未验证 提交 60af2852 编写于 作者: L liym27 提交者: GitHub

[NPU] Support dataloader on npu place. (#31867)

上级 2a672f68
......@@ -43,6 +43,7 @@ BufferedReader::BufferedReader(
buffer_size_(buffer_size),
pin_memory_(pin_memory) {
VLOG(1) << "BufferedReader";
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(place_) && !pin_memory) {
int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
......@@ -57,9 +58,25 @@ BufferedReader::BufferedReader(
stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
}
#endif
#ifdef PADDLE_WITH_ASCEND_CL
if (platform::is_npu_place(place_)) {
int dev_idx = BOOST_GET_CONST(platform::NPUPlace, place_).device;
compute_stream_ =
((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance()
.Get(place_)))
->stream();
events_.resize(buffer_size);
for (auto &event : events_) {
event = platform::NpuEventResourcePool::Instance().New(dev_idx);
}
stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx);
}
#endif
is_same_place_ = false;
cpu_buffer_.resize(buffer_size);
cuda_buffer_.resize(buffer_size);
npu_buffer_.resize(buffer_size);
ReadTillBufferFullAsync();
}
......@@ -186,6 +203,58 @@ void BufferedReader::ReadAsync(size_t i) {
}
}
#endif
#ifdef PADDLE_WITH_ASCEND_CL
if (platform::is_npu_place(place_)) {
TensorVec &npu = npu_buffer_[i];
if (npu.empty()) {
npu.resize(cpu.size());
} else {
PADDLE_ENFORCE_EQ(
npu.size(), cpu.size(),
platform::errors::InvalidArgument(
"Input tensor number on NPU and CPU devices are not matched. "
"The number on NPU is %d, on CPU is %d",
npu.size(), cpu.size()));
}
std::vector<void *> npu_ptrs;
npu_ptrs.reserve(cpu.size());
for (size_t i = 0; i < cpu.size(); ++i) {
npu[i].Resize(cpu[i].dims());
npu[i].set_layout(cpu[i].layout());
npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type()));
}
platform::SetNPUDeviceId(
BOOST_GET_CONST(platform::NPUPlace, place_).device);
PADDLE_ENFORCE_NPU_SUCCESS(
aclrtRecordEvent(events_[i].get(), compute_stream_));
PADDLE_ENFORCE_NPU_SUCCESS(
aclrtStreamWaitEvent(stream_.get(), events_[i].get()));
platform::RecordEvent record_event("BufferedReader:MemoryCopy");
for (size_t i = 0; i < cpu.size(); ++i) {
auto cpu_place = cpu[i].place();
auto cpu_ptr = cpu[i].data<void>();
auto npu_ptr = npu_ptrs[i];
auto size =
cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
if ((platform::is_npu_place(cpu_place))) {
memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr,
BOOST_GET_CONST(platform::NPUPlace, cpu_place), cpu_ptr,
size, stream_.get());
} else {
memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr,
BOOST_GET_CONST(platform::CPUPlace, cpu_place), cpu_ptr,
size, stream_.get());
PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get()));
}
npu[i].set_lod(cpu[i].lod());
}
PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get()));
}
#endif
return i;
}));
}
......@@ -217,9 +286,13 @@ void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
return;
}
*out = std::move((platform::is_gpu_place(place_) && !is_same_place_)
? cuda_buffer_[i]
: cpu_buffer_[i]);
if (platform::is_gpu_place(place_) && !is_same_place_) {
*out = std::move(cuda_buffer_[i]);
} else if (platform::is_npu_place(place_) && !is_same_place_) {
*out = std::move(npu_buffer_[i]);
} else {
*out = std::move(cpu_buffer_[i]);
}
// Do not push current position into ReadAsync. Push the previous position
// Since all computation in fluid are async, change the data of
......
......@@ -25,7 +25,10 @@
#include "paddle/fluid/platform/cuda_resource_pool.h"
#include "paddle/fluid/platform/gpu_info.h"
#endif
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
#include "paddle/fluid/platform/npu_resource_pool.h"
#endif
namespace paddle {
namespace operators {
namespace reader {
......@@ -67,12 +70,20 @@ class BufferedReader : public framework::DecoratedReader {
bool is_same_place_;
std::vector<TensorVec> cpu_buffer_;
std::vector<TensorVec> cuda_buffer_;
std::vector<TensorVec> npu_buffer_;
size_t prev_pos_{-1UL};
#ifdef PADDLE_WITH_CUDA
cudaStream_t compute_stream_;
std::shared_ptr<platform::CudaStreamObject> stream_;
std::vector<std::shared_ptr<platform::CudaEventObject>> events_;
#endif
#ifdef PADDLE_WITH_ASCEND_CL
aclrtStream compute_stream_;
std::shared_ptr<platform::NpuStreamObject> stream_;
std::vector<std::shared_ptr<platform::NpuEventObject>> events_;
#endif
};
} // namespace reader
......
......@@ -135,6 +135,11 @@ if(WITH_GPU)
target_link_libraries(device_context cuda_resource_pool)
endif()
if(WITH_ASCEND_CL)
cc_library(npu_resource_pool SRCS npu_resource_pool.cc DEPS npu_info)
target_link_libraries(device_context npu_resource_pool)
endif()
nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info)
cc_test(init_test SRCS init_test.cc DEPS device_context)
......
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_resource_pool.h"
#include "paddle/fluid/platform/npu_info.h"
namespace paddle {
namespace platform {
NpuStreamResourcePool::NpuStreamResourcePool() {
int dev_cnt = platform::GetNPUDeviceCount();
pool_.reserve(dev_cnt);
for (int dev_idx = 0; dev_idx < dev_cnt; ++dev_idx) {
auto creator = [dev_idx] {
platform::SetNPUDeviceId(dev_idx);
aclrtStream stream;
PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateStream(&stream));
return stream;
};
auto deleter = [dev_idx](aclrtStream stream) {
platform::SetNPUDeviceId(dev_idx);
PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyStream(stream));
};
pool_.emplace_back(ResourcePool<NpuStreamObject>::Create(creator, deleter));
}
}
NpuStreamResourcePool& NpuStreamResourcePool::Instance() {
static NpuStreamResourcePool pool;
return pool;
}
std::shared_ptr<NpuStreamObject> NpuStreamResourcePool::New(int dev_idx) {
PADDLE_ENFORCE_GE(
dev_idx, 0,
platform::errors::InvalidArgument(
"The dev_idx should be not less than 0, but got %d.", dev_idx));
PADDLE_ENFORCE_LT(
dev_idx, pool_.size(),
platform::errors::OutOfRange(
"The dev_idx should be less than device count %d, but got %d.",
pool_.size(), dev_idx));
return pool_[dev_idx]->New();
}
NpuEventResourcePool::NpuEventResourcePool() {
int dev_cnt = platform::GetNPUDeviceCount();
pool_.reserve(dev_cnt);
for (int dev_idx = 0; dev_idx < dev_cnt; ++dev_idx) {
auto creator = [dev_idx] {
platform::SetNPUDeviceId(dev_idx);
aclrtEvent event;
PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateEvent(&event));
return event;
};
auto deleter = [dev_idx](aclrtEvent event) {
platform::SetNPUDeviceId(dev_idx);
PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyEvent(event));
};
pool_.emplace_back(ResourcePool<NpuEventObject>::Create(creator, deleter));
}
}
NpuEventResourcePool& NpuEventResourcePool::Instance() {
static NpuEventResourcePool pool;
return pool;
}
std::shared_ptr<NpuEventObject> NpuEventResourcePool::New(int dev_idx) {
PADDLE_ENFORCE_GE(
dev_idx, 0,
platform::errors::InvalidArgument(
"The dev_idx should be not less than 0, but got %d.", dev_idx));
PADDLE_ENFORCE_LT(
dev_idx, pool_.size(),
platform::errors::OutOfRange(
"The dev_idx should be less than device count %d, but got %d.",
pool_.size(), dev_idx));
return pool_[dev_idx]->New();
}
} // namespace platform
} // namespace paddle
#endif
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <type_traits>
#include <vector>
#include "acl/acl.h"
#include "paddle/fluid/platform/resource_pool.h"
namespace paddle {
namespace platform {
using NpuStreamObject = std::remove_pointer<aclrtStream>::type;
using NpuEventObject = std::remove_pointer<aclrtEvent>::type;
class NpuStreamResourcePool {
public:
std::shared_ptr<NpuStreamObject> New(int dev_idx);
static NpuStreamResourcePool &Instance();
private:
NpuStreamResourcePool();
DISABLE_COPY_AND_ASSIGN(NpuStreamResourcePool);
private:
std::vector<std::shared_ptr<ResourcePool<NpuStreamObject>>> pool_;
};
class NpuEventResourcePool {
public:
std::shared_ptr<NpuEventObject> New(int dev_idx);
static NpuEventResourcePool &Instance();
private:
NpuEventResourcePool();
DISABLE_COPY_AND_ASSIGN(NpuEventResourcePool);
private:
std::vector<std::shared_ptr<ResourcePool<NpuEventObject>>> pool_;
};
} // namespace platform
} // namespace paddle
#endif
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
import unittest
import numpy as np
import paddle
from ..unittests.test_multiprocess_dataloader_static import TestStaticDataLoader
paddle.enable_static()
class TestStaticDataLoader(TestStaticDataLoader):
def test_main(self):
results = []
places = [paddle.NPUPlace(0)]
for num_workers in [0, 2]:
print(self.__class__.__name__, places, num_workers)
sys.stdout.flush()
ret = self._run_main(
num_workers=num_workers, places=places, use_pe=False)
results.append(ret)
diff = np.max(
np.abs(results[0]['loss'] - results[1]['loss']) /
np.abs(results[0]['loss']))
self.assertLess(diff, 1e-2)
if __name__ == '__main__':
unittest.main()
......@@ -101,7 +101,7 @@ def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
class TestStaticDataLoader(unittest.TestCase):
def run_main(self, num_workers, places):
def run_main(self, num_workers, places, use_pe=True):
scope = fluid.Scope()
with fluid.scope_guard(scope):
startup_prog, main_prog, image, label, loss = simple_fc_net_static()
......@@ -120,10 +120,13 @@ class TestStaticDataLoader(unittest.TestCase):
exe = fluid.Executor(place=places[0])
exe.run(startup_prog)
if use_pe:
prog = fluid.CompiledProgram(main_prog)
if len(places) > 1:
prog = prog.with_data_parallel(
loss_name=loss.name, places=places)
else:
prog = main_prog
step_list = []
loss_list = []
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册