Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5da3d514
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5da3d514
编写于
11月 27, 2020
作者:
Y
yukavio
提交者:
GitHub
11月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
solve pretty table dependent in flops api (#29132)
* solve pretty table dependent in flops api * add unittest dependent * temp
上级
49420eb0
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
504 addition
and
0 deletion
+504
-0
python/paddle/hapi/dynamic_flops.py
python/paddle/hapi/dynamic_flops.py
+288
-0
python/paddle/hapi/static_flops.py
python/paddle/hapi/static_flops.py
+216
-0
未找到文件。
python/paddle/hapi/dynamic_flops.py
0 → 100644
浏览文件 @
5da3d514
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
warnings
import
paddle.nn
as
nn
import
numpy
as
np
from
.static_flops
import
static_flops
,
_verify_dependent_package
__all__
=
[
'flops'
]
def
flops
(
net
,
input_size
,
custom_ops
=
None
,
print_detail
=
False
):
"""Print a table about the FLOPs of network.
Args:
net (paddle.nn.Layer||paddle.static.Program): The network which could be a instance of paddle.nn.Layer in
dygraph or paddle.static.Program in static graph.
input_size (list): size of input tensor. Note that the batch_size in argument 'input_size' only support 1.
custom_ops (A dict of function, optional): A dictionary which key is the class of specific operation such as
paddle.nn.Conv2D and the value is the function used to count the FLOPs of this operation. This
argument only work when argument 'net' is an instance of paddle.nn.Layer. The details could be found
in following example code. Default is None.
print_detail (bool, optional): Whether to print the detail information, like FLOPs per layer, about the net FLOPs.
Default is False.
Returns:
Int: A number about the FLOPs of total network.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
class LeNet(nn.Layer):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2D(
1, 6, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2D(2, 2),
nn.Conv2D(
6, 16, 5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool2D(2, 2))
if num_classes > 0:
self.fc = nn.Sequential(
nn.Linear(400, 120),
nn.Linear(120, 84),
nn.Linear(
84, 10))
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
lenet = LeNet()
# m is the instance of nn.Layer, x is the intput of layer, y is the output of layer.
def count_leaky_relu(m, x, y):
x = x[0]
nelements = x.numel()
m.total_ops += int(nelements)
FLOPs = paddle.flops(lenet, [1, 1, 28, 28], custom_ops= {nn.LeakyReLU: count_leaky_relu},
print_detail=True)
print(FLOPs)
#+--------------+-----------------+-----------------+--------+--------+
#| Layer Name | Input Shape | Output Shape | Params | Flops |
#+--------------+-----------------+-----------------+--------+--------+
#| conv2d_2 | [1, 1, 28, 28] | [1, 6, 28, 28] | 60 | 47040 |
#| re_lu_2 | [1, 6, 28, 28] | [1, 6, 28, 28] | 0 | 0 |
#| max_pool2d_2 | [1, 6, 28, 28] | [1, 6, 14, 14] | 0 | 0 |
#| conv2d_3 | [1, 6, 14, 14] | [1, 16, 10, 10] | 2416 | 241600 |
#| re_lu_3 | [1, 16, 10, 10] | [1, 16, 10, 10] | 0 | 0 |
#| max_pool2d_3 | [1, 16, 10, 10] | [1, 16, 5, 5] | 0 | 0 |
#| linear_0 | [1, 400] | [1, 120] | 48120 | 48000 |
#| linear_1 | [1, 120] | [1, 84] | 10164 | 10080 |
#| linear_2 | [1, 84] | [1, 10] | 850 | 840 |
#+--------------+-----------------+-----------------+--------+--------+
#Total Flops: 347560 Total Params: 61610
"""
if
isinstance
(
net
,
nn
.
Layer
):
inputs
=
paddle
.
randn
(
input_size
)
return
dynamic_flops
(
net
,
inputs
=
inputs
,
custom_ops
=
custom_ops
,
print_detail
=
print_detail
)
elif
isinstance
(
net
,
paddle
.
static
.
Program
):
return
static_flops
(
net
,
print_detail
=
print_detail
)
else
:
warnings
.
warn
(
"Your model must be an instance of paddle.nn.Layer or paddle.static.Program."
)
return
-
1
def
count_convNd
(
m
,
x
,
y
):
x
=
x
[
0
]
kernel_ops
=
np
.
product
(
m
.
weight
.
shape
[
2
:])
bias_ops
=
1
if
m
.
bias
is
not
None
else
0
total_ops
=
int
(
y
.
numel
())
*
(
x
.
shape
[
1
]
/
m
.
_groups
*
kernel_ops
+
bias_ops
)
m
.
total_ops
+=
total_ops
def
count_leaky_relu
(
m
,
x
,
y
):
x
=
x
[
0
]
nelements
=
x
.
numel
()
m
.
total_ops
+=
int
(
nelements
)
def
count_bn
(
m
,
x
,
y
):
x
=
x
[
0
]
nelements
=
x
.
numel
()
if
not
m
.
training
:
total_ops
=
2
*
nelements
m
.
total_ops
+=
int
(
total_ops
)
def
count_linear
(
m
,
x
,
y
):
total_mul
=
m
.
weight
.
shape
[
0
]
num_elements
=
y
.
numel
()
total_ops
=
total_mul
*
num_elements
m
.
total_ops
+=
int
(
total_ops
)
def
count_avgpool
(
m
,
x
,
y
):
kernel_ops
=
1
num_elements
=
y
.
numel
()
total_ops
=
kernel_ops
*
num_elements
m
.
total_ops
+=
int
(
total_ops
)
def
count_adap_avgpool
(
m
,
x
,
y
):
kernel
=
np
.
array
(
x
[
0
].
shape
[
2
:])
//
np
.
array
(
y
.
shape
[
2
:])
total_add
=
np
.
product
(
kernel
)
total_div
=
1
kernel_ops
=
total_add
+
total_div
num_elements
=
y
.
numel
()
total_ops
=
kernel_ops
*
num_elements
m
.
total_ops
+=
int
(
total_ops
)
def
count_zero_ops
(
m
,
x
,
y
):
m
.
total_ops
+=
int
(
0
)
def
count_parameters
(
m
,
x
,
y
):
total_params
=
0
for
p
in
m
.
parameters
():
total_params
+=
p
.
numel
()
m
.
total_params
[
0
]
=
int
(
total_params
)
def
count_io_info
(
m
,
x
,
y
):
m
.
register_buffer
(
'input_shape'
,
paddle
.
to_tensor
(
x
[
0
].
shape
))
m
.
register_buffer
(
'output_shape'
,
paddle
.
to_tensor
(
y
.
shape
))
register_hooks
=
{
nn
.
Conv1D
:
count_convNd
,
nn
.
Conv2D
:
count_convNd
,
nn
.
Conv3D
:
count_convNd
,
nn
.
Conv1DTranspose
:
count_convNd
,
nn
.
Conv2DTranspose
:
count_convNd
,
nn
.
Conv3DTranspose
:
count_convNd
,
nn
.
layer
.
norm
.
BatchNorm2D
:
count_bn
,
nn
.
BatchNorm
:
count_bn
,
nn
.
ReLU
:
count_zero_ops
,
nn
.
ReLU6
:
count_zero_ops
,
nn
.
LeakyReLU
:
count_leaky_relu
,
nn
.
Linear
:
count_linear
,
nn
.
Dropout
:
count_zero_ops
,
nn
.
AvgPool1D
:
count_avgpool
,
nn
.
AvgPool2D
:
count_avgpool
,
nn
.
AvgPool3D
:
count_avgpool
,
nn
.
AdaptiveAvgPool1D
:
count_adap_avgpool
,
nn
.
AdaptiveAvgPool2D
:
count_adap_avgpool
,
nn
.
AdaptiveAvgPool3D
:
count_adap_avgpool
}
def
dynamic_flops
(
model
,
inputs
,
custom_ops
=
None
,
print_detail
=
False
):
handler_collection
=
[]
types_collection
=
set
()
if
custom_ops
is
None
:
custom_ops
=
{}
def
add_hooks
(
m
):
if
len
(
list
(
m
.
children
()))
>
0
:
return
m
.
register_buffer
(
'total_ops'
,
paddle
.
zeros
([
1
],
dtype
=
'int32'
))
m
.
register_buffer
(
'total_params'
,
paddle
.
zeros
([
1
],
dtype
=
'int32'
))
m_type
=
type
(
m
)
flops_fn
=
None
if
m_type
in
custom_ops
:
flops_fn
=
custom_ops
[
m_type
]
if
m_type
not
in
types_collection
:
print
(
"Customize Function has been appied to {}"
.
format
(
m_type
))
elif
m_type
in
register_hooks
:
flops_fn
=
register_hooks
[
m_type
]
if
m_type
not
in
types_collection
:
print
(
"{}'s flops has been counted"
.
format
(
m_type
))
else
:
if
m_type
not
in
types_collection
:
print
(
"Cannot find suitable count function for {}. Treat it as zero Macs."
.
format
(
m_type
))
if
flops_fn
is
not
None
:
flops_handler
=
m
.
register_forward_post_hook
(
flops_fn
)
handler_collection
.
append
(
flops_handler
)
params_handler
=
m
.
register_forward_post_hook
(
count_parameters
)
io_handler
=
m
.
register_forward_post_hook
(
count_io_info
)
handler_collection
.
append
(
params_handler
)
handler_collection
.
append
(
io_handler
)
types_collection
.
add
(
m_type
)
training
=
model
.
training
model
.
eval
()
model
.
apply
(
add_hooks
)
with
paddle
.
framework
.
no_grad
():
model
(
inputs
)
total_ops
=
0
total_params
=
0
for
m
in
model
.
sublayers
():
if
len
(
list
(
m
.
children
()))
>
0
:
continue
total_ops
+=
m
.
total_ops
total_params
+=
m
.
total_params
total_ops
=
int
(
total_ops
)
total_params
=
int
(
total_params
)
if
training
:
model
.
train
()
for
handler
in
handler_collection
:
handler
.
remove
()
_verify_dependent_package
()
table
=
PrettyTable
(
[
"Layer Name"
,
"Input Shape"
,
"Output Shape"
,
"Params"
,
"Flops"
])
for
n
,
m
in
model
.
named_sublayers
():
if
len
(
list
(
m
.
children
()))
>
0
:
continue
if
"total_ops"
in
m
.
_buffers
:
table
.
add_row
([
m
.
full_name
(),
list
(
m
.
input_shape
.
numpy
()),
list
(
m
.
output_shape
.
numpy
()),
int
(
m
.
total_params
),
int
(
m
.
total_ops
)
])
m
.
_buffers
.
pop
(
"total_ops"
)
m
.
_buffers
.
pop
(
"total_params"
)
m
.
_buffers
.
pop
(
'input_shape'
)
m
.
_buffers
.
pop
(
'output_shape'
)
if
(
print_detail
):
print
(
table
)
print
(
'Total Flops: {} Total Params: {}'
.
format
(
total_ops
,
total_params
))
return
total_ops
python/paddle/hapi/static_flops.py
0 → 100644
浏览文件 @
5da3d514
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
numpy
as
np
import
paddle
from
collections
import
OrderedDict
from
paddle.static
import
Program
,
program_guard
,
Variable
class
VarWrapper
(
object
):
def
__init__
(
self
,
var
,
graph
):
assert
isinstance
(
var
,
Variable
)
assert
isinstance
(
graph
,
GraphWrapper
)
self
.
_var
=
var
self
.
_graph
=
graph
def
name
(
self
):
"""
Get the name of the variable.
"""
return
self
.
_var
.
name
def
shape
(
self
):
"""
Get the shape of the varibale.
"""
return
self
.
_var
.
shape
class
OpWrapper
(
object
):
def
__init__
(
self
,
op
,
graph
):
assert
isinstance
(
graph
,
GraphWrapper
)
self
.
_op
=
op
self
.
_graph
=
graph
def
type
(
self
):
"""
Get the type of this operator.
"""
return
self
.
_op
.
type
def
inputs
(
self
,
name
):
"""
Get all the varibales by the input name.
"""
if
name
in
self
.
_op
.
input_names
:
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
input
(
name
)
]
else
:
return
[]
def
outputs
(
self
,
name
):
"""
Get all the varibales by the output name.
"""
return
[
self
.
_graph
.
var
(
var_name
)
for
var_name
in
self
.
_op
.
output
(
name
)]
class
GraphWrapper
(
object
):
"""
It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
for paddle slim framework.
Args:
program(framework.Program): A program with
in_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
out_nodes(dict): A dict to indicate the input nodes of the graph.
The key is user-defined and human-readable name.
The value is the name of Variable.
"""
def
__init__
(
self
,
program
=
None
,
in_nodes
=
[],
out_nodes
=
[]):
"""
"""
super
(
GraphWrapper
,
self
).
__init__
()
self
.
program
=
Program
()
if
program
is
None
else
program
self
.
persistables
=
{}
self
.
teacher_persistables
=
{}
for
var
in
self
.
program
.
list_vars
():
if
var
.
persistable
:
self
.
persistables
[
var
.
name
]
=
var
self
.
compiled_graph
=
None
in_nodes
=
[]
if
in_nodes
is
None
else
in_nodes
out_nodes
=
[]
if
out_nodes
is
None
else
out_nodes
self
.
in_nodes
=
OrderedDict
(
in_nodes
)
self
.
out_nodes
=
OrderedDict
(
out_nodes
)
self
.
_attrs
=
OrderedDict
()
def
ops
(
self
):
"""
Return all operator nodes included in the graph as a set.
"""
ops
=
[]
for
block
in
self
.
program
.
blocks
:
for
op
in
block
.
ops
:
ops
.
append
(
OpWrapper
(
op
,
self
))
return
ops
def
var
(
self
,
name
):
"""
Get the variable by variable name.
"""
for
block
in
self
.
program
.
blocks
:
if
block
.
has_var
(
name
):
return
VarWrapper
(
block
.
var
(
name
),
self
)
return
None
def
count_convNd
(
op
):
filter_shape
=
op
.
inputs
(
"Filter"
)[
0
].
shape
()
filter_ops
=
np
.
product
(
filter_shape
[
1
:])
bias_ops
=
1
if
len
(
op
.
inputs
(
"Bias"
))
>
0
else
0
output_numel
=
np
.
product
(
op
.
outputs
(
"Output"
)[
0
].
shape
()[
1
:])
total_ops
=
output_numel
*
(
filter_ops
+
bias_ops
)
return
total_ops
def
count_leaky_relu
(
op
):
total_ops
=
np
.
product
(
op
.
outputs
(
"Output"
)[
0
].
shape
()[
1
:])
return
total_ops
def
count_bn
(
op
):
output_numel
=
np
.
product
(
op
.
outputs
(
"Y"
)[
0
].
shape
()[
1
:])
total_ops
=
2
*
output_numel
return
total_ops
def
count_linear
(
op
):
total_mul
=
op
.
inputs
(
"Y"
)[
0
].
shape
()[
0
]
numel
=
np
.
product
(
op
.
outputs
(
"Out"
)[
0
].
shape
()[
1
:])
total_ops
=
total_mul
*
numel
return
total_ops
def
count_pool2d
(
op
):
input_shape
=
op
.
inputs
(
"X"
)[
0
].
shape
()
output_shape
=
op
.
outputs
(
'Out'
)[
0
].
shape
()
kernel
=
np
.
array
(
input_shape
[
2
:])
//
np
.
array
(
output_shape
[
2
:])
total_add
=
np
.
product
(
kernel
)
total_div
=
1
kernel_ops
=
total_add
+
total_div
num_elements
=
np
.
product
(
output_shape
[
1
:])
total_ops
=
kernel_ops
*
num_elements
return
total_ops
def
count_element_op
(
op
):
input_shape
=
op
.
inputs
(
"X"
)[
0
].
shape
()
total_ops
=
np
.
product
(
input_shape
[
1
:])
return
total_ops
def
_verify_dependent_package
():
"""
Verify whether `prettytable` is installed.
"""
try
:
from
prettytable
import
PrettyTable
except
ImportError
:
raise
ImportError
(
"paddle.flops() requires package `prettytable`, place install it firstly using `pip install prettytable`. "
)
def
_graph_flops
(
graph
,
detail
=
False
):
assert
isinstance
(
graph
,
GraphWrapper
)
flops
=
0
_verify_dependent_package
()
table
=
PrettyTable
([
"OP Type"
,
'Param name'
,
"Flops"
])
for
op
in
graph
.
ops
():
param_name
=
''
if
op
.
type
()
in
[
'conv2d'
,
'depthwise_conv2d'
]:
op_flops
=
count_convNd
(
op
)
flops
+=
op_flops
param_name
=
op
.
inputs
(
"Filter"
)[
0
].
name
()
elif
op
.
type
()
==
'pool2d'
:
op_flops
=
count_pool2d
(
op
)
flops
+=
op_flops
elif
op
.
type
()
in
[
'mul'
,
'matmul'
]:
op_flops
=
count_linear
(
op
)
flops
+=
op_flops
param_name
=
op
.
inputs
(
"Y"
)[
0
].
name
()
elif
op
.
type
()
==
'batch_norm'
:
op_flops
=
count_bn
(
op
)
flops
+=
op_flops
elif
op
.
type
().
startswith
(
'element'
):
op_flops
=
count_element_op
(
op
)
flops
+=
op_flops
if
op_flops
!=
0
:
table
.
add_row
([
op
.
type
(),
param_name
,
op_flops
])
op_flops
=
0
if
detail
:
print
(
table
)
return
flops
def
static_flops
(
program
,
print_detail
=
False
):
graph
=
GraphWrapper
(
program
)
return
_graph_flops
(
graph
,
detail
=
print_detail
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录