Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5ccc49e7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5ccc49e7
编写于
6月 02, 2022
作者:
H
Haohongxiang
提交者:
GitHub
6月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support eager dygraph in moe_layer (#43168)
上级
0fbf815c
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
195 addition
and
28 deletion
+195
-28
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+1
-3
python/paddle/distributed/parallel.py
python/paddle/distributed/parallel.py
+3
-0
python/paddle/incubate/distributed/models/moe/moe_layer.py
python/paddle/incubate/distributed/models/moe/moe_layer.py
+178
-21
python/paddle/incubate/distributed/models/moe/utils.py
python/paddle/incubate/distributed/models/moe/utils.py
+13
-4
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
5ccc49e7
...
...
@@ -405,9 +405,7 @@ def new_group(ranks=None, backend=None):
# TODO(shenliang03): This is a temporary solution to solve the problem of
# hang caused by tcp
tmp
=
paddle
.
to_tensor
([
1
],
dtype
=
"int32"
)
paddle
.
distributed
.
all_reduce
(
tmp
,
group
=
group
,
use_calc_stream
=
True
)
paddle
.
distributed
.
wait
(
tmp
)
paddle
.
distributed
.
barrier
(
group
=
group
)
return
group
if
not
backend
:
...
...
python/paddle/distributed/parallel.py
浏览文件 @
5ccc49e7
...
...
@@ -19,6 +19,7 @@ from multiprocessing import Process # noqa: F401
from
multiprocessing
import
Manager
# noqa: F401
import
time
import
sys
import
paddle
from
paddle
import
compat
as
cpt
...
...
@@ -259,6 +260,8 @@ def init_parallel_env():
_set_group_map_by_name
(
_default_group_name
,
group
)
_set_group_map
(
0
,
group
)
parallel_helper
.
_set_parallel_ctx
(
True
)
paddle
.
distributed
.
barrier
(
group
=
group
)
return
group
node_num
=
set
([
i
.
split
(
":"
)[
0
]
for
i
in
parallel_env
.
trainer_endpoints
])
...
...
python/paddle/incubate/distributed/models/moe/moe_layer.py
浏览文件 @
5ccc49e7
...
...
@@ -31,11 +31,12 @@ from paddle.distributed import alltoall, all_gather
from
paddle.distributed.fleet.meta_parallel
import
get_rng_state_tracker
from
paddle.distributed
import
fleet
from
paddle.autograd
import
PyLayer
from
paddle.autograd
import
PyLayer
,
EagerPyLayer
from
.gate
import
NaiveGate
,
GShardGate
,
SwitchGate
,
BaseGate
from
.utils
import
count_by_gate
from
paddle.distributed.fleet.meta_parallel.pp_utils.utils
import
_hp_recompute
from
paddle
import
fluid
from
paddle.fluid.framework
import
in_dygraph_mode
def
_local_scatter
(
inp
,
pos
):
...
...
@@ -63,17 +64,26 @@ def _local_gather(inp, pos, out_batch_size, maybe_overlap=True):
def
_all_gather
(
tensor
,
group
=
None
,
use_calc_stream
=
True
):
"""
The main difference with paddle.distributed.all_gather:
no need to pass in tensor_list, the returned tensor is spliced
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
if
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
tensor_shape
=
list
(
tensor
.
shape
)
tensor_shape
[
0
]
*=
group
.
nranks
out
=
paddle
.
empty
(
tensor_shape
,
tensor
.
dtype
)
task
=
group
.
process_group
.
all_gather
(
tensor
,
out
)
task
.
wait
()
return
out
else
:
ring_id
=
0
if
group
is
None
else
group
.
id
nranks
=
paddle
.
distributed
.
collective
.
_get_global_group
(
).
nranks
if
group
is
None
else
group
.
nranks
return
paddle
.
_C_ops
.
c_allgather
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
)
return
paddle
.
_C_ops
.
c_allgather
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
,
'nranks'
,
nranks
)
class
MoEScatter
(
PyLayer
):
...
...
@@ -122,6 +132,52 @@ class MoEScatter(PyLayer):
return
grad_in
,
None
,
None
,
None
class
EagerMoEScatter
(
EagerPyLayer
):
r
"""
Scatter input samples from [batch x sequences] to contiguous alone experts.
If `world_size` is greater than 1, the samples will first be locally
scattered, and then exchanged across workers.
"""
@
staticmethod
def
forward
(
ctx
,
inp
,
pos
,
local_expert_count
,
global_expert_count
,
fwd_batch_size
,
world_size
,
group
=
None
):
local_input_buf
=
_local_scatter
(
inp
,
pos
)
if
world_size
>
1
:
global_input_buf
=
global_scatter
(
local_input_buf
,
local_expert_count
,
global_expert_count
,
group
=
group
)
else
:
global_input_buf
=
local_input_buf
ctx
.
moe_args
=
inp
.
shape
[
0
],
world_size
,
group
variables
=
(
pos
,
local_expert_count
,
global_expert_count
)
ctx
.
save_for_backward
(
*
variables
)
return
global_input_buf
@
staticmethod
def
backward
(
ctx
,
grad
):
(
pos
,
local_expert_count
,
global_expert_count
)
=
ctx
.
saved_tensor
()
(
inp_batch_size
,
world_size
,
group
)
=
ctx
.
moe_args
if
world_size
>
1
:
local_grad_in
=
global_gather
(
grad
,
local_expert_count
,
global_expert_count
,
group
=
group
)
else
:
local_grad_in
=
grad
grad_in
=
_local_gather
(
local_grad_in
,
pos
,
inp_batch_size
)
return
grad_in
,
None
,
None
,
None
class
MoEGather
(
PyLayer
):
r
"""
Gather output samples from contiguous alone experts back to [batch x
...
...
@@ -169,6 +225,53 @@ class MoEGather(PyLayer):
return
global_grad_out_buf
,
None
,
None
,
None
class
EagerMoEGather
(
EagerPyLayer
):
r
"""
Gather output samples from contiguous alone experts back to [batch x
sequences]. Works symmetrically with MoEScatter.
"""
@
staticmethod
def
forward
(
ctx
,
global_output_buf
,
pos
,
local_expert_count
,
global_expert_count
,
local_batch_size
,
world_size
,
group
=
None
):
if
world_size
>
1
:
local_output_buf
=
global_gather
(
global_output_buf
,
local_expert_count
,
global_expert_count
,
group
=
group
)
else
:
local_output_buf
=
global_output_buf
output
=
_local_gather
(
local_output_buf
,
pos
,
local_batch_size
,
maybe_overlap
=
False
)
ctx
.
moe_args
=
(
global_output_buf
.
shape
[
0
],
world_size
,
group
)
variables
=
(
pos
,
local_expert_count
,
global_expert_count
)
ctx
.
save_for_backward
(
*
variables
)
return
output
@
staticmethod
def
backward
(
ctx
,
grad_out
):
pos
,
local_expert_count
,
global_expert_count
=
ctx
.
saved_tensor
()
fwd_batch_size
,
world_size
,
group
=
ctx
.
moe_args
grad_out_buf
=
_local_scatter
(
grad_out
,
pos
)
if
world_size
>
1
:
global_grad_out_buf
=
global_scatter
(
grad_out_buf
,
local_expert_count
,
global_expert_count
,
group
=
group
)
else
:
global_grad_out_buf
=
grad_out_buf
return
global_grad_out_buf
,
None
,
None
,
None
class
AllGather
(
PyLayer
):
r
"""
A wrapper for the All-Gather function to support auto-differentiation.
...
...
@@ -189,6 +292,26 @@ class AllGather(PyLayer):
grad_out
,
axes
=
[
0
],
starts
=
[
rank
*
dim0
],
ends
=
[(
rank
+
1
)
*
dim0
])
class
EagerAllGather
(
EagerPyLayer
):
r
"""
A wrapper for the All-Gather function to support auto-differentiation.
"""
@
staticmethod
def
forward
(
ctx
,
inp
,
rank
,
world_size
,
group
):
tensor_list
=
[]
paddle
.
distributed
.
all_gather
(
tensor_list
,
inp
,
group
=
group
)
output
=
paddle
.
concat
(
tensor_list
,
axis
=
0
)
ctx
.
args
=
rank
,
inp
.
shape
[
0
]
return
output
@
staticmethod
def
backward
(
ctx
,
grad_out
):
rank
,
dim0
=
ctx
.
args
return
paddle
.
slice
(
grad_out
,
axes
=
[
0
],
starts
=
[
rank
*
dim0
],
ends
=
[(
rank
+
1
)
*
dim0
])
class
Slice
(
PyLayer
):
r
"""
A wrapper for the Slice function to support auto-differentiation.
...
...
@@ -208,11 +331,29 @@ class Slice(PyLayer):
@
staticmethod
def
backward
(
ctx
,
grad_out
):
world_size
,
group
=
ctx
.
args
# tensor_list = []
# paddle.distributed.all_gather(tensor_list, grad_out, group=group)
# grad_out = paddle.concat(tensor_list, axis=0)
return
_all_gather
(
grad_out
,
group
=
group
)
# return grad_out
class
EagerSlice
(
EagerPyLayer
):
r
"""
A wrapper for the Slice function to support auto-differentiation.
"""
@
staticmethod
def
forward
(
ctx
,
inp
,
rank
,
world_size
,
group
):
B
=
inp
.
shape
[
0
]
local_batch_size
=
B
//
world_size
batch_start
=
local_batch_size
*
rank
batch_end
=
min
(
batch_start
+
local_batch_size
,
B
)
inp
=
paddle
.
slice
(
inp
,
axes
=
[
0
],
starts
=
[
batch_start
],
ends
=
[
batch_end
])
ctx
.
args
=
world_size
,
group
return
inp
@
staticmethod
def
backward
(
ctx
,
grad_out
):
world_size
,
group
=
ctx
.
args
return
_all_gather
(
grad_out
,
group
=
group
)
def
prepare_forward
(
gate
,
num_expert
,
world_size
,
moe_group
):
...
...
@@ -369,6 +510,9 @@ class MoELayer(nn.Layer):
mp_rank
=
self
.
mp_group
.
rank
mp_size
=
self
.
mp_group
.
nranks
if
mp_size
>
1
:
if
in_dygraph_mode
():
inp
=
EagerSlice
.
apply
(
inp
,
mp_rank
,
mp_size
,
self
.
mp_group
)
else
:
inp
=
Slice
.
apply
(
inp
,
mp_rank
,
mp_size
,
self
.
mp_group
)
value
,
gate
=
self
.
gate
(
inp
)
...
...
@@ -390,6 +534,11 @@ class MoELayer(nn.Layer):
temp_pos
=
pos
assert
topk
==
self
.
top_k
if
in_dygraph_mode
():
x
=
EagerMoEScatter
.
apply
(
inp
,
temp_pos
,
local_expert_count
,
global_expert_count
,
fwd_batch_size
,
self
.
world_size
,
self
.
group
)
else
:
x
=
MoEScatter
.
apply
(
inp
,
temp_pos
,
local_expert_count
,
global_expert_count
,
fwd_batch_size
,
self
.
world_size
,
self
.
group
)
...
...
@@ -421,6 +570,11 @@ class MoELayer(nn.Layer):
if
len
(
gate
.
shape
)
==
2
:
out_batch_size
*=
gate
.
shape
[
1
]
if
in_dygraph_mode
():
x
=
EagerMoEGather
.
apply
(
x
,
pos
,
local_expert_count
,
global_expert_count
,
out_batch_size
,
self
.
world_size
,
self
.
group
)
else
:
x
=
MoEGather
.
apply
(
x
,
pos
,
local_expert_count
,
global_expert_count
,
out_batch_size
,
self
.
world_size
,
self
.
group
)
...
...
@@ -429,6 +583,9 @@ class MoELayer(nn.Layer):
x
=
paddle
.
bmm
(
value
,
x
).
reshape
([
-
1
,
d_model
])
if
mp_size
>
1
:
if
in_dygraph_mode
():
x
=
EagerAllGather
.
apply
(
x
,
mp_rank
,
mp_size
,
self
.
mp_group
)
else
:
x
=
AllGather
.
apply
(
x
,
mp_rank
,
mp_size
,
self
.
mp_group
)
x
=
paddle
.
reshape_
(
x
,
origin_shape
)
...
...
python/paddle/incubate/distributed/models/moe/utils.py
浏览文件 @
5ccc49e7
...
...
@@ -21,13 +21,22 @@
from
paddle.distributed.models.moe.utils
import
_number_count
,
_limit_by_capacity
,
_prune_gate_by_capacity
,
_assign_pos
import
paddle
from
paddle.fluid.framework
import
in_dygraph_mode
def
_alltoall
(
in_tensor_list
,
group
=
None
,
use_calc_stream
=
True
):
if
group
is
not
None
and
not
group
.
is_member
():
return
if
in_dygraph_mode
():
group
=
paddle
.
distributed
.
collective
.
_get_default_group
(
)
if
group
is
None
else
group
out
=
paddle
.
empty
(
in_tensor_list
.
shape
,
in_tensor_list
.
dtype
)
task
=
group
.
process_group
.
alltoall
(
in_tensor_list
,
out
)
task
.
wait
()
return
out
else
:
ring_id
=
0
if
group
is
None
else
group
.
id
nranks
=
len
(
in_tensor_list
)
return
paddle
.
_C_ops
.
alltoall
(
in_tensor_list
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录