleetBaseSingleRunPS
(
unittest
.
TestCase
):
def
setUp
(
self
):
pass
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_ps_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
()
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
fleet
.
is_server
():
fleet
.
init_server
()
fleet
.
run_server
()
elif
fleet
.
is_worker
():
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
step
=
10
for
i
in
range
(
step
):
cost_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"worker_index: %d, step%d cost = %f"
%
(
fleet
.
worker_index
(),
i
,
cost_val
[
0
]))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录