Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5dc0a6eb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5dc0a6eb
编写于
4月 14, 2021
作者:
A
AshburnLee
提交者:
GitHub
4月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize of backward of log_softmax when axis is -1 and dim_size <= 1024 (#32180)
上级
7da4455f
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
126 addition
and
6 deletion
+126
-6
paddle/fluid/operators/log_softmax_op.cu
paddle/fluid/operators/log_softmax_op.cu
+126
-6
未找到文件。
paddle/fluid/operators/log_softmax_op.cu
浏览文件 @
5dc0a6eb
...
...
@@ -65,11 +65,6 @@ __global__ void ComputeLogSoftmaxForwardInWarp(T *dst, const T *src,
constexpr
int
warp_iter
=
near_greater_power_of_two
/
kernel_warp_size
;
int
batch_id
=
blockDim
.
y
*
blockIdx
.
x
+
threadIdx
.
y
;
// set effective_warp_id as 1 when warps do effective work,
// when warps do ineffective work, effective_warp_id remains unchanged.
int
effective_warp_id
=
batch_size
-
batch_id
;
if
(
effective_warp_id
>
1
)
effective_warp_id
=
1
;
int
thread_in_warp_idx
=
threadIdx
.
x
;
// 1.read data from global memory to registers
...
...
@@ -77,7 +72,7 @@ __global__ void ComputeLogSoftmaxForwardInWarp(T *dst, const T *src,
// set effective_element_count as the num of elements when warps do effective
// work
// set effective_element_count as 0, when warps do ineffective work
int
effective_element_count
=
(
effective_warp_id
<=
0
)
?
0
:
element_count
;
int
effective_element_count
=
(
batch_id
<
batch_size
)
?
element_count
:
0
;
for
(
int
it
=
0
;
it
<
warp_iter
;
++
it
)
{
int
element_index
=
thread_in_warp_idx
+
it
*
kernel_warp_size
;
if
(
element_index
<
effective_element_count
)
{
...
...
@@ -181,6 +176,131 @@ class LogSoftmaxKernel<platform::CUDADeviceContext, T>
}
};
// Backward below
#define LAUNCH_WARP_BACKWARD_COMPUTE(near_greater_power_of_two) \
case near_greater_power_of_two: \
ComputeLogSoftmaxBackwardInWarp< \
T, AccT, near_greater_power_of_two><<<blocks, threads, 0, stream>>>( \
output, grad_output, grad_input, outer_size, dim_size); \
break;
template
<
typename
T
,
typename
AccT
,
int
NearGreaterPowerOfTwo
>
__global__
void
ComputeLogSoftmaxBackwardInWarp
(
const
T
*
output
,
const
T
*
grad_output
,
T
*
grad_input
,
int
batch_size
,
int
element_count
)
{
constexpr
int
near_greater_power_of_two
=
NearGreaterPowerOfTwo
;
constexpr
int
kernel_warp_size
=
(
near_greater_power_of_two
<
32
)
?
near_greater_power_of_two
:
32
;
constexpr
int
warp_iter
=
near_greater_power_of_two
/
kernel_warp_size
;
int
batch_id
=
blockDim
.
y
*
blockIdx
.
x
+
threadIdx
.
y
;
int
thread_in_warp_idx
=
threadIdx
.
x
%
kernel_warp_size
;
// 1.read data from global memory to registers
AccT
output_register
[
warp_iter
];
AccT
grad_output_register
[
warp_iter
];
int
effective_element_count
=
(
batch_id
<
batch_size
)
?
element_count
:
0
;
for
(
int
iter
=
0
;
iter
<
warp_iter
;
++
iter
)
{
int
element_index
=
thread_in_warp_idx
+
iter
*
kernel_warp_size
;
if
(
element_index
<
effective_element_count
)
{
output_register
[
iter
]
=
static_cast
<
AccT
>
(
output
[
batch_id
*
element_count
+
element_index
]);
grad_output_register
[
iter
]
=
static_cast
<
AccT
>
(
grad_output
[
batch_id
*
element_count
+
element_index
]);
}
else
{
output_register
[
iter
]
=
AccT
(
0
);
grad_output_register
[
iter
]
=
AccT
(
0
);
}
}
// 2. For each warp, accumulate all thread registers
AccT
sum
=
grad_output_register
[
0
];
#pragma unroll
for
(
int
iter
=
1
;
iter
<
warp_iter
;
++
iter
)
{
sum
+=
grad_output_register
[
iter
];
}
sum
=
WarpReduceSum
<
AccT
,
kernel_warp_size
>
(
sum
);
// 3. write result in grad_input
#pragma unroll
for
(
int
iter
=
0
;
iter
<
warp_iter
;
++
iter
)
{
int
element_index
=
thread_in_warp_idx
+
iter
*
kernel_warp_size
;
if
(
element_index
<
element_count
)
{
grad_input
[
batch_id
*
element_count
+
element_index
]
=
static_cast
<
T
>
(
(
grad_output_register
[
iter
]
-
std
::
exp
(
output_register
[
iter
])
*
sum
));
}
}
}
template
<
typename
T
,
typename
AccT
>
void
LaunchSoftmaxBackwardForLastAxis
(
T
*
grad_input
,
const
T
*
grad_output
,
const
T
*
output
,
int
dim_size
,
int
outer_size
,
gpuStream_t
stream
)
{
int
threads_per_block
=
128
;
int
near_greater_power_of_two
=
GetNearGreaterPowerOfTwo
(
dim_size
);
int
kernel_warp_size
=
(
near_greater_power_of_two
<
32
)
?
near_greater_power_of_two
:
32
;
int
warps_per_block
=
(
threads_per_block
/
kernel_warp_size
);
int
blocks
=
(
outer_size
+
warps_per_block
-
1
)
/
warps_per_block
;
dim3
threads
(
kernel_warp_size
,
warps_per_block
,
1
);
switch
(
near_greater_power_of_two
)
{
LAUNCH_WARP_BACKWARD_COMPUTE
(
1
);
// dim_size: 1
LAUNCH_WARP_BACKWARD_COMPUTE
(
2
);
// dim_size: 2
LAUNCH_WARP_BACKWARD_COMPUTE
(
4
);
// dim_size: 3~4
LAUNCH_WARP_BACKWARD_COMPUTE
(
8
);
// dim_size: 5~8
LAUNCH_WARP_BACKWARD_COMPUTE
(
16
);
// dim_size: 9~16
LAUNCH_WARP_BACKWARD_COMPUTE
(
32
);
// dim_size: 17~32
LAUNCH_WARP_BACKWARD_COMPUTE
(
64
);
// dim_size: 33~64
LAUNCH_WARP_BACKWARD_COMPUTE
(
128
);
// dim_size: 65~128
LAUNCH_WARP_BACKWARD_COMPUTE
(
256
);
// dim_size: 129~256
LAUNCH_WARP_BACKWARD_COMPUTE
(
512
);
// dim_size: 257~512
LAUNCH_WARP_BACKWARD_COMPUTE
(
1024
);
// dim_size: 513~1024
default:
break
;
}
}
template
<
typename
T
>
class
LogSoftmaxGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
using
MPDType
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
auto
*
out
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
g_out
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
g_x
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
auto
*
out_data
=
out
->
data
<
T
>
();
const
auto
*
g_out_data
=
g_out
->
data
<
T
>
();
auto
*
g_x_data
=
g_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
rank
=
out
->
dims
().
size
();
const
int
axis
=
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
int
dim_size
=
out
->
dims
()[
axis
];
int
inner_size
=
1
;
for
(
int
i
=
axis
+
1
;
i
<
out
->
dims
().
size
();
++
i
)
{
inner_size
*=
out
->
dims
()[
i
];
}
int
outer_size
=
SizeToAxis
(
axis
,
out
->
dims
());
gpuStream_t
stream
=
context
.
cuda_device_context
().
stream
();
if
(
inner_size
==
1
&&
dim_size
<=
1024
&&
dim_size
*
sizeof
(
T
)
<=
4096
)
{
LaunchSoftmaxBackwardForLastAxis
<
T
,
MPDType
>
(
g_x_data
,
g_out_data
,
out_data
,
dim_size
,
outer_size
,
stream
);
}
else
{
LogSoftmaxGradFunctor
<
platform
::
CUDADeviceContext
,
T
>
()(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
out
,
g_out
,
g_x
,
axis
);
}
}
};
}
// operators
}
// paddle
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录