Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5f2e8378
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5f2e8378
编写于
10月 12, 2018
作者:
D
Dun
提交者:
qingqing01
10月 12, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize depthwise conv by register memory (#13778)
* optimize depthwise conv by register memory * test=develop
上级
5428cb99
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
210 addition
and
65 deletion
+210
-65
paddle/fluid/operators/math/depthwise_conv.cu
paddle/fluid/operators/math/depthwise_conv.cu
+210
-65
未找到文件。
paddle/fluid/operators/math/depthwise_conv.cu
浏览文件 @
5f2e8378
...
@@ -46,17 +46,20 @@ __forceinline__ __device__ unsigned warp_id() {
...
@@ -46,17 +46,20 @@ __forceinline__ __device__ unsigned warp_id() {
return
ret
;
return
ret
;
}
}
#define ARG_DEFINE_KernelDepthwiseConv \
const T *const input_data, const T *const filter_data, const int batch_size, \
const int output_channels, const int output_height, \
const int output_width, const int input_channels, \
const int input_height, const int input_width, \
const int filter_multiplier, const int filter_height, \
const int filter_width, const int stride_height, const int stride_width, \
const int padding_height, const int padding_width, \
const int dilate_height, const int dilate_width, T *const output_data
// A Cuda kernel to compute the depthwise convolution forward pass
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
// in NCHW format.
template
<
typename
T
>
template
<
typename
T
>
__device__
__inline__
void
KernelDepthwiseConv
(
__device__
__inline__
void
KernelDepthwiseConv
(
ARG_DEFINE_KernelDepthwiseConv
)
{
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
output_data
)
{
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
batch
=
blockIdx
.
y
;
...
@@ -97,42 +100,105 @@ __device__ __inline__ void KernelDepthwiseConv(
...
@@ -97,42 +100,105 @@ __device__ __inline__ void KernelDepthwiseConv(
}
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
>
template
<
typename
T
,
int
c_filter
>
__global__
void
KernelDepthwiseConvSp
(
__device__
__inline__
void
KernelDepthwiseConvCFilter
(
const
T
*
const
input_data
,
const
T
*
const
filter_data
,
const
int
batch_size
,
ARG_DEFINE_KernelDepthwiseConv
)
{
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
kWeghtSize
=
c_filter
*
c_filter
;
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
T
r_weight
[
kWeghtSize
];
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
batch
=
blockIdx
.
y
;
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
c_out
=
blockIdx
.
x
;
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
T
*
weight
=
filter_data
+
c_out
*
c_filter
*
c_filter
;
const
int
dilate_width
,
T
*
const
output_data
)
{
for
(
int
i
=
0
;
i
<
c_filter
*
c_filter
;
i
++
)
r_weight
[
i
]
=
weight
[
i
];
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
for
(
int
w_out
=
threadIdx
.
x
;
w_out
<
output_width
;
w_out
+=
blockDim
.
x
)
{
for
(
int
h_out
=
threadIdx
.
y
;
h_out
<
output_height
;
h_out
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
c_out
=
blockIdx
.
x
;
const
int
c_in
=
c_out
/
filter_multiplier
;
T
value
=
0
;
const
int
h_in_start
=
-
padding_height
+
h_out
*
stride_height
;
const
int
w_in_start
=
-
padding_width
+
w_out
*
stride_width
;
const
int
h_in_end
=
h_in_start
+
c_filter
*
dilate_height
;
const
int
w_in_end
=
w_in_start
+
c_filter
*
dilate_width
;
const
int
in_offset
=
((
batch
*
input_channels
+
c_in
)
*
input_height
)
*
input_width
;
const
int
h_end
=
h_in_end
<
input_height
?
h_in_end
:
input_height
;
const
int
w_end
=
w_in_end
<
input_width
?
w_in_end
:
input_width
;
const
int
h_start
=
h_in_start
>
0
?
h_in_start
:
0
;
const
int
w_start
=
w_in_start
>
0
?
w_in_start
:
0
;
for
(
int
h_in
=
h_in_start
,
h_f
=
0
;
h_f
<
c_filter
;
h_in
+=
dilate_height
,
h_f
++
)
{
for
(
int
w_in
=
w_in_start
,
w_f
=
0
;
w_f
<
c_filter
;
w_in
+=
dilate_width
,
w_f
++
)
{
if
(
h_in
>=
0
&&
h_in
<
input_height
&&
w_in
>=
0
&&
w_in
<
input_width
)
{
const
int
offset
=
in_offset
+
h_in
*
input_width
+
w_in
;
value
+=
r_weight
[
h_f
*
c_filter
+
w_f
]
*
input_data
[
offset
];
}
}
}
int
index
=
((
batch
*
gridDim
.
x
+
c_out
)
*
output_height
+
h_out
)
*
output_width
+
w_out
;
output_data
[
index
]
=
value
;
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
,
int
c_filter
>
__global__
void
KernelDepthwiseConvSp
(
ARG_DEFINE_KernelDepthwiseConv
)
{
if
(
c_filter_multiplier
==
0
)
{
if
(
c_filter
==
-
1
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
else
else
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
KernelDepthwiseConvCFilter
<
T
,
c_filter
>
(
output_height
,
output_width
,
input_channels
,
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
input_height
,
input_width
,
c_filter_multiplier
,
output_width
,
input_channels
,
input_height
,
input_width
,
filter_height
,
filter_height
,
c_stride
,
c_stride
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
padding_height
,
padding_width
,
dilate_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
dilate_width
,
output_data
);
}
else
{
if
(
c_filter
==
-
1
)
KernelDepthwiseConv
<
T
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
else
KernelDepthwiseConvCFilter
<
T
,
c_filter
>
(
input_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_height
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
output_data
);
}
}
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
#define ARG_DEFINE_KernelDepthwiseConvInputGrad \
const T *const output_grad_data, const T *const filter_data, \
const int batch_size, const int output_channels, \
const int output_height, const int output_width, \
const int input_channels, const int input_height, const int input_width, \
const int filter_multiplier, const int filter_height, \
const int filter_width, const int stride_height, const int stride_width, \
const int padding_height, const int padding_width, \
const int dilate_height, const int dilate_width, \
T *const input_grad_data
template
<
typename
T
>
template
<
typename
T
>
__device__
__inline__
void
KernelDepthwiseConvInputGrad
(
__device__
__inline__
void
KernelDepthwiseConvInputGrad
(
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
input_grad_data
)
{
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
batch
=
blockIdx
.
y
;
...
@@ -184,15 +250,67 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
...
@@ -184,15 +250,67 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
}
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
>
template
<
typename
T
,
int
c_filter
,
int
c_filter_multiplier
>
__device__
__inline__
void
KernelDepthwiseConvInputGradCFilter
(
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
kWeghtSize
=
c_filter
*
c_filter
*
c_filter_multiplier
+
1
;
T
r_weight
[
kWeghtSize
];
const
int
batch
=
blockIdx
.
y
;
const
int
c_in
=
blockIdx
.
x
;
for
(
int
c_i
=
0
;
c_i
<
filter_multiplier
;
c_i
++
)
{
int
c_out
=
c_in
*
filter_multiplier
+
c_i
;
const
T
*
weight
=
filter_data
+
c_out
*
c_filter
*
c_filter
;
for
(
int
i
=
0
;
i
<
c_filter
*
c_filter
;
i
++
)
r_weight
[
i
+
c_i
*
c_filter
*
c_filter
]
=
weight
[
c_filter
*
c_filter
-
i
-
1
];
}
for
(
int
w_in
=
threadIdx
.
x
;
w_in
<
input_width
;
w_in
+=
blockDim
.
x
)
{
for
(
int
h_in
=
threadIdx
.
y
;
h_in
<
input_height
;
h_in
+=
blockDim
.
y
)
{
const
int
batch
=
blockIdx
.
y
;
const
int
c_in
=
blockIdx
.
x
;
int
h_out_start
=
h_in
-
(
c_filter
-
1
)
*
dilate_height
+
padding_height
;
int
w_out_start
=
w_in
-
(
c_filter
-
1
)
*
dilate_width
+
padding_width
;
T
value
=
0
;
for
(
int
c_i
=
0
;
c_i
<
filter_multiplier
;
c_i
++
)
{
int
c_out
=
c_in
*
filter_multiplier
+
c_i
;
for
(
int
h_out
=
h_out_start
,
h_f
=
0
;
h_f
<
c_filter
;
h_out
+=
dilate_height
,
h_f
++
)
{
for
(
int
w_out
=
w_out_start
,
w_f
=
0
;
w_f
<
c_filter
;
w_out
+=
dilate_width
,
w_f
++
)
{
int
s_h_out
=
h_out
/
stride_height
;
int
s_w_out
=
w_out
/
stride_width
;
if
(
h_out
%
stride_height
==
0
&&
w_out
%
stride_width
==
0
&&
s_h_out
>=
0
&&
s_h_out
<
output_height
&&
s_w_out
>=
0
&&
s_w_out
<
output_width
)
{
const
int
output_grad_offset
=
((
batch
*
output_channels
+
c_out
)
*
output_height
+
s_h_out
)
*
output_width
+
s_w_out
;
value
+=
output_grad_data
[
output_grad_offset
]
*
r_weight
[
h_f
*
c_filter
+
w_f
+
c_i
*
c_filter
*
c_filter
];
}
}
}
}
int
index
=
((
batch
*
gridDim
.
x
+
c_in
)
*
input_height
+
h_in
)
*
input_width
+
w_in
;
input_grad_data
[
index
]
=
value
;
}
}
}
template
<
typename
T
,
int
c_filter_multiplier
,
int
c_stride
,
int
c_filter
>
__global__
void
KernelDepthwiseConvInputGradSp
(
__global__
void
KernelDepthwiseConvInputGradSp
(
const
T
*
const
output_grad_data
,
const
T
*
const
filter_data
,
ARG_DEFINE_KernelDepthwiseConvInputGrad
)
{
const
int
batch_size
,
const
int
output_channels
,
const
int
output_height
,
const
int
output_width
,
const
int
input_channels
,
const
int
input_height
,
const
int
input_width
,
const
int
filter_multiplier
,
const
int
filter_height
,
const
int
filter_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
const
int
dilate_height
,
const
int
dilate_width
,
T
*
const
input_grad_data
)
{
if
(
c_filter_multiplier
==
0
)
if
(
c_filter_multiplier
==
0
)
KernelDepthwiseConvInputGrad
<
T
>
(
KernelDepthwiseConvInputGrad
<
T
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
...
@@ -200,13 +318,20 @@ __global__ void KernelDepthwiseConvInputGradSp(
...
@@ -200,13 +318,20 @@ __global__ void KernelDepthwiseConvInputGradSp(
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
filter_multiplier
,
filter_height
,
filter_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
stride_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
dilate_width
,
input_grad_data
);
else
else
if
(
c_filter
==
-
1
)
KernelDepthwiseConvInputGrad
<
T
>
(
KernelDepthwiseConvInputGrad
<
T
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
input_grad_data
);
else
KernelDepthwiseConvInputGradCFilter
<
T
,
c_filter
,
c_filter_multiplier
>
(
output_grad_data
,
filter_data
,
batch_size
,
output_channels
,
output_height
,
output_width
,
input_channels
,
input_height
,
input_width
,
c_filter_multiplier
,
filter_height
,
filter_width
,
c_stride
,
c_stride
,
padding_height
,
padding_width
,
dilate_height
,
dilate_width
,
input_grad_data
);
}
}
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
...
@@ -325,12 +450,14 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
...
@@ -325,12 +450,14 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
threads
(
std
::
min
(
output_width
,
thread
),
blocks
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
dim3
grid
(
output_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier, c_stride
)
\
#define check_case(c_filter_multiplier, c_stride
, c_filter)
\
if (c_filter_multiplier == 0 || \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
stride_height == stride_width && stride_height == c_stride && \
KernelDepthwiseConvSp<T, c_filter_multiplier, \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_stride><<<grid, threads, 0, context.stream()>>>( \
c_filter == -1)) { \
KernelDepthwiseConvSp<T, c_filter_multiplier, c_stride, \
c_filter><<<grid, threads, 0, context.stream()>>>( \
input_data, filter_data, batch_size, output_channels, output_height, \
input_data, filter_data, batch_size, output_channels, output_height, \
output_width, input_channels, input_height, input_width, \
output_width, input_channels, input_height, input_width, \
filter_multiplier, ksize_height, ksize_width, stride_height, \
filter_multiplier, ksize_height, ksize_width, stride_height, \
...
@@ -338,11 +465,17 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
...
@@ -338,11 +465,17 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
dilate_width, output_data); \
dilate_width, output_data); \
return; \
return; \
}
}
check_case
(
1
,
1
);
check_case
(
1
,
1
,
3
);
check_case
(
1
,
2
);
check_case
(
1
,
1
,
5
);
// NOTE(liangdun): 0,0 for other case
check_case
(
1
,
1
,
-
1
);
// add other case if needed, e.g. check_case(2^n,1)
check_case
(
1
,
2
,
3
);
check_case
(
0
,
0
);
check_case
(
1
,
2
,
5
);
check_case
(
1
,
2
,
-
1
);
check_case
(
0
,
0
,
3
);
check_case
(
0
,
0
,
5
);
check_case
(
0
,
0
,
-
1
);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
#undef check_case
#undef check_case
}
}
};
};
...
@@ -384,13 +517,15 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -384,13 +517,15 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
dim3
grid
(
input_channels
,
batch_size
,
1
);
dim3
grid
(
input_channels
,
batch_size
,
1
);
int
filter_multiplier
=
output_channels
/
input_channels
;
int
filter_multiplier
=
output_channels
/
input_channels
;
#define check_case(c_filter_multiplier, c_stride
)
\
#define check_case(c_filter_multiplier, c_stride
, c_filter)
\
if (c_filter_multiplier == 0 || \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
stride_height == stride_width && stride_height == c_stride && \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_filter == -1)) { \
KernelDepthwiseConvInputGradSp< \
KernelDepthwiseConvInputGradSp< \
T, c_filter_multiplier,
\
T, c_filter_multiplier,
c_stride,
\
c_
stride
><<<grid, threads, 0, context.stream()>>>( \
c_
filter
><<<grid, threads, 0, context.stream()>>>( \
output_grad_data, filter_data, batch_size, output_channels, \
output_grad_data, filter_data, batch_size, output_channels, \
output_height, output_width, input_channels, input_height, \
output_height, output_width, input_channels, input_height, \
input_width, filter_multiplier, ksize_height, ksize_width, \
input_width, filter_multiplier, ksize_height, ksize_width, \
...
@@ -398,11 +533,21 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -398,11 +533,21 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
dilate_height, dilate_width, input_grad_data); \
dilate_height, dilate_width, input_grad_data); \
return; \
return; \
}
}
check_case
(
1
,
1
);
check_case
(
1
,
1
,
3
);
check_case
(
1
,
2
);
check_case
(
1
,
1
,
5
);
// NOTE(liangdun): 0,0 for other case
check_case
(
1
,
1
,
-
1
);
// add other case if needed, e.g. check_case(2^n,1)
check_case
(
1
,
2
,
3
);
check_case
(
0
,
0
);
check_case
(
1
,
2
,
5
);
check_case
(
1
,
2
,
-
1
);
check_case
(
2
,
1
,
3
);
check_case
(
2
,
1
,
5
);
check_case
(
2
,
1
,
-
1
);
check_case
(
2
,
2
,
3
);
check_case
(
2
,
2
,
5
);
check_case
(
2
,
2
,
-
1
);
check_case
(
0
,
0
,
-
1
);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
#undef check_case
#undef check_case
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录