Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5c9fce0e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5c9fce0e
编写于
7月 01, 2021
作者:
S
ShenLiang
提交者:
GitHub
7月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add p2p (#33864)
上级
c522530a
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
126 addition
and
75 deletion
+126
-75
python/paddle/distributed/fleet/base/topology.py
python/paddle/distributed/fleet/base/topology.py
+21
-0
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+35
-75
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
...ributed/fleet/meta_parallel/pp_utils/p2p_communication.py
+70
-0
未找到文件。
python/paddle/distributed/fleet/base/topology.py
浏览文件 @
5c9fce0e
...
...
@@ -164,9 +164,27 @@ class HybridCommunicateGroup(object):
self
.
_dp_group
,
self
.
_check_group
)
logger
.
info
(
debug_str
)
# create p2p_groups and no new group
self
.
_p2p_groups
=
self
.
_build_p2p_lists
()
global
_HYBRID_PARALLEL_GROUP
_HYBRID_PARALLEL_GROUP
=
self
def
_build_p2p_lists
(
self
):
comm_lists
=
self
.
_topo
.
get_comm_list
(
'pipe'
)
p2p_lists
=
[]
for
rank
in
range
(
self
.
nranks
):
for
comm_ranks
in
comm_lists
:
assert
len
(
comm_ranks
)
==
self
.
_pp_degree
if
rank
in
comm_ranks
:
idx
=
comm_ranks
.
index
(
rank
)
next_rank
=
comm_ranks
[(
idx
+
1
)
%
self
.
_pp_degree
]
p2p_lists
.
append
([
rank
,
next_rank
])
break
assert
len
(
p2p_lists
)
==
self
.
nranks
,
"len(p2p_lists) should be equal nranks"
return
p2p_lists
def
get_parallel_mode
(
self
):
# there are four modes : DataParallel / TensorParallel / PipelineParallel / ShardingParallel
# NOTE when sharding conjugates with other parallel, sharding should act like a optimizer and
...
...
@@ -286,6 +304,9 @@ class HybridCommunicateGroup(object):
# TODO should the src rank related to the shard rank for each parameter ?
return
self
.
_sharding_comm_group
.
ranks
[
0
]
def
get_p2p_groups
(
self
):
return
self
.
_p2p_groups
# check parallel group
def
get_check_parallel_group
(
self
):
return
self
.
_check_comm_group
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
5c9fce0e
...
...
@@ -24,6 +24,7 @@ from ..utils.hybrid_parallel_util import broadcast_mp_parameters
from
..utils.hybrid_parallel_util
import
broadcast_dp_parameters
from
..utils.log_util
import
logger
from
..meta_optimizers.dygraph_optimizer
import
HybridParallelOptimizer
from
.pp_utils
import
p2p_communication
as
p2p
__all__
=
[]
...
...
@@ -63,6 +64,7 @@ class PipelineParallel(MetaParallelBase):
self
.
prev_stage_id
=
self
.
stage_id
-
1
self
.
next_stage_id
=
self
.
stage_id
+
1
self
.
pp_group
=
self
.
_hcg
.
get_pipe_parallel_group
()
p2p
.
initialize_p2p_groups
(
hcg
)
self
.
is_first_stage
=
self
.
stage_id
==
0
self
.
is_last_stage
=
(
self
.
stage_id
==
(
self
.
num_stages
-
1
))
...
...
@@ -275,97 +277,86 @@ class PipelineParallel(MetaParallelBase):
if
isinstance
(
data
,
paddle
.
Tensor
):
tensor_type
=
paddle
.
to_tensor
([
0
])
# send tensor type
paddle
.
distributed
.
send
(
tensor_type
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
tensor_type
,
self
.
next_stage_id
)
# send len(shape)
dims
=
paddle
.
to_tensor
(
len
(
data
.
shape
))
paddle
.
distributed
.
send
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
dims
,
self
.
next_stage_id
)
# send shape
shape
=
paddle
.
to_tensor
(
data
.
shape
)
paddle
.
distributed
.
send
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
shape
,
self
.
next_stage_id
)
# send dtype
dtype
=
paddle
.
to_tensor
(
paddle_2_number
(
data
.
dtype
))
paddle
.
distributed
.
send
(
dtype
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
dtype
,
self
.
next_stage_id
)
elif
isinstance
(
data
,
tuple
):
tensor_type
=
paddle
.
to_tensor
([
1
])
p
addle
.
distributed
.
send
(
tensor_type
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p
2p
.
send
(
tensor_type
,
self
.
next_stage_id
)
nums
=
paddle
.
to_tensor
(
len
(
data
))
p
addle
.
distributed
.
send
(
nums
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p
2p
.
send
(
nums
,
self
.
next_stage_id
)
for
idx
,
d
in
enumerate
(
data
):
assert
isinstance
(
d
,
paddle
.
Tensor
)
# send len(shape)
dims
=
paddle
.
to_tensor
(
len
(
d
.
shape
))
paddle
.
distributed
.
send
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
dims
,
self
.
next_stage_id
)
# send shape
shape
=
paddle
.
to_tensor
(
d
.
shape
)
paddle
.
distributed
.
send
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
shape
,
self
.
next_stage_id
)
# send dtype
dtype
=
paddle
.
to_tensor
(
paddle_2_number
(
d
.
dtype
))
paddle
.
distributed
.
send
(
dtype
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
dtype
,
self
.
next_stage_id
)
def
_recv_meta
(
self
,
peer
):
tensor_type
=
paddle
.
to_tensor
([
0
])
p
addle
.
distributed
.
recv
(
tensor_type
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p
2p
.
recv
(
tensor_type
,
self
.
prev_stage_id
)
tensor_type
=
tensor_type
.
item
()
if
tensor_type
==
0
:
# recv len(shape)
dims
=
paddle
.
to_tensor
([
0
])
p
addle
.
distributed
.
recv
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p
2p
.
recv
(
dims
,
self
.
prev_stage_id
)
dims
=
dims
.
item
()
# recv shape
shape
=
paddle
.
to_tensor
([
0
]
*
dims
)
p
addle
.
distributed
.
recv
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p
2p
.
recv
(
shape
,
self
.
prev_stage_id
)
shape
=
shape
.
numpy
().
tolist
()
# recv dtype
dtype
=
paddle
.
to_tensor
([
0
])
p
addle
.
distributed
.
recv
(
dtype
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p
2p
.
recv
(
dtype
,
self
.
prev_stage_id
)
return
self
.
_allocate_cache
(
shape
,
dtype
=
number_2_dtype
(
dtype
.
item
()),
num_caches
=
1
)[
0
]
elif
tensor_type
==
1
:
num
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
num
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
num
,
self
.
prev_stage_id
)
num
=
num
.
item
()
shapes
=
[]
dtypes
=
[]
for
i
in
range
(
num
):
# recv len(shape)
dims
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dims
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
dims
,
self
.
prev_stage_id
)
# recv shape
dims
=
dims
.
item
()
shape
=
paddle
.
to_tensor
([
0
]
*
dims
)
paddle
.
distributed
.
recv
(
shape
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
shape
,
self
.
prev_stage_id
)
shapes
.
append
(
shape
.
numpy
().
tolist
())
# recv dtype
dtype
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dtype
,
peer
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
dtype
,
self
.
prev_stage_id
)
dtypes
.
append
(
number_2_dtype
(
dtype
.
item
()))
caches
=
self
.
_allocate_caches
(
shapes
,
dtypes
,
num_caches
=
1
)[
0
]
...
...
@@ -380,39 +371,25 @@ class PipelineParallel(MetaParallelBase):
self
.
_send_meta
(
outputs
,
self
.
next_stage_id
)
if
isinstance
(
outputs
,
paddle
.
Tensor
):
paddle
.
distributed
.
send
(
outputs
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
outputs
,
self
.
next_stage_id
)
elif
isinstance
(
outputs
,
tuple
):
for
output
in
outputs
:
paddle
.
distributed
.
send
(
output
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
output
,
self
.
next_stage_id
)
def
_send_gradients
(
self
,
cache_id
):
inputs
=
self
.
caches
[
'inputs'
][
cache_id
]
if
isinstance
(
inputs
,
paddle
.
Tensor
):
assert
inputs
.
grad
is
not
None
paddle
.
distributed
.
send
(
paddle
.
to_tensor
(
inputs
.
grad
),
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
inputs
.
grad
,
self
.
prev_stage_id
)
else
:
for
idx
,
d
in
enumerate
(
inputs
):
# Skip tensors that will not produce a grad
if
not
is_float_tensor
(
d
):
assert
d
.
grad
is
None
continue
paddle
.
distributed
.
send
(
d
.
grad
,
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
send
(
d
.
grad
,
self
.
prev_stage_id
)
self
.
caches
[
'inputs'
][
cache_id
]
=
None
def
_recv_activations
(
self
,
cache_id
):
...
...
@@ -421,11 +398,7 @@ class PipelineParallel(MetaParallelBase):
self
.
recv_cache
=
self
.
_recv_meta
(
self
.
prev_stage_id
)
if
isinstance
(
self
.
recv_cache
,
paddle
.
Tensor
):
paddle
.
distributed
.
recv
(
self
.
recv_cache
,
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
self
.
recv_cache
,
self
.
prev_stage_id
)
inputs
=
self
.
recv_cache
.
clone
().
detach
()
inputs
.
stop_gradient
=
not
is_float_tensor
(
inputs
)
else
:
...
...
@@ -433,12 +406,7 @@ class PipelineParallel(MetaParallelBase):
inputs
=
[
None
]
*
len
(
self
.
recv_cache
)
for
idx
,
d
in
enumerate
(
self
.
recv_cache
):
assert
isinstance
(
d
,
paddle
.
Tensor
)
paddle
.
distributed
.
recv
(
d
,
self
.
prev_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
d
,
self
.
prev_stage_id
)
inputs
[
idx
]
=
d
.
clone
().
detach
()
inputs
=
tuple
(
inputs
)
...
...
@@ -466,19 +434,11 @@ class PipelineParallel(MetaParallelBase):
sizes
,
dtypes
,
num_caches
=
1
)[
0
]
if
isinstance
(
self
.
grad_tensors
,
paddle
.
Tensor
):
paddle
.
distributed
.
recv
(
self
.
grad_tensors
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
self
.
grad_tensors
,
self
.
next_stage_id
)
else
:
assert
isinstance
(
outputs
,
tuple
)
for
d
in
self
.
grad_tensors
:
paddle
.
distributed
.
recv
(
d
,
self
.
next_stage_id
,
use_calc_stream
=
True
,
group
=
self
.
pp_group
)
p2p
.
recv
(
d
,
self
.
next_stage_id
)
def
_step
(
self
):
self
.
optimizer
.
step
()
...
...
python/paddle/distributed/fleet/meta_parallel/pp_utils/p2p_communication.py
0 → 100644
浏览文件 @
5c9fce0e
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.distributed
as
dist
_groups
=
None
_hcg
=
None
def
initialize_p2p_groups
(
hcg
):
global
_groups
,
_hcg
_groups
=
[
dist
.
new_group
(
ranks
=
group
)
for
group
in
hcg
.
get_p2p_groups
()]
_hcg
=
hcg
def
send
(
tensor
,
dest_stage
):
global
_groups
,
_hcg
src_stage
=
_hcg
.
get_stage_id
()
src_rank
=
_hcg
.
get_rank_from_stage
(
stage_id
=
src_stage
)
_is_valid_communciate
(
src_stage
,
dest_stage
)
group
=
_get_send_recv_group
(
src_stage
,
dest_stage
)
dst_rank
=
_hcg
.
get_rank_from_stage
(
stage_id
=
dest_stage
)
return
dist
.
broadcast
(
tensor
,
src_rank
,
group
=
group
)
def
recv
(
tensor
,
src_stage
):
global
_groups
,
_hcg
dest_stage
=
_hcg
.
get_stage_id
()
_is_valid_communciate
(
src_stage
,
dest_stage
)
group
=
_get_send_recv_group
(
src_stage
,
dest_stage
)
src_rank
=
_hcg
.
get_rank_from_stage
(
stage_id
=
src_stage
)
return
dist
.
broadcast
(
tensor
,
src_rank
,
group
=
group
)
def
_is_valid_communciate
(
src_stage
,
dest_stage
):
first_stage
=
0
last_stage
=
_hcg
.
get_pipe_parallel_world_size
()
-
1
assert
abs
(
src_stage
-
dest_stage
)
==
1
or
\
(
src_stage
==
first_stage
and
dest_stage
==
last_stage
)
or
\
(
src_stage
==
last_stage
and
dest_stage
==
first_stage
)
def
_get_send_recv_group
(
src_stage
,
dest_stage
):
global
_groups
,
_hcg
stage_id
=
None
first_stage
=
0
last_stage
=
_hcg
.
get_pipe_parallel_world_size
()
-
1
if
(
src_stage
==
first_stage
and
dest_stage
==
last_stage
)
or
\
(
dest_stage
==
first_stage
and
src_stage
==
last_stage
):
stage_id
=
last_stage
elif
src_stage
>
dest_stage
:
stage_id
=
dest_stage
else
:
stage_id
=
src_stage
group_id
=
_hcg
.
get_rank_from_stage
(
stage_id
=
stage_id
)
return
_groups
[
group_id
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录