未验证 提交 5ed23c60 编写于 作者: J juncaipeng 提交者: GitHub

Modify doc for shuffle, firstn, save_vars, load_vars, L1DecayRegularizer,...

Modify doc for shuffle, firstn, save_vars, load_vars, L1DecayRegularizer, L2DecayRegularizer (#20287)

* modify shuffle, firstn, regularizer, load_vars, save_vars, test=develop, test=document_fix
上级 52dcc167
......@@ -70,10 +70,10 @@ paddle.fluid.BuildStrategy.ReduceStrategy ('paddle.fluid.core_avx.ReduceStrategy
paddle.fluid.BuildStrategy.ReduceStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.BuildStrategy.ReduceStrategy, arg0: int) -> None
paddle.fluid.BuildStrategy.__init__ __init__(self: paddle.fluid.core_avx.ParallelExecutor.BuildStrategy) -> None
paddle.fluid.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b'))
paddle.fluid.io.save_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '869104f47e6fd21d897c3fcc426aa942'))
paddle.fluid.io.save_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '9ff7159eef501e9dfaf520073e681c10'))
paddle.fluid.io.save_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '046d7c43d67e08c2660bb3bd7e081015'))
paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'ffcee38044975c29f2ab2fec0576f963'))
paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '1bb9454cf09d71f190bb51550c5a3ac9'))
paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '12dd2c3f29d63f7a920bb1e0a0e8caff'))
paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'f3f16db75ae076d46608c7e976650cfc'))
paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '1e039084ad3781eb43966581eed48688'))
paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment', 'program_only'], varargs=None, keywords=None, defaults=(None, None, None, True, False)), ('document', 'fc82bfd137a9b1ab8ebd1651bd35b6e5'))
......@@ -98,8 +98,8 @@ paddle.fluid.io.map_readers (ArgSpec(args=['func'], varargs='readers', keywords=
paddle.fluid.io.buffered (ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None), ('document', '0d6186f109feceb99f60ec50a0a624cb'))
paddle.fluid.io.compose (ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None), ('document', '81c933c8da58041d91f084dcf6322349'))
paddle.fluid.io.chain (ArgSpec(args=[], varargs='readers', keywords=None, defaults=None), ('document', 'e0311508658a7e741fc39feea8be0ad2'))
paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', 'e42ea6fee23ce26b23cb142cd1d6522d'))
paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'c5bb8f7dd4f917f1569a368aab5b8aad'))
paddle.fluid.io.shuffle (ArgSpec(args=['reader', 'buf_size'], varargs=None, keywords=None, defaults=None), ('document', '961d0a950cc837c8b13577301dee7bd8'))
paddle.fluid.io.firstn (ArgSpec(args=['reader', 'n'], varargs=None, keywords=None, defaults=None), ('document', 'db83c761a5530a05c1ffe2f6f78198f4'))
paddle.fluid.io.xmap_readers (ArgSpec(args=['mapper', 'reader', 'process_num', 'buffer_size', 'order'], varargs=None, keywords=None, defaults=(False,)), ('document', '9c804a42f8a4dbaa76b3c98e0ab7f796'))
paddle.fluid.io.multiprocess_reader (ArgSpec(args=['readers', 'use_pipe', 'queue_size'], varargs=None, keywords=None, defaults=(True, 1000)), ('document', '7d8b3a96e592107c893d5d51ce968ba0'))
paddle.fluid.initializer.ConstantInitializer ('paddle.fluid.initializer.ConstantInitializer', ('document', '911263fc30c516c55e89cd72086a23f8'))
......@@ -1075,9 +1075,9 @@ paddle.fluid.optimizer.RecomputeOptimizer.set_dict (ArgSpec(args=['self', 'state
paddle.fluid.optimizer.RecomputeOptimizer.state_dict (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'deca1537945d33940b350923fb16ddf8'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks', 'checkpoints'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'c68fe1cb95d90762b57c309cae9b99d9'))
paddle.fluid.backward.gradients (ArgSpec(args=['targets', 'inputs', 'target_gradients', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None)), ('document', 'e2097e1e0ed84ae44951437bfe269a1b'))
paddle.fluid.regularizer.L1DecayRegularizer ('paddle.fluid.regularizer.L1DecayRegularizer', ('document', '34603757e70974d2fcc730643b382925'))
paddle.fluid.regularizer.L1DecayRegularizer ('paddle.fluid.regularizer.L1DecayRegularizer', ('document', '4fe4381ca996f3fc0458fe28594a25e8'))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.regularizer.L2DecayRegularizer ('paddle.fluid.regularizer.L2DecayRegularizer', ('document', 'b94371c3434d7f695bc5b2d6fb5531fd'))
paddle.fluid.regularizer.L2DecayRegularizer ('paddle.fluid.regularizer.L2DecayRegularizer', ('document', 'e5d02740904686c1c50e8f80c1582861'))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.LoDTensor ('paddle.fluid.core_avx.LoDTensor', ('document', '8ee00d246c952b92e5e8ca2d92a4fc00'))
paddle.fluid.LoDTensor.__init__ 1. __init__(self: paddle.fluid.core_avx.LoDTensor, arg0: List[List[int]]) -> None 2. __init__(self: paddle.fluid.core_avx.LoDTensor) -> None
......
......@@ -139,37 +139,31 @@ def save_vars(executor,
predicate=None,
filename=None):
"""
Save variables to the given directory by executor.
This API saves specific variables in the `Program` to files.
There are two ways to specify variables to be saved: The first way, list
variables in a list and assign it to the `vars`. The second way, assign the
`main_program` with an existing program, then all variables in the program
will be saved. The first way has a higher priority. In other words, if `vars`
are assigned, the `main_program` and the `predicate` will be ignored.
There are two ways to specify the variables to be saved: set variables in
a list and assign it to the `vars`, or use the `predicate` function to select
variables that make `predicate(variable) == True`. The first way has a higher priority.
The `dirname` are used to specify the folder where to save variables.
If you prefer to save variables in separate files in the folder `dirname`,
set `filename` None; if you prefer to save all variables in a single file,
The `dirname` is used to specify the folder where to save variables.
If you prefer to save variables in separate files in the `dirname` floder,
do not set `filename`. If you prefer to save all variables in a single file,
use `filename` to specify it.
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The directory path.
main_program(Program|None): The program whose variables will be saved.
dirname(str): The folder where to save variables.
main_program(Program, optional): The program whose variables will be saved.
If it is None, the default main program will
be used automatically.
Default: None
vars(list[Variable]|None): The list that contains all variables to save.
It has a higher priority than the `main_program`.
vars(list[Variable], optional): The list contains all variables to be saved.
Default: None
predicate(function|None): If it is not None, only variables in the
`main_program` that makes predicate(variable)==True
will be saved. It only works when we are using the
`main_program` to specify variables (In other words
`vars` is None).
predicate(function, optional): The function selects the variables that make
`predicate(variable) == True`.
Default: None
filename(str|None): The file which to save all variables. If you prefer to save
variables separately, set it to None.
filename(str, optional): If you prefer to save all variables in a single file,
use `filename` to specify it. Otherwise, let `filename` be None.
Default: None
Returns:
......@@ -182,6 +176,7 @@ def save_vars(executor,
.. code-block:: python
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
......@@ -194,24 +189,20 @@ def save_vars(executor,
exe = fluid.Executor(place)
exe.run(startup_prog)
param_path = "./my_paddle_model"
# The first usage: using `main_program` to specify variables
def name_has_fc(var):
res = "fc" in var.name
return res
fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
vars=None, predicate = name_has_fc)
# All variables in `main_program` whose name includes "fc" will be saved.
# And variables are going to be saved separately.
# The second usage: using `vars` to specify variables
# The first usage: use `vars` to set the saved variables.
var_list = [w, b]
path = "./my_paddle_vars"
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# var_a, var_b and var_c will be saved. And they are going to be
# saved in the same file named 'var_file' in the path "./my_paddle_vars".
# w and b will be save in a file named "var_file".
# The second usage: use `predicate` to select the saved variable.
def name_has_fc(var):
res = "fc" in var.name
return res
param_path = "./my_paddle_model"
fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
# all variables whose names contain "fc " are saved.
"""
save_dirname = os.path.normpath(dirname)
main_program = _get_valid_program(main_program)
......@@ -555,37 +546,32 @@ def load_vars(executor,
predicate=None,
filename=None):
"""
Load variables from the given directory by executor.
This API loads variables from files by executor.
There are two ways to specify variables to be loaded: The first way, list
variables in a list and assign it to the `vars`. The second way, assign the
`main_program` with an existing program, then all variables in the program
will be loaded. The first way has a higher priority. In other words if `vars`
are assigned, the `main_program` and the `predicate` will be ignored.
There are two ways to specify the variables to be loaded: the first way, set
variables in a list and assign it to the `vars`; the second way, use the
`predicate` function to select variables that make `predicate(variable) == True`.
The first way has a higher priority.
The `dirname` are used to specify the folder where to load variables.
The `dirname` is used to specify the folder where to load variables.
If variables were saved in separate files in the folder `dirname`,
set `filename` None; if all variables were saved in a single file,
set `filename` None. If all variables were saved in a single file,
use `filename` to specify it.
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The directory path.
main_program(Program|None): The program whose variables will be loaded.
dirname(str): The folder where to load the variables.
main_program(Program, optional): The program whose variables will be loaded.
If it is None, the default main program will
be used automatically.
Default: None
vars(list[Variable]|None): The list that contains all variables to load.
It has a higher priority than the `main_program`.
vars(list[Variable], optional): The list that contains all variables to be loaded.
Default: None
predicate(function|None): If it is not None, only variables in the
`main_program` that makes predicate(variable)==True
will be loaded. It only works when we are using the
`main_program` to specify variables (In other words
`vars` is None).
predicate(function, optional): The function selects variables that make
`predicate(variable) == True`.
Default: None
filename(str|None): The file which saved all required variables. If variables
were saved in differnet files, set it to None.
filename(str, optional): The file which saved all required variables. If variables
were saved in separate files, set it to be None.
Default: None
Returns:
......@@ -598,6 +584,7 @@ def load_vars(executor,
.. code-block:: python
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
......@@ -610,8 +597,18 @@ def load_vars(executor,
exe = fluid.Executor(place)
exe.run(startup_prog)
# The first usage: using `vars` to specify the variables.
path = "./my_paddle_vars"
var_list = [w, b]
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# w and b will be loaded, and they are supposed to
# be saved in the same file named 'var_file' in the path "./my_paddle_vars".
# The second usage: using the `predicate` function to select variables
param_path = "./my_paddle_model"
# The first usage: using `main_program` to specify variables
def name_has_fc(var):
res = "fc" in var.name
return res
......@@ -619,18 +616,9 @@ def load_vars(executor,
vars=None, predicate=name_has_fc)
fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
vars=None, predicate=name_has_fc)
# All variables in `main_program` whose name includes "fc" will be loaded.
# And all the variables are supposed to have been saved in differnet files.
# Load All variables in the `main_program` whose name includes "fc".
# And all the variables are supposed to be saved in separate files.
# The second usage: using `vars` to specify variables
path = "./my_paddle_vars"
var_list = [w, b]
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# w and b will be loaded. And they are supposed to haven
# been saved in the same file named 'var_file' in the path "./my_paddle_vars".
"""
load_dirname = os.path.normpath(dirname)
......
......@@ -110,21 +110,24 @@ class WeightDecayRegularizer(object):
class L2DecayRegularizer(WeightDecayRegularizer):
"""Implements the L2 Weight Decay Regularization
"""
Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
Small values of L2 can help prevent over fitting the training data.
In the implementation, the formula of L2 Weight Decay Regularization is as follows:
.. math::
L2WeightDecay = reg\_coeff * parameter
Args:
regularization_coeff(float): regularization coeff
regularization_coeff(float, optional): regularization coeff.
Default:0.0
Examples:
.. code-block:: python
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
......@@ -182,21 +185,24 @@ class L2DecayRegularizer(WeightDecayRegularizer):
class L1DecayRegularizer(WeightDecayRegularizer):
"""Implements the L1 Weight Decay Regularization
"""
Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
L1 regularization encourages sparsity.
In the implementation, the formula of L1 Weight Decay Regularization is as follows:
.. math::
L1WeightDecay = reg\_coeff * sign(parameter)
Args:
regularization_coeff(float): regularization coeff
regularization_coeff(float, optional): regularization coeff.
Default:0.0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
......
......@@ -101,19 +101,33 @@ def map_readers(func, *readers):
def shuffle(reader, buf_size):
"""
Creates a data reader whose data output is shuffled.
paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
and paddle.reader.shuffle is an alias.
Output from the iterator that created by original reader will be
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.
This API creates a decorated reader that outputs the shuffled data.
:param reader: the original reader whose output will be shuffled.
:type reader: callable
:param buf_size: shuffle buffer size.
:type buf_size: int
The output data from the origin reader will be saved into a buffer,
and then shuffle the data. The size of buffer is determined by argument buf_size.
Args:
reader(callable): the original reader whose data will be shuffled.
buf_size(int): the size of shuffled buffer.
Returns:
callable: a decorated reader.
Examples:
.. code-block:: python
import paddle.fluid as fluid
:return: the new reader whose output is shuffled.
:rtype: callable
def reader():
for i in range(5):
yield i
shuffled_reader = fluid.io.shuffle(reader, 3)
for e in shuffled_reader():
print(e)
# outputs are 0~4 unordered arrangement
"""
def data_reader():
......@@ -303,14 +317,31 @@ def buffered(reader, size):
def firstn(reader, n):
"""
Limit the max number of samples that reader could return.
paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
and paddle.reader.firstn is an alias.
:param reader: the data reader to read from.
:type reader: callable
:param n: the max number of samples that return.
:type n: int
:return: the decorated reader.
:rtype: callable
This API creates a decorated reader, and limits the max number of
samples that reader could return.
Args:
reader(callable): the input reader.
n(int): the max number of samples in the reader.
Returns:
callable: the decorated reader.
Examples:
.. code-block:: python
import paddle.fluid as fluid
def reader():
for i in range(100):
yield i
firstn_reader = fluid.io.firstn(reader, 5)
for e in firstn_reader():
print(e)
# the outputs are: 0 1 2 3 4
"""
# TODO(yuyang18): Check if just drop the reader, could clean the opened
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册