From 5cd97a1cb04049aa31fcd0d4d0a6825917520114 Mon Sep 17 00:00:00 2001 From: wangguanzhong Date: Wed, 21 Oct 2020 14:06:20 +0800 Subject: [PATCH] support multiclass nms for multi-batch, test=develop (#28154) --- .../operators/detection/multiclass_nms_op.cc | 10 +++- .../tests/unittests/test_multiclass_nms_op.py | 52 +++++++++++++++++++ 2 files changed, 61 insertions(+), 1 deletion(-) diff --git a/paddle/fluid/operators/detection/multiclass_nms_op.cc b/paddle/fluid/operators/detection/multiclass_nms_op.cc index 4b38779c136..0e835a62839 100644 --- a/paddle/fluid/operators/detection/multiclass_nms_op.cc +++ b/paddle/fluid/operators/detection/multiclass_nms_op.cc @@ -290,6 +290,7 @@ class MultiClassNMSKernel : public framework::OpKernel { } else { sdata = scores_data + label * predict_dim; } + for (size_t j = 0; j < indices.size(); ++j) { int idx = indices[j]; odata[count * out_dim] = label; // label @@ -333,6 +334,7 @@ class MultiClassNMSKernel : public framework::OpKernel { Tensor boxes_slice, scores_slice; int n = score_size == 3 ? batch_size : boxes->lod().back().size() - 1; for (int i = 0; i < n; ++i) { + std::map> indices; if (score_size == 3) { scores_slice = scores->Slice(i, i + 1); scores_slice.Resize({score_dims[1], score_dims[2]}); @@ -340,10 +342,14 @@ class MultiClassNMSKernel : public framework::OpKernel { boxes_slice.Resize({score_dims[2], box_dim}); } else { auto boxes_lod = boxes->lod().back(); + if (boxes_lod[i] == boxes_lod[i + 1]) { + all_indices.push_back(indices); + batch_starts.push_back(batch_starts.back()); + continue; + } scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]); boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]); } - std::map> indices; MultiClassNMS(ctx, scores_slice, boxes_slice, score_size, &indices, &num_nmsed_out); all_indices.push_back(indices); @@ -375,12 +381,14 @@ class MultiClassNMSKernel : public framework::OpKernel { } } else { auto boxes_lod = boxes->lod().back(); + if (boxes_lod[i] == boxes_lod[i + 1]) continue; scores_slice = scores->Slice(boxes_lod[i], boxes_lod[i + 1]); boxes_slice = boxes->Slice(boxes_lod[i], boxes_lod[i + 1]); if (return_index) { offset = boxes_lod[i] * score_dims[1]; } } + int64_t s = batch_starts[i]; int64_t e = batch_starts[i + 1]; if (e > s) { diff --git a/python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py b/python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py index ab58d4bc88e..34c19b88bcd 100644 --- a/python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py +++ b/python/paddle/fluid/tests/unittests/test_multiclass_nms_op.py @@ -17,6 +17,7 @@ import unittest import numpy as np import copy from op_test import OpTest +import paddle import paddle.fluid as fluid from paddle.fluid import Program, program_guard @@ -171,6 +172,9 @@ def lod_multiclass_nms(boxes, scores, background, score_threshold, lod = [] head = 0 for n in range(len(box_lod[0])): + if box_lod[0][n] == 0: + lod.append(0) + continue box = boxes[head:head + box_lod[0][n]] score = scores[head:head + box_lod[0][n]] offset = head @@ -357,6 +361,53 @@ class TestMulticlassNMSLoDInput(OpTest): self.check_output() +class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput): + def setUp(self): + self.set_argument() + M = 1200 + C = 21 + BOX_SIZE = 4 + box_lod = [[0, 1200, 0]] + background = 0 + nms_threshold = 0.3 + nms_top_k = 400 + keep_top_k = 200 + score_threshold = self.score_threshold + normalized = False + + scores = np.random.random((M, C)).astype('float32') + + scores = np.apply_along_axis(softmax, 1, scores) + + boxes = np.random.random((M, C, BOX_SIZE)).astype('float32') + boxes[:, :, 0] = boxes[:, :, 0] * 10 + boxes[:, :, 1] = boxes[:, :, 1] * 10 + boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10 + boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10 + + det_outs, lod = lod_multiclass_nms( + boxes, scores, background, score_threshold, nms_threshold, + nms_top_k, keep_top_k, box_lod, normalized) + det_outs = np.array(det_outs).astype('float32') + nmsed_outs = det_outs[:, :-1].astype('float32') if len( + det_outs) else det_outs + self.op_type = 'multiclass_nms' + self.inputs = { + 'BBoxes': (boxes, box_lod), + 'Scores': (scores, box_lod), + } + self.outputs = {'Out': (nmsed_outs, [lod])} + self.attrs = { + 'background_label': 0, + 'nms_threshold': nms_threshold, + 'nms_top_k': nms_top_k, + 'keep_top_k': keep_top_k, + 'score_threshold': score_threshold, + 'nms_eta': 1.0, + 'normalized': normalized, + } + + class TestIOU(unittest.TestCase): def test_iou(self): box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32') @@ -521,4 +572,5 @@ class TestMulticlassNMSError(unittest.TestCase): if __name__ == '__main__': + paddle.enable_static() unittest.main() -- GitLab