diff --git a/paddle/phi/kernels/gpu/prelu_grad_kernel.cu b/paddle/phi/kernels/gpu/prelu_grad_kernel.cu index c280873d8f768214807e9dec4e39541a9a529e73..2a9512e495cc920db8dc71643921ff60e3648480 100644 --- a/paddle/phi/kernels/gpu/prelu_grad_kernel.cu +++ b/paddle/phi/kernels/gpu/prelu_grad_kernel.cu @@ -77,10 +77,20 @@ class PreluOpGradFunctor { for (size_t i = 0; i < input_dims.size(); ++i) { numel *= input_dims[i]; } - size_t plane_size = numel / input_dims[0] / input_dims[1]; - size_t spatial_size = numel / input_dims[0]; - size_t channel = - mode == ChannelLast ? input_dims[input_dims.size() - 1] : input_dims[1]; + + size_t plane_size; + size_t spatial_size; + size_t channel; + if (mode == PRELU_Scalar) { + plane_size = 1; + spatial_size = 1; + channel = 1; + } else { + plane_size = numel / input_dims[0] / input_dims[1]; + spatial_size = numel / input_dims[0]; + channel = mode == ChannelLast ? input_dims[input_dims.size() - 1] + : input_dims[1]; + } PReluOpGradKernel <<>>( @@ -120,7 +130,6 @@ void PReluGradKernel(const Context& dev_ctx, int numel = x.numel(); auto dim = x.dims(); auto x_rank = dim.size(); - std::vector input_shape = phi::vectorize(dim); auto stream = dev_ctx.stream(); T* alpha_grad_tmp_ptr; diff --git a/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py b/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py index fcc171674deab52a8e1bf1e5fd455ebc01eab70b..9f005c943310408527f6361a6e8a5d2cff073d74 100644 --- a/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py +++ b/python/paddle/fluid/tests/unittests/test_zero_dim_tensor.py @@ -84,6 +84,9 @@ unary_api_list = [ paddle.poisson, paddle.bernoulli, paddle.median, + paddle.nn.functional.softmax, + paddle.nn.functional.log_softmax, + paddle.nn.functional.gumbel_softmax, ] inplace_api_list = [ @@ -1501,6 +1504,26 @@ class TestSundryAPI(unittest.TestCase): self.assertEqual(out.grad.shape, []) self.assertEqual(x.grad.shape, []) + def test_prelu(self): + x = paddle.full([], 1.0, 'float32') + x.stop_gradient = False + + w1 = paddle.to_tensor([0.25], dtype='float32') + out1 = paddle.nn.functional.prelu(x, w1) + out1.retain_grads() + out1.backward() + self.assertEqual(out1.shape, []) + self.assertEqual(out1.grad.shape, []) + self.assertEqual(x.grad.shape, []) + + w2 = paddle.full([], 0.25, dtype='float32') + out2 = paddle.nn.functional.prelu(x, w2) + out2.retain_grads() + out2.backward() + self.assertEqual(out2.shape, []) + self.assertEqual(out2.grad.shape, []) + self.assertEqual(x.grad.shape, []) + class TestSundryAPIStatic(unittest.TestCase): def setUp(self): @@ -2403,6 +2426,38 @@ class TestSundryAPIStatic(unittest.TestCase): res = self.exe.run(prog, feed={"x": x_tensor}, fetch_list=[out]) self.assertEqual(res[0].shape, (3, 4, 2)) + def test_prelu(self): + x1 = paddle.full([], 1.0, 'float32') + x1.stop_gradient = False + w1 = paddle.to_tensor([0.25], dtype='float32') + out1 = paddle.nn.functional.prelu(x1, w1) + paddle.static.append_backward(out1.sum()) + + x2 = paddle.full([], 1.0, 'float32') + x2.stop_gradient = False + w2 = paddle.full([], 0.25, dtype='float32') + out2 = paddle.nn.functional.prelu(x2, w2) + paddle.static.append_backward(out2.sum()) + + prog = paddle.static.default_main_program() + res = self.exe.run( + prog, + fetch_list=[ + out1, + out2, + x1.grad_name, + x2.grad_name, + out1.grad_name, + out2.grad_name, + ], + ) + self.assertEqual(res[0].shape, ()) + self.assertEqual(res[1].shape, ()) + self.assertEqual(res[2].shape, ()) + self.assertEqual(res[3].shape, ()) + self.assertEqual(res[4].shape, ()) + self.assertEqual(res[5].shape, ()) + # Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest. class TestNoBackwardAPI(unittest.TestCase): diff --git a/python/paddle/nn/functional/activation.py b/python/paddle/nn/functional/activation.py index f4f4bb6b9f891d368a74097cd14061b1cb8a6ea5..ed1bbc0a54addf1103d22f58b536951e933bdba6 100644 --- a/python/paddle/nn/functional/activation.py +++ b/python/paddle/nn/functional/activation.py @@ -463,7 +463,7 @@ def prelu(x, weight, data_format="NCHW", name=None): Parameters: x (Tensor): The input Tensor with data type float32, float64. weight (Tensor): The learnable parameter with data type same as ``x``. - The weight shape is [1] or [in], where `in` is the input channel of ``x``. + The weight shape is [], [1] or [in], where `in` is the input channel of ``x``. name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. data_format(str, optional): Data format that specifies the layout of input. It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW". @@ -495,12 +495,11 @@ def prelu(x, weight, data_format="NCHW", name=None): # [ 6. , 7. , 8. , 9. ]]]] """ assert ( - len(weight.shape) == 1 - ), "The dim count of weight shape should be 1 in prelu()." + len(weight.shape) == 0 or len(weight.shape) == 1 + ), "The dim count of weight shape should be 0 or 1 in prelu()." mode = 'all' - if weight.shape[0] > 1: - + if len(weight.shape) == 1 and weight.shape[0] > 1: true_data_format = [ 'NC', 'NCL',