Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5c291737
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
5c291737
编写于
7月 18, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
7月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] remove useless code in fc (#44382)
* remove useless code in fc
上级
0fd974b4
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
377 addition
and
84 deletion
+377
-84
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+16
-84
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fc.py
...fluid/tests/unittests/ir/inference/test_trt_convert_fc.py
+361
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
5c291737
...
...
@@ -333,74 +333,6 @@ class FcOpConverter : public OpConverter {
if
(
!
engine_
->
with_dynamic_shape
())
{
x_num_col_dims
--
;
}
// If use tensorrt'oss, the x_dim and x_num_col_dims need change, and can
// not add Shuffle layer in ernie's multihead.
if
(
x_dim
.
nbDims
==
4
&&
x_num_col_dims
==
1
)
{
if
(
enable_int8
||
support_int8
)
{
// add conv1x1 layer
nvinfer1
::
DimsHW
nv_ksize
(
1
,
1
);
auto
*
fc_layer_int8
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Convolution
,
*
X
,
n_output
,
nv_ksize
,
weight
.
get
(),
bias
.
get
());
if
(
activation_type
==
"relu"
)
{
fc_layer_int8
->
setName
(
(
"ernie_fc_op_int8: Convolution (Output: "
+
output_name
+
")"
)
.
c_str
());
PADDLE_ENFORCE_EQ
(
op_desc
.
HasAttr
(
"out_threshold"
),
true
,
platform
::
errors
::
InvalidArgument
(
"must have out threshold in fc layers in int8 mode"
));
float
out_scale
=
0
;
if
(
enable_int8
)
{
out_scale
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"out_threshold"
));
}
else
{
out_scale
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"Out"
));
}
engine_
->
SetTensorDynamicRange
(
fc_layer_int8
->
getOutput
(
0
),
out_scale
);
nvinfer1
::
IActivationLayer
*
relu_layer_int8
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
(
fc_layer_int8
->
getOutput
(
0
)),
nvinfer1
::
ActivationType
::
kRELU
);
RreplenishLayerAndOutput
(
relu_layer_int8
,
"relu_after_ernie_fc_int8"
,
{
output_name
},
test_mode
);
}
else
{
RreplenishLayerAndOutput
(
fc_layer_int8
,
"ernie_fc_op_int8: Convolution"
,
{
output_name
},
test_mode
);
}
}
else
{
// add fc layer
auto
*
fc_layer_float
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
X
,
n_output
,
weight
.
get
(),
bias
.
get
());
if
(
activation_type
==
"relu"
)
{
fc_layer_float
->
setName
(
(
"ernie_fc_op_float: (Output: "
+
output_name
+
")"
).
c_str
());
nvinfer1
::
IActivationLayer
*
relu_layer_float
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
(
fc_layer_float
->
getOutput
(
0
)),
nvinfer1
::
ActivationType
::
kRELU
);
RreplenishLayerAndOutput
(
relu_layer_float
,
"relu_after_ernie_fc_float"
,
{
output_name
},
test_mode
);
}
else
{
RreplenishLayerAndOutput
(
fc_layer_float
,
"ernie_fc_op_float"
,
{
output_name
},
test_mode
);
}
}
}
else
{
// need reshape input before and after fc
PADDLE_ENFORCE_GT
(
x_dim
.
nbDims
,
x_num_col_dims
,
...
...
@@ -410,6 +342,7 @@ class FcOpConverter : public OpConverter {
"x_dim.nbDims : %d, x_num_col_dims : %d."
,
x_dim
.
nbDims
,
x_num_col_dims
));
// need reshape input before and after fc
auto
*
reshape_before_fc_layer
=
reshape_before_fc
(
X
,
x_dim
,
x_num_col_dims
,
output_name
);
auto
*
reshape_itensor
=
reshape_before_fc_layer
->
getOutput
(
0
);
...
...
@@ -418,7 +351,6 @@ class FcOpConverter : public OpConverter {
}
regist_fc
(
reshape_itensor
,
n_output
,
weight
,
bias
);
}
}
};
}
// namespace tensorrt
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fc.py
0 → 100644
浏览文件 @
5c291737
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
unittest
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
os
class
TrtConvertFcTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
# The output has diff between gpu and trt in CI windows
if
(
os
.
name
==
'nt'
):
return
False
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
batch
,
3
,
64
,
(
int
)(
attrs
[
0
][
"m"
]
/
2
),
2
]).
astype
(
np
.
float32
)
def
generate_w
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
attrs
[
0
][
"m"
],
attrs
[
0
][
"n"
]]).
astype
(
np
.
float32
)
def
generate_bias
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
attrs
[
0
][
"n"
]]).
astype
(
np
.
float32
)
for
batch
in
[
1
,
4
]:
for
[
m
,
n
]
in
[[
32
,
23
]]:
dics
=
[
{
"in_num_col_dims"
:
3
,
# for my conveinence
"m"
:
m
,
"n"
:
n
,
},
{}
]
ops_config
=
[
{
"op_type"
:
"fc"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
],
"W"
:
[
"w_data"
],
"Bias"
:
[
"bias_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"w_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_w
,
batch
,
dics
)),
"bias_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
,
batch
,
dics
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
batch
,
dics
)),
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
16
,
2
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
16
,
2
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
16
,
2
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# # for static_shape
# clear_dynamic_shape()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
def
test
(
self
):
self
.
run_test
()
def
test_quant
(
self
):
self
.
run_test
(
quant
=
True
)
class
TrtConvertFcTest2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
# The output has diff between gpu and trt in CI windows
if
(
os
.
name
==
'nt'
):
return
False
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
batch
,
3
,
64
,
14
]).
astype
(
np
.
float32
)
def
generate_w
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
attrs
[
0
][
"m"
],
attrs
[
0
][
"n"
]]).
astype
(
np
.
float32
)
def
generate_bias
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
attrs
[
0
][
"n"
]]).
astype
(
np
.
float32
)
for
batch
in
[
1
,
4
]:
for
[
m
,
n
]
in
[[
14
,
43
]]:
dics
=
[
{
"in_num_col_dims"
:
3
,
# for my conveinence
"m"
:
m
,
"n"
:
n
,
},
{}
]
ops_config
=
[
{
"op_type"
:
"fc"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
],
"W"
:
[
"w_data"
],
"Bias"
:
[
"bias_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"w_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_w
,
batch
,
dics
)),
"bias_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
,
batch
,
dics
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
batch
,
dics
)),
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
14
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
14
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
14
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
# # for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
(
1e-5
,
1e-5
)
def
test
(
self
):
self
.
run_test
()
# this is the special case when x_dim.nbDims == 4 && x_num_col_dims == 1
class
TrtConvertFcTest3
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
batch
,
14
,
1
,
2
]).
astype
(
np
.
float32
)
def
generate_w
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
attrs
[
0
][
"m"
],
attrs
[
0
][
"n"
]]).
astype
(
np
.
float32
)
def
generate_bias
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
attrs
[
0
][
"n"
]]).
astype
(
np
.
float32
)
for
batch
in
[
1
,
4
]:
for
[
m
,
n
]
in
[[
28
,
43
]]:
dics
=
[
{
"in_num_col_dims"
:
1
,
"Input_scale"
:
0.1
,
"out_threshold"
:
0.1
,
"enable_int8"
:
True
,
# for my conveinence
"m"
:
m
,
"n"
:
n
,
},
{}
]
ops_config
=
[
{
"op_type"
:
"fc"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
],
"W"
:
[
"w_data"
],
"Bias"
:
[
"bias_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"w_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_w
,
batch
,
dics
)),
"bias_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
,
batch
,
dics
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
batch
,
dics
)),
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
14
,
1
,
2
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
14
,
1
,
2
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
14
,
1
,
2
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
(
1e-5
,
1e-5
)
# for dynamic_shape
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Int8
yield
self
.
create_inference_config
(),
(
1
,
2
),
(
1e-5
,
1e-5
)
def
test
(
self
):
self
.
run_test
()
def
test_quant
(
self
):
self
.
run_test
(
quant
=
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录