Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5c1eda19
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5c1eda19
编写于
3月 06, 2023
作者:
R
Ruibiao Chen
提交者:
GitHub
3月 06, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove InterpretercoreInferShapeContext (#51209)
* Remove InterpretercoreInferShapeContext * Fix lod errors
上级
f1f2a253
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
623 addition
and
1145 deletion
+623
-1145
paddle/fluid/framework/new_executor/interpreter/data_transfer.cc
...fluid/framework/new_executor/interpreter/data_transfer.cc
+1
-1
paddle/fluid/framework/new_executor/interpreter/interpreter_util.cc
...id/framework/new_executor/interpreter/interpreter_util.cc
+1
-2
paddle/fluid/framework/new_executor/new_executor_defs.cc
paddle/fluid/framework/new_executor/new_executor_defs.cc
+4
-523
paddle/fluid/framework/new_executor/new_executor_defs.h
paddle/fluid/framework/new_executor/new_executor_defs.h
+2
-113
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+506
-505
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+109
-1
未找到文件。
paddle/fluid/framework/new_executor/interpreter/data_transfer.cc
浏览文件 @
5c1eda19
...
...
@@ -129,7 +129,7 @@ void DataTranferHelper::RunAndConstructOpFuncNode(
RuntimeContext
runtime_context
({},
{});
runtime_context
.
inputs
[
"X"
]
=
{
scope_
->
FindVar
(
var_name
)};
runtime_context
.
outputs
[
"Out"
]
=
{
scope_
->
Var
(
new_var_name
)};
Interpretercor
eInferShapeContext
infer_shape_ctx
(
*
op
,
runtime_context
);
Runtim
eInferShapeContext
infer_shape_ctx
(
*
op
,
runtime_context
);
op
.
get
()
->
Info
().
infer_shape_
(
&
infer_shape_ctx
);
// 2. choose kernel
...
...
paddle/fluid/framework/new_executor/interpreter/interpreter_util.cc
浏览文件 @
5c1eda19
...
...
@@ -824,8 +824,7 @@ void BuildOpFuncList(const platform::Place& place,
if
(
!
(
op
->
HasAttr
(
kAllKernelsMustComputeRuntimeShape
)
&&
op
->
Attr
<
bool
>
(
kAllKernelsMustComputeRuntimeShape
)))
{
VLOG
(
4
)
<<
"infer shape"
;
InterpretercoreInferShapeContext
infer_shape_ctx
(
*
op
,
runtime_context
);
RuntimeInferShapeContext
infer_shape_ctx
(
*
op
,
runtime_context
);
// TODO(Aurelius84): In case of control flow ops, they are NOT
// inheritted from OperatorWithKernel.
op_with_kernel
->
Info
().
infer_shape_
(
&
infer_shape_ctx
);
...
...
paddle/fluid/framework/new_executor/new_executor_defs.cc
浏览文件 @
5c1eda19
...
...
@@ -24,525 +24,6 @@
namespace
paddle
{
namespace
framework
{
InterpretercoreInferShapeContext
::
InterpretercoreInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
)
:
op_
(
op
),
ctx_
(
ctx
),
can_skip_lod_
(
false
)
{}
bool
InterpretercoreInferShapeContext
::
HasInput
(
const
std
::
string
&
name
)
const
{
// has only one input
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
())
{
return
false
;
}
const
auto
&
in
=
it
->
second
;
if
(
in
.
size
()
==
0
)
return
false
;
PADDLE_ENFORCE_EQ
(
in
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input %s should not contain more than one inputs."
,
name
));
return
in
[
0
]
!=
nullptr
;
}
bool
InterpretercoreInferShapeContext
::
HasOutput
(
const
std
::
string
&
name
)
const
{
// has only one output
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
())
{
return
false
;
}
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
==
0
)
{
return
false
;
}
PADDLE_ENFORCE_EQ
(
out
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output %s should not contain more than one outputs."
,
name
));
return
out
[
0
]
!=
nullptr
;
}
bool
InterpretercoreInferShapeContext
::
HasAttr
(
const
std
::
string
&
name
)
const
{
return
op_
.
HasAttr
(
name
);
}
bool
InterpretercoreInferShapeContext
::
HasInputs
(
const
std
::
string
&
name
)
const
{
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
for
(
auto
&
input
:
it
->
second
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
}
return
true
;
}
bool
InterpretercoreInferShapeContext
::
HasOutputs
(
const
std
::
string
&
name
,
bool
allow_null
)
const
{
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
if
(
!
allow_null
)
{
for
(
auto
&
output
:
it
->
second
)
{
if
(
output
==
nullptr
)
return
false
;
}
}
return
true
;
}
AttrReader
InterpretercoreInferShapeContext
::
Attrs
()
const
{
return
AttrReader
(
op_
.
Attrs
(),
op_
.
RuntimeAttrs
());
}
std
::
vector
<
std
::
string
>
InterpretercoreInferShapeContext
::
Inputs
(
const
std
::
string
&
name
)
const
{
return
op_
.
Inputs
(
name
);
}
std
::
vector
<
std
::
string
>
InterpretercoreInferShapeContext
::
Outputs
(
const
std
::
string
&
name
)
const
{
return
op_
.
Outputs
(
name
);
}
std
::
string
InterpretercoreInferShapeContext
::
GetInputNameByIdx
(
size_t
idx
)
const
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
inputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of inputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
inputs
().
size
()));
return
op_proto
->
inputs
()[
idx
].
name
();
}
std
::
string
InterpretercoreInferShapeContext
::
GetOutputNameByIdx
(
size_t
idx
)
const
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
outputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of outputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
outputs
().
size
()));
return
op_proto
->
outputs
()[
idx
].
name
();
}
void
InterpretercoreInferShapeContext
::
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
,
size_t
j
)
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
[
i
];
Variable
*
out_var
=
out_it
->
second
[
j
];
PADDLE_ENFORCE_EQ
(
in_var
->
Type
(),
out_var
->
Type
(),
platform
::
errors
::
InvalidArgument
(
"The type of input (%s) and output (%s) are inconsistent."
,
in
,
out
));
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
&
in_sele_rows
=
in_var
->
Get
<
phi
::
SelectedRows
>
();
auto
out_sele_rows
=
out_var
->
GetMutable
<
phi
::
SelectedRows
>
();
out_sele_rows
->
mutable_value
()
->
Resize
(
in_sele_rows
.
value
().
dims
());
out_sele_rows
->
set_rows
(
in_sele_rows
.
rows
());
out_sele_rows
->
set_height
(
in_sele_rows
.
height
());
}
else
if
(
in_var
->
IsType
<
phi
::
DenseTensor
>
())
{
auto
&
in_lod_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_lod_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_lod_tensor
->
Resize
(
in_lod_tensor
.
dims
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Currently, the input type of ShareDim only can be phi::DenseTensor "
"or SelectedRows."
));
}
}
void
InterpretercoreInferShapeContext
::
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input [%s] found error in Op [%s]"
,
in
,
op_
.
Type
()));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output [%s] found error in Op [%s]"
,
out
,
op_
.
Type
()));
auto
&
in_var_list
=
in_it
->
second
;
auto
&
out_var_list
=
out_it
->
second
;
PADDLE_ENFORCE_EQ
(
in_var_list
.
size
(),
out_var_list
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"Op [%s]: Input var size should be equal with output var size"
,
op_
.
Type
()));
auto
&
out_var_names
=
op_
.
Outputs
(
out
);
for
(
size_t
i
=
0
;
i
<
in_var_list
.
size
();
++
i
)
{
if
(
out_var_names
[
i
]
==
framework
::
kEmptyVarName
)
{
continue
;
}
Variable
*
in_var
=
in_var_list
[
i
];
if
(
!
in_var
->
IsType
<
phi
::
DenseTensor
>
())
return
;
Variable
*
out_var
=
out_var_list
[
i
];
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"The %d-th output of Output(%s) must be phi::DenseTensor."
,
i
,
out_var_names
[
i
]));
auto
&
in_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
#ifdef PADDLE_WITH_MKLDNN
if
(
in_tensor
.
layout
()
!=
DataLayout
::
ONEDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
}
void
InterpretercoreInferShapeContext
::
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
,
size_t
j
)
const
{
if
(
can_skip_lod_
)
{
return
;
}
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
.
at
(
i
);
if
(
!
in_var
->
IsType
<
phi
::
DenseTensor
>
())
return
;
Variable
*
out_var
=
out_it
->
second
.
at
(
j
);
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The %zu-th output of Output(%s) must be phi::DenseTensor."
,
j
,
out
));
auto
&
in_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out phi::DenseTensor?
#ifdef PADDLE_WITH_MKLDNN
// Fix me: ugly workaround below
// Correct solution:
// set_layout() should NOT be called here (i.e. ShareLoD). Instead,
// layout of output tensor should be set "manually" in Compute()
// of each OPKernel. The reason layout should NOT be shared between
// input and output "automatically" (now by InferShape()->ShareLoD())
// is that layout transform may occur after InferShape().
// Workaround:
// Skip set_layout() when input layout is kMKLDNN
// This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
// OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
// in Compute()
if
(
in_tensor
.
layout
()
!=
DataLayout
::
ONEDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
int32_t
InterpretercoreInferShapeContext
::
GetLoDLevel
(
const
std
::
string
&
in
,
size_t
i
)
const
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."
));
}
void
InterpretercoreInferShapeContext
::
SetLoDLevel
(
const
std
::
string
&
out
,
int32_t
lod_level
,
size_t
j
)
const
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."
));
}
bool
InterpretercoreInferShapeContext
::
IsRuntime
()
const
{
return
true
;
}
bool
InterpretercoreInferShapeContext
::
IsRunMKLDNNKernel
()
const
{
try
{
auto
&
op_with_kernel
=
dynamic_cast
<
const
OperatorWithKernel
&>
(
op_
);
return
((
op_with_kernel
.
kernel_type
())
&&
(
op_with_kernel
.
kernel_type
()
->
data_layout_
==
phi
::
DataLayout
::
ONEDNN
));
}
catch
(
std
::
bad_cast
&
exp
)
{
return
false
;
}
}
// TODO(paddle-dev): Can this be template?
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
InterpretercoreInferShapeContext
::
GetInputVarPtrs
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
res
;
res
.
reserve
(
vars
.
size
());
res
.
insert
(
res
.
begin
(),
vars
.
begin
(),
vars
.
end
());
return
res
;
}
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
InterpretercoreInferShapeContext
::
GetOutputVarPtrs
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
OutputVars
(
name
);
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
res
;
res
.
reserve
(
vars
.
size
());
res
.
insert
(
res
.
begin
(),
vars
.
begin
(),
vars
.
end
());
return
res
;
}
DDim
InterpretercoreInferShapeContext
::
GetInputDim
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input(%s) should hold one element, but now it holds %zu elements."
,
name
,
vars
.
size
()));
return
this
->
GetDim
(
vars
[
0
]);
}
std
::
vector
<
DDim
>
InterpretercoreInferShapeContext
::
GetInputsDim
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
return
GetDims
(
vars
);
}
proto
::
VarType
::
Type
InterpretercoreInferShapeContext
::
GetInputVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarType
(
InputVars
(
name
).
at
(
0
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
InterpretercoreInferShapeContext
::
GetInputsVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarTypes
(
InputVars
(
name
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
InterpretercoreInferShapeContext
::
GetOutputsVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarTypes
(
OutputVars
(
name
));
}
void
InterpretercoreInferShapeContext
::
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
{
auto
&
vars
=
OutputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output(%s) should hold one element, "
"but now it holds %zu elements."
,
name
,
vars
.
size
()));
SetDim
(
vars
[
0
],
dim
);
}
void
InterpretercoreInferShapeContext
::
SetOutputsDim
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
{
auto
&
vars
=
OutputVars
(
name
);
SetDims
(
vars
,
dims
);
}
const
phi
::
ArgumentMappingFn
*
InterpretercoreInferShapeContext
::
GetPhiArgumentMappingFn
()
const
{
return
phi
::
OpUtilsMap
::
Instance
().
GetArgumentMappingFn
(
op_
.
Type
());
}
const
phi
::
KernelSignature
*
InterpretercoreInferShapeContext
::
GetPhiDefaultKernelSignature
()
const
{
return
&
phi
::
DefaultKernelSignatureMap
::
Instance
().
Get
(
op_
.
Type
());
}
void
InterpretercoreInferShapeContext
::
SetSkipLoD
(
bool
skip
)
{
can_skip_lod_
=
skip
;
}
DDim
InterpretercoreInferShapeContext
::
GetDim
(
Variable
*
var
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
InvalidArgument
(
"Input variable is nullptr."
));
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
return
var
->
Get
<
phi
::
DenseTensor
>
().
dims
();
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
return
var
->
Get
<
phi
::
SelectedRows
>
().
GetCompleteDims
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
"Variable's type is %s."
,
ToTypeName
(
var
->
Type
())));
}
}
std
::
vector
<
DDim
>
InterpretercoreInferShapeContext
::
GetDims
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
DDim
>
ret
;
ret
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
ret
),
[
this
](
Variable
*
var
)
{
return
this
->
GetDim
(
var
);
});
return
ret
;
}
std
::
vector
<
DDim
>
InterpretercoreInferShapeContext
::
GetRepeatedDims
(
const
std
::
string
&
name
)
const
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetRepeatedDims method only ban be used in compile time."
));
}
void
InterpretercoreInferShapeContext
::
SetDim
(
Variable
*
var
,
const
DDim
&
dim
)
{
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
var
->
GetMutable
<
phi
::
DenseTensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
var
->
GetMutable
<
phi
::
SelectedRows
>
()
->
set_height
(
dim
[
0
]);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Variable type error, expect phi::DenseTensor or SelectedRows, but "
"received "
"(%s)."
,
ToTypeName
(
var
->
Type
())));
}
}
void
InterpretercoreInferShapeContext
::
SetDims
(
const
std
::
vector
<
Variable
*>&
vars
,
const
std
::
vector
<
DDim
>&
dims
)
{
size_t
length
=
vars
.
size
();
PADDLE_ENFORCE_EQ
(
length
,
dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of input variables do not match the "
"number of input dimensions, the number of variables "
"is %zu, the number of dimensions is %zu."
,
length
,
dims
.
size
()));
for
(
size_t
i
=
0
;
i
<
length
;
++
i
)
{
if
(
vars
[
i
]
==
nullptr
)
{
continue
;
}
SetDim
(
vars
[
i
],
dims
[
i
]);
}
}
void
InterpretercoreInferShapeContext
::
SetRepeatedDims
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetRepeatedDims method only can be used in compile time."
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
InterpretercoreInferShapeContext
::
GetVarTypes
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
proto
::
VarType
::
Type
>
retv
;
retv
.
resize
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
retv
.
begin
(),
std
::
bind
(
std
::
mem_fn
(
&
InterpretercoreInferShapeContext
::
GetVarType
),
this
,
std
::
placeholders
::
_1
));
return
retv
;
}
proto
::
VarType
::
Type
InterpretercoreInferShapeContext
::
GetVarType
(
Variable
*
var
)
const
{
return
ToVarType
(
var
->
Type
());
}
const
std
::
vector
<
Variable
*>&
InterpretercoreInferShapeContext
::
InputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
inputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the input (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
}
const
std
::
vector
<
Variable
*>&
InterpretercoreInferShapeContext
::
OutputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
outputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the outputs (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
}
VariableScope
::
VariableScope
(
Scope
*
scope
)
{
// for @EMPTY@ variable
name2id_
[
kEmptyVarName
]
=
kEmptyVarIndex
;
...
...
@@ -747,7 +228,7 @@ void Instruction::ResetContext(const VariableValueMap& in_vars,
const
VariableValueMap
&
out_vars
)
{
runtime_ctx_
.
reset
(
new
RuntimeContext
(
in_vars
,
out_vars
));
infershape_ctx_
.
reset
(
new
Interpretercor
eInferShapeContext
(
*
OpBase
(),
*
runtime_ctx_
.
get
()));
new
Runtim
eInferShapeContext
(
*
OpBase
(),
*
runtime_ctx_
.
get
()));
// NOTE: Because execution_ctx_ is constructed by `scope&`, so we fake an
// empty here to avoid illegal local reference.
static
framework
::
Scope
scope_
;
...
...
@@ -760,7 +241,7 @@ void Instruction::ResetContextWithScope(const VariableValueMap& in_vars,
const
framework
::
Scope
&
scope
)
{
runtime_ctx_
.
reset
(
new
RuntimeContext
(
in_vars
,
out_vars
));
infershape_ctx_
.
reset
(
new
Interpretercor
eInferShapeContext
(
*
OpBase
(),
*
runtime_ctx_
.
get
()));
new
Runtim
eInferShapeContext
(
*
OpBase
(),
*
runtime_ctx_
.
get
()));
execution_ctx_
.
reset
(
new
ExecutionContext
(
*
OpBase
(),
scope
,
dev_ctx_
,
*
runtime_ctx_
.
get
()));
}
...
...
@@ -769,8 +250,8 @@ std::shared_ptr<RuntimeContext> Instruction::InnerRuntimeContext() const {
return
runtime_ctx_
;
}
std
::
shared_ptr
<
InterpretercoreInferShapeContext
>
Instruction
::
InnerInferShapeContext
()
const
{
std
::
shared_ptr
<
RuntimeInferShapeContext
>
Instruction
::
InnerInferShapeContext
()
const
{
return
infershape_ctx_
;
}
...
...
paddle/fluid/framework/new_executor/new_executor_defs.h
浏览文件 @
5c1eda19
...
...
@@ -44,115 +44,6 @@ constexpr const char* kH2DStream = "H2DStream";
constexpr
int
kEmptyVarIndex
=
0
;
class
InterpretercoreInferShapeContext
:
public
InferShapeContext
{
public:
InterpretercoreInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
);
bool
HasInput
(
const
std
::
string
&
name
)
const
override
;
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
;
bool
HasAttr
(
const
std
::
string
&
name
)
const
override
;
bool
HasInputs
(
const
std
::
string
&
name
)
const
override
;
bool
HasOutputs
(
const
std
::
string
&
name
,
bool
allow_null
=
false
)
const
override
;
AttrReader
Attrs
()
const
override
;
std
::
vector
<
std
::
string
>
Inputs
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
std
::
string
>
Outputs
(
const
std
::
string
&
name
)
const
override
;
std
::
string
GetInputNameByIdx
(
size_t
idx
)
const
override
;
std
::
string
GetOutputNameByIdx
(
size_t
idx
)
const
override
;
void
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
;
void
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
override
;
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
;
int32_t
GetLoDLevel
(
const
std
::
string
&
in
,
size_t
i
=
0
)
const
override
;
void
SetLoDLevel
(
const
std
::
string
&
out
,
int32_t
lod_level
,
size_t
j
=
0
)
const
override
;
bool
IsRuntime
()
const
override
;
bool
IsRunMKLDNNKernel
()
const
override
;
// TODO(paddle-dev): Can this be template?
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
GetInputVarPtrs
(
const
std
::
string
&
name
)
const
override
;
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
GetOutputVarPtrs
(
const
std
::
string
&
name
)
const
override
;
DDim
GetInputDim
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
DDim
>
GetInputsDim
(
const
std
::
string
&
name
)
const
override
;
proto
::
VarType
::
Type
GetInputVarType
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
proto
::
VarType
::
Type
>
GetInputsVarType
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
proto
::
VarType
::
Type
>
GetOutputsVarType
(
const
std
::
string
&
name
)
const
override
;
void
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
override
;
void
SetOutputsDim
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
;
const
phi
::
ArgumentMappingFn
*
GetPhiArgumentMappingFn
()
const
override
;
const
phi
::
KernelSignature
*
GetPhiDefaultKernelSignature
()
const
override
;
void
SetSkipLoD
(
bool
skip
);
protected:
DDim
GetDim
(
Variable
*
var
)
const
;
std
::
vector
<
DDim
>
GetDims
(
const
std
::
vector
<
Variable
*>&
vars
)
const
;
std
::
vector
<
DDim
>
GetRepeatedDims
(
const
std
::
string
&
name
)
const
override
;
void
SetDim
(
Variable
*
var
,
const
DDim
&
dim
);
void
SetDims
(
const
std
::
vector
<
Variable
*>&
vars
,
const
std
::
vector
<
DDim
>&
dims
);
void
SetRepeatedDims
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
;
std
::
vector
<
proto
::
VarType
::
Type
>
GetVarTypes
(
const
std
::
vector
<
Variable
*>&
vars
)
const
;
proto
::
VarType
::
Type
GetVarType
(
Variable
*
var
)
const
;
private:
const
std
::
vector
<
Variable
*>&
InputVars
(
const
std
::
string
&
name
)
const
;
const
std
::
vector
<
Variable
*>&
OutputVars
(
const
std
::
string
&
name
)
const
;
const
OperatorBase
&
op_
;
const
RuntimeContext
&
ctx_
;
bool
can_skip_lod_
;
};
struct
OpKernelFunc
{
OpKernelComputeFunc
compute_func_
;
};
...
...
@@ -260,7 +151,6 @@ enum class OpFuncType {
kGpuSync
,
// GPU or other device kernel without asynchronous operation
kGpuAsync
// GPU or other device kernel with asynchronous operation
};
class
RuntimeInferShapeContext
;
struct
OpFuncNode
{
int
stream_priority_
{
0
};
// lower value, higher priority
...
...
@@ -357,8 +247,7 @@ class Instruction {
std
::
shared_ptr
<
RuntimeContext
>
InnerRuntimeContext
()
const
;
std
::
shared_ptr
<
InterpretercoreInferShapeContext
>
InnerInferShapeContext
()
const
;
std
::
shared_ptr
<
RuntimeInferShapeContext
>
InnerInferShapeContext
()
const
;
std
::
shared_ptr
<
ExecutionContext
>
InnerExecutionContext
()
const
;
...
...
@@ -390,7 +279,7 @@ class Instruction {
const
platform
::
DeviceContext
&
dev_ctx_
;
// not owned
std
::
shared_ptr
<
RuntimeContext
>
runtime_ctx_
;
std
::
shared_ptr
<
Interpretercor
eInferShapeContext
>
infershape_ctx_
;
std
::
shared_ptr
<
Runtim
eInferShapeContext
>
infershape_ctx_
;
std
::
shared_ptr
<
ExecutionContext
>
execution_ctx_
;
std
::
vector
<
size_t
>
gc_check_vars_
;
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
5c1eda19
...
...
@@ -25,7 +25,6 @@ limitations under the License. */
#include "paddle/fluid/framework/op_call_stack.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/framework/raw_tensor.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/framework/unused_var_check.h"
#include "paddle/fluid/framework/var_type.h"
...
...
@@ -214,625 +213,235 @@ RuntimeContext::RuntimeContext(const VariableNameMap& innames,
}
}
void
OperatorBase
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
{
try
{
VLOG
(
4
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
if
(
platform
::
is_gpu_place
(
place
))
{
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with CUDA support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_xpu_place
(
place
))
{
#ifndef PADDLE_WITH_XPU
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with XPU support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetXPUDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_npu_place
(
place
))
{
#ifndef PADDLE_WITH_ASCEND_CL
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with NPU support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetNPUDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_mlu_place
(
place
))
{
#ifndef PADDLE_WITH_MLU
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with MLU support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetMLUDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_custom_place
(
place
))
{
#ifndef PADDLE_WITH_CUSTOM_DEVICE
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with CustomDevice support."
,
place
));
#else
phi
::
DeviceManager
::
SetDevice
(
place
);
#endif
}
{
// TODO(wangchaochaohu) : refine code to use only one RecordEvent)
// in order to record different op type cost time
// and different op name cost time,we set two event.
platform
::
RecordEvent
op_type_record_event
(
Type
(),
platform
::
TracerEventType
::
Operator
,
1
);
auto
op_name
=
platform
::
OpName
(
outputs_
,
Type
());
platform
::
RecordEvent
op_name_record_event
(
op_name
,
platform
::
TracerEventType
::
Operator
,
FLAGS_enable_host_event_recorder_hook
?
20
:
1
,
platform
::
EventRole
::
kUniqueOp
);
RunImpl
(
scope
,
place
);
}
RuntimeInferShapeContext
::
RuntimeInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
)
:
op_
(
op
),
ctx_
(
ctx
)
{}
VLOG
(
3
)
<<
GetExecutionPlace
(
place
)
<<
" "
<<
DebugStringEx
(
&
scope
);
}
catch
(
platform
::
EnforceNotMet
&
exception
)
{
framework
::
InsertCallStackInfo
(
Type
(),
Attrs
(),
&
exception
);
throw
std
::
move
(
exception
);
}
catch
(
platform
::
EOFException
&
)
{
std
::
rethrow_exception
(
std
::
current_exception
());
}
catch
(
std
::
exception
&
ex
)
{
LOG
(
WARNING
)
<<
Type
()
<<
" raises an exception "
<<
platform
::
demangle
(
typeid
(
ex
).
name
())
<<
", "
<<
ex
.
what
();
std
::
rethrow_exception
(
std
::
current_exception
());
}
catch
(...)
{
LOG
(
WARNING
)
<<
Type
()
<<
" raises an unknown exception"
;
std
::
rethrow_exception
(
std
::
current_exception
());
bool
RuntimeInferShapeContext
::
HasInput
(
const
std
::
string
&
name
)
const
{
// has only one input
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
())
{
return
false
;
}
}
bool
OperatorBase
::
HasInputs
(
const
std
::
string
&
name
)
const
{
return
inputs_
.
find
(
name
)
!=
inputs_
.
end
();
}
std
::
string
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_LE
(
ins
.
size
(),
const
auto
&
in
=
it
->
second
;
if
(
in
.
size
()
==
0
)
return
false
;
PADDLE_ENFORCE_EQ
(
in
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's input %s should contain only one variable."
,
type_
,
name
));
return
ins
.
empty
()
?
kEmptyVarName
:
ins
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Inputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
inputs_
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
inputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s does not have the input %s."
,
type_
,
name
));
return
it
->
second
;
"Input %s should not contain more than one inputs."
,
name
));
return
in
[
0
]
!=
nullptr
;
}
bool
OperatorBase
::
HasOutputs
(
const
std
::
string
&
name
)
const
{
if
(
outputs_
.
find
(
name
)
!=
outputs_
.
end
())
{
return
true
;
}
else
{
bool
RuntimeInferShapeContext
::
HasOutput
(
const
std
::
string
&
name
)
const
{
// has only one output
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
())
{
return
false
;
}
}
std
::
string
OperatorBase
::
Output
(
const
std
::
string
&
name
)
const
{
auto
&
outs
=
Outputs
(
name
);
PADDLE_ENFORCE_
LE
(
out
s
.
size
(),
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
==
0
)
{
return
false
;
}
PADDLE_ENFORCE_
EQ
(
out
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's output %s should contain only one variable."
,
type_
,
name
));
return
outs
.
empty
()
?
kEmptyVarName
:
outs
[
0
];
"Output %s should not contain more than one outputs."
,
name
));
return
out
[
0
]
!=
nullptr
;
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
outputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s does not have an output called %s."
,
type_
,
name
));
return
it
->
second
;
bool
RuntimeInferShapeContext
::
HasAttr
(
const
std
::
string
&
name
)
const
{
return
op_
.
HasAttr
(
name
);
}
std
::
string
OperatorBase
::
DebugStringEx
(
const
Scope
*
scope
)
const
{
std
::
stringstream
ss
;
ss
<<
"Op("
<<
type_
<<
"), inputs:{"
;
const
std
::
unordered_set
<
std
::
string
>*
no_need_buffer_vars
=
nullptr
;
if
(
info_
&&
info_
->
NoNeedBufferVarsInferer
())
{
no_need_buffer_vars
=
&
(
Info
().
NoNeedBufferVarsInferer
()(
Inputs
(),
Outputs
(),
Attrs
()));
if
(
no_need_buffer_vars
->
empty
())
no_need_buffer_vars
=
nullptr
;
}
for
(
auto
it
=
inputs_
.
begin
();
it
!=
inputs_
.
end
();)
{
auto
&
input
=
*
it
;
bool
is_no_need_buffer_var
=
(
no_need_buffer_vars
&&
no_need_buffer_vars
->
count
(
input
.
first
)
>
0
);
ss
<<
input
.
first
<<
"["
;
for
(
size_t
i
=
0
;
i
<
input
.
second
.
size
();
++
i
)
{
auto
var_name
=
input
.
second
[
i
];
ss
<<
var_name
;
if
(
scope
)
{
if
(
!
VarInited
(
*
scope
,
var_name
))
{
ss
<<
"[uninited]"
;
}
else
{
int
row_size
=
GetRowSize
(
*
scope
,
var_name
);
if
(
row_size
>=
0
)
{
ss
<<
"[row_size="
<<
row_size
<<
"]"
;
}
std
::
string
dtype
=
is_no_need_buffer_var
?
"unknown_dtype"
:
GetDtype
(
*
scope
,
var_name
);
std
::
string
place
=
is_no_need_buffer_var
?
"unknown_place"
:
GetPlace
(
*
scope
,
var_name
);
ss
<<
":"
<<
dtype
;
ss
<<
"["
<<
GetDimsDebug
(
*
scope
,
var_name
,
true
)
<<
"]"
;
ss
<<
"("
<<
GetLoDDebug
(
*
scope
,
var_name
)
<<
")"
;
ss
<<
"("
<<
place
<<
")"
;
}
}
if
(
i
!=
input
.
second
.
size
()
-
1
)
{
ss
<<
", "
;
}
}
ss
<<
"]"
;
++
it
;
if
(
it
!=
inputs_
.
end
())
{
ss
<<
", "
;
}
}
ss
<<
"}, outputs:{"
;
for
(
auto
it
=
outputs_
.
begin
();
it
!=
outputs_
.
end
();)
{
auto
&
output
=
*
it
;
ss
<<
output
.
first
<<
"["
;
for
(
size_t
i
=
0
;
i
<
output
.
second
.
size
();
++
i
)
{
auto
var_name
=
output
.
second
[
i
];
ss
<<
var_name
;
if
(
scope
)
{
if
(
!
VarInited
(
*
scope
,
var_name
))
{
ss
<<
"[uninited]"
;
}
else
{
int
row_size
=
GetRowSize
(
*
scope
,
output
.
second
[
i
]);
if
(
row_size
>=
0
)
{
ss
<<
"[row_size="
<<
row_size
<<
"]"
;
}
std
::
string
dtype
=
GetDtype
(
*
scope
,
output
.
second
[
i
]);
ss
<<
":"
<<
dtype
;
ss
<<
"["
<<
GetDimsDebug
(
*
scope
,
var_name
,
true
)
<<
"]"
;
ss
<<
"("
<<
GetLoDDebug
(
*
scope
,
var_name
)
<<
")"
;
ss
<<
"("
<<
GetPlace
(
*
scope
,
var_name
)
<<
")"
;
bool
RuntimeInferShapeContext
::
HasInputs
(
const
std
::
string
&
name
)
const
{
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
for
(
auto
&
input
:
it
->
second
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
if
(
i
!=
output
.
second
.
size
()
-
1
)
{
ss
<<
", "
;
}
return
true
;
}
bool
RuntimeInferShapeContext
::
HasOutputs
(
const
std
::
string
&
name
,
bool
allow_null
)
const
{
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
ss
<<
"]"
;
++
it
;
if
(
it
!=
outputs_
.
end
())
{
ss
<<
", "
;
if
(
!
allow_null
)
{
for
(
auto
&
output
:
it
->
second
)
{
if
(
output
==
nullptr
)
return
false
;
}
}
ss
<<
"}."
;
return
ss
.
str
();
return
true
;
}
OperatorBase
::
OperatorBase
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
type_
(
type
),
inputs_
(
inputs
),
outputs_
(
outputs
),
attrs_
(
attrs
),
// NOTE(zjl): why op_info may be nullptr?
info_
(
OpInfoMap
::
Instance
().
GetNullable
(
type
))
{
// In dygraph mode, all the OperatorBase will be constructed by function:
// framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
// Inputs, outputs and attrs will be set to empty map
// to improve the execution efficiency of dygraph.
if
(
inputs_
.
size
()
>
0
||
outputs_
.
size
()
>
0
)
{
GenerateTemporaryNames
();
CheckAllInputOutputSet
();
}
// In OperatorBase level, all attributes with VarDesc type will be considered
// as Input.
for
(
auto
&
attr
:
FilterAttrVar
(
attrs
))
{
VLOG
(
3
)
<<
"found Attribute with Variable type: "
<<
attr
.
first
;
inputs_
[
attr
.
first
]
=
std
::
move
(
AttrVarNames
(
attr
.
second
));
attrs_
.
erase
(
attr
.
first
);
}
AttrReader
RuntimeInferShapeContext
::
Attrs
()
const
{
return
AttrReader
(
op_
.
Attrs
(),
op_
.
RuntimeAttrs
());
}
std
::
vector
<
std
::
string
>
OperatorBase
::
InputVars
()
const
{
std
::
vector
<
std
::
string
>
ret_val
;
for
(
auto
&
o
:
inputs_
)
{
ret_val
.
reserve
(
ret_val
.
size
()
+
o
.
second
.
size
());
ret_val
.
insert
(
ret_val
.
end
(),
o
.
second
.
begin
(),
o
.
second
.
end
());
}
return
ret_val
;
std
::
vector
<
std
::
string
>
RuntimeInferShapeContext
::
Inputs
(
const
std
::
string
&
name
)
const
{
return
op_
.
Inputs
(
name
);
}
std
::
vector
<
std
::
string
>
OperatorBase
::
OutputVars
(
bool
has_intermediate
)
const
{
std
::
vector
<
std
::
string
>
ret_val
;
if
(
has_intermediate
)
{
// push all outputs into ret_val
for
(
auto
&
o
:
outputs_
)
{
ret_val
.
reserve
(
ret_val
.
size
()
+
o
.
second
.
size
());
ret_val
.
insert
(
ret_val
.
end
(),
o
.
second
.
begin
(),
o
.
second
.
end
());
}
return
ret_val
;
}
auto
&
info
=
Info
();
std
::
vector
<
std
::
string
>
RuntimeInferShapeContext
::
Outputs
(
const
std
::
string
&
name
)
const
{
return
op_
.
Outputs
(
name
);
}
// get all OpProto::Var for outputs
for
(
auto
&
o
:
info
.
Proto
().
outputs
())
{
// ignore all intermediate output
if
(
o
.
intermediate
())
continue
;
auto
out
=
outputs_
.
find
(
o
.
name
());
if
(
out
!=
outputs_
.
end
())
{
ret_val
.
reserve
(
ret_val
.
size
()
+
out
->
second
.
size
());
ret_val
.
insert
(
ret_val
.
end
(),
out
->
second
.
begin
(),
out
->
second
.
end
());
}
}
return
ret_val
;
std
::
string
RuntimeInferShapeContext
::
GetInputNameByIdx
(
size_t
idx
)
const
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
inputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of inputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
inputs
().
size
()));
return
op_proto
->
inputs
()[
idx
].
name
();
}
void
OperatorBase
::
CheckAllInputOutputSet
()
const
{
if
(
info_
==
nullptr
||
info_
->
proto_
==
nullptr
)
return
;
std
::
string
RuntimeInferShapeContext
::
GetOutputNameByIdx
(
size_t
idx
)
const
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
outputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of outputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
outputs
().
size
()));
return
op_proto
->
outputs
()[
idx
].
name
();
}
for
(
auto
&
in
:
info_
->
Proto
().
inputs
())
{
if
(
!
in
.
dispensable
()
&&
!
in
.
extra
())
{
void
RuntimeInferShapeContext
::
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
,
size_t
j
)
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
inputs_
.
find
(
in
.
name
()),
inputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s's input (%s) is not set."
,
Type
(),
in
.
name
()));
}
}
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
for
(
auto
&
out
:
info_
->
Proto
().
outputs
())
{
if
(
!
out
.
dispensable
()
&&
!
out
.
extra
()
&&
!
out
.
intermediate
())
{
PADDLE_ENFORCE_NE
(
outputs_
.
find
(
out
.
name
()),
outputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s's output (%s) is not set."
,
Type
(),
out
.
name
()));
}
}
}
Variable
*
in_var
=
in_it
->
second
[
i
];
Variable
*
out_var
=
out_it
->
second
[
j
];
void
OperatorBase
::
GenerateTemporaryNames
()
{
static
std
::
atomic
<
size_t
>
gUniqId
(
0UL
);
for
(
auto
&
output
:
outputs_
)
{
for
(
auto
&
output_name
:
output
.
second
)
{
if
(
output_name
==
kTempVarName
)
{
output_name
+=
type_
;
output_name
+=
"@"
;
output_name
+=
std
::
to_string
(
gUniqId
.
fetch_add
(
1
));
}
}
}
}
PADDLE_ENFORCE_EQ
(
in_var
->
Type
(),
out_var
->
Type
(),
platform
::
errors
::
InvalidArgument
(
"The type of input (%s) and output (%s) are inconsistent."
,
in
,
out
));
const
phi
::
DenseTensor
*
GetLoDTensorOrSelectedRowsValueFromVar
(
const
Variable
&
var
)
{
if
(
var
.
IsType
<
phi
::
DenseTensor
>
())
{
return
static_cast
<
const
phi
::
DenseTensor
*>
(
&
(
var
.
Get
<
phi
::
DenseTensor
>
()));
}
else
if
(
var
.
IsType
<
phi
::
SelectedRows
>
())
{
return
&
(
var
.
Get
<
phi
::
SelectedRows
>
().
value
());
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
&
in_sele_rows
=
in_var
->
Get
<
phi
::
SelectedRows
>
();
auto
out_sele_rows
=
out_var
->
GetMutable
<
phi
::
SelectedRows
>
();
out_sele_rows
->
mutable_value
()
->
Resize
(
in_sele_rows
.
value
().
dims
());
out_sele_rows
->
set_rows
(
in_sele_rows
.
rows
());
out_sele_rows
->
set_height
(
in_sele_rows
.
height
());
}
else
if
(
in_var
->
IsType
<
phi
::
DenseTensor
>
())
{
auto
&
in_lod_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_lod_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_lod_tensor
->
Resize
(
in_lod_tensor
.
dims
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"
Variable type is %s, expect phi::DenseTensor or SelectedRows."
,
ToTypeName
(
var
.
Type
())
));
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"
Currently, the input type of ShareDim only can be phi::DenseTensor "
"or SelectedRows."
));
}
}
phi
::
DenseTensor
*
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
Variable
*
var
)
{
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
return
var
->
GetMutable
<
phi
::
DenseTensor
>
();
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
return
var
->
GetMutable
<
phi
::
SelectedRows
>
()
->
mutable_value
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Variable type is %s, expect phi::DenseTensor or SelectedRows."
,
ToTypeName
(
var
->
Type
())));
}
}
void
RuntimeInferShapeContext
::
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input [%s] found error in Op [%s]"
,
in
,
op_
.
Type
()));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output [%s] found error in Op [%s]"
,
out
,
op_
.
Type
()));
OperatorWithKernel
::
OperatorWithKernel
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
auto
&
in_var_list
=
in_it
->
second
;
auto
&
out_var_list
=
out_it
->
second
;
OperatorWithKernel
::~
OperatorWithKernel
()
=
default
;
PADDLE_ENFORCE_EQ
(
in_var_list
.
size
(),
out_var_list
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"Op [%s]: Input var size should be equal with output var size"
,
op_
.
Type
()));
bool
ExecutionContext
::
HasInput
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
InputVar
(
name
);
return
var
!=
nullptr
;
}
auto
&
out_var_names
=
op_
.
Outputs
(
out
);
bool
ExecutionContext
::
HasInputs
(
const
std
::
string
&
name
)
const
{
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
for
(
const
auto
*
input
:
it
->
second
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
for
(
size_t
i
=
0
;
i
<
in_var_list
.
size
();
++
i
)
{
if
(
out_var_names
[
i
]
==
framework
::
kEmptyVarName
)
{
continue
;
}
return
true
;
}
bool
ExecutionContext
::
HasOutput
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
OutputVar
(
name
);
return
var
!=
nullptr
;
}
const
Variable
*
ExecutionContext
::
InputVar
(
const
std
::
string
&
name
)
const
{
LogVarUsageIfUnusedVarCheckEnabled
(
name
);
auto
it
=
ctx_
.
inputs
.
find
(
name
);
if
(
it
==
ctx_
.
inputs
.
end
())
return
nullptr
;
PADDLE_ENFORCE_LE
(
it
->
second
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's input %s should contain only one variable."
,
op_
.
Type
(),
name
));
return
it
->
second
.
empty
()
?
nullptr
:
it
->
second
[
0
];
Variable
*
in_var
=
in_var_list
[
i
];
if
(
!
in_var
->
IsType
<
phi
::
DenseTensor
>
())
return
;
Variable
*
out_var
=
out_var_list
[
i
];
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"The %d-th output of Output(%s) must be phi::DenseTensor."
,
i
,
out_var_names
[
i
]));
auto
&
in_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
#ifdef PADDLE_WITH_MKLDNN
if
(
in_tensor
.
layout
()
!=
DataLayout
::
ONEDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
}
Variable
*
ExecutionContext
::
OutputVar
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
outputs
.
find
(
name
);
if
(
it
==
ctx_
.
outputs
.
end
())
return
nullptr
;
PADDLE_ENFORCE_LE
(
it
->
second
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's output %s should contain only one variable."
,
op_
.
Type
(),
name
));
return
it
->
second
.
empty
()
?
nullptr
:
it
->
second
[
0
];
}
template
<
>
const
std
::
vector
<
const
phi
::
DenseTensor
*>
ExecutionContext
::
MultiInput
<
phi
::
DenseTensor
>
(
const
std
::
string
&
name
)
const
{
LogVarUsageIfUnusedVarCheckEnabled
(
name
);
auto
vars
=
MultiInputVar
(
name
);
if
(
vars
.
size
()
==
0
)
{
return
{};
}
std
::
vector
<
const
phi
::
DenseTensor
*>
res
;
res
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
const
Variable
*
var
)
->
const
phi
::
DenseTensor
*
{
if
(
var
==
nullptr
)
return
nullptr
;
PADDLE_ENFORCE_EQ
(
var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Input variable should be phi::DenseTensor, "
"but the received type is %s."
,
ToTypeName
(
var
->
Type
())));
return
&
(
var
->
Get
<
phi
::
DenseTensor
>
());
});
return
res
;
}
template
<
>
std
::
vector
<
phi
::
DenseTensor
*>
ExecutionContext
::
MultiOutput
<
phi
::
DenseTensor
>
(
const
std
::
string
&
name
)
const
{
auto
vars
=
MultiOutputVar
(
name
);
if
(
vars
.
size
()
==
0
)
{
return
{};
}
std
::
vector
<
phi
::
DenseTensor
*>
res
;
res
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
Variable
*
var
)
->
phi
::
DenseTensor
*
{
return
var
==
nullptr
?
nullptr
:
var
->
GetMutable
<
phi
::
DenseTensor
>
();
});
return
res
;
}
bool
OpSupportGPU
(
const
std
::
string
&
op_type
)
{
// check in new Function kernel first
bool
has_phi_kernel
=
false
;
auto
&
kernel_factory
=
phi
::
KernelFactory
::
Instance
();
auto
kernel_key_map
=
kernel_factory
.
SelectKernelMap
(
phi
::
TransToPhiKernelName
(
op_type
));
for
(
auto
&
kernel
:
kernel_key_map
)
{
has_phi_kernel
=
true
;
if
(
platform
::
is_gpu_place
(
phi
::
TransToPhiPlace
(
kernel
.
first
.
backend
())))
{
return
true
;
}
}
auto
&
all_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
it
=
all_kernels
.
find
(
op_type
);
if
(
it
!=
all_kernels
.
end
())
{
for
(
auto
&
kern_pair
:
it
->
second
)
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
))
{
return
true
;
}
}
}
else
{
if
(
has_phi_kernel
)
{
// if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
// this op doesn't support GPU
return
false
;
}
else
{
// All control operator must support GPU
return
true
;
}
}
return
false
;
}
class
RuntimeInferShapeContext
:
public
InferShapeContext
{
public:
RuntimeInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
)
:
op_
(
op
),
ctx_
(
ctx
)
{}
bool
HasInput
(
const
std
::
string
&
name
)
const
override
{
// has only one input
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
())
{
return
false
;
}
const
auto
&
in
=
it
->
second
;
if
(
in
.
size
()
==
0
)
return
false
;
PADDLE_ENFORCE_EQ
(
in
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Input %s should not contain more than one inputs."
,
name
));
return
in
[
0
]
!=
nullptr
;
}
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
{
// has only one output
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
())
{
return
false
;
}
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
==
0
)
{
return
false
;
}
PADDLE_ENFORCE_EQ
(
out
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output %s should not contain more than one outputs."
,
name
));
return
out
[
0
]
!=
nullptr
;
}
bool
HasAttr
(
const
std
::
string
&
name
)
const
override
{
return
op_
.
HasAttr
(
name
);
}
bool
HasInputs
(
const
std
::
string
&
name
)
const
override
{
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
for
(
auto
&
input
:
it
->
second
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
}
return
true
;
}
bool
HasOutputs
(
const
std
::
string
&
name
,
bool
allow_null
=
false
)
const
override
{
const
auto
&
outs
=
ctx_
.
outputs
;
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
if
(
!
allow_null
)
{
for
(
auto
&
output
:
it
->
second
)
{
if
(
output
==
nullptr
)
return
false
;
}
}
return
true
;
}
AttrReader
Attrs
()
const
override
{
return
AttrReader
(
op_
.
Attrs
(),
op_
.
RuntimeAttrs
());
}
std
::
vector
<
std
::
string
>
Inputs
(
const
std
::
string
&
name
)
const
override
{
return
op_
.
Inputs
(
name
);
}
std
::
vector
<
std
::
string
>
Outputs
(
const
std
::
string
&
name
)
const
override
{
return
op_
.
Outputs
(
name
);
}
std
::
string
GetInputNameByIdx
(
size_t
idx
)
const
override
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
inputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of inputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
inputs
().
size
()));
return
op_proto
->
inputs
()[
idx
].
name
();
}
std
::
string
GetOutputNameByIdx
(
size_t
idx
)
const
override
{
auto
&
op_proto
=
paddle
::
framework
::
OpInfoMap
::
Instance
().
Get
(
op_
.
Type
()).
proto_
;
PADDLE_ENFORCE_LT
(
idx
,
op_proto
->
outputs
().
size
(),
platform
::
errors
::
OutOfRange
(
"The index should be less than the size of outputs of "
"operator %s, but got index is %d and size is %d"
,
op_
.
Type
(),
idx
,
op_proto
->
outputs
().
size
()));
return
op_proto
->
outputs
()[
idx
].
name
();
}
void
ShareDim
(
const
std
::
string
&
in
,
void
RuntimeInferShapeContext
::
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
{
size_t
i
,
size_t
j
)
const
{
if
(
can_skip_lod_
)
{
return
;
}
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
...
...
@@ -854,124 +463,14 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_it
->
second
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
[
i
];
Variable
*
out_var
=
out_it
->
second
[
j
];
PADDLE_ENFORCE_EQ
(
in_var
->
Type
(),
out_var
->
Type
(),
platform
::
errors
::
InvalidArgument
(
"The type of input (%s) and output (%s) are inconsistent."
,
in
,
out
));
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
&
in_sele_rows
=
in_var
->
Get
<
phi
::
SelectedRows
>
();
auto
out_sele_rows
=
out_var
->
GetMutable
<
phi
::
SelectedRows
>
();
out_sele_rows
->
mutable_value
()
->
Resize
(
in_sele_rows
.
value
().
dims
());
out_sele_rows
->
set_rows
(
in_sele_rows
.
rows
());
out_sele_rows
->
set_height
(
in_sele_rows
.
height
());
}
else
if
(
in_var
->
IsType
<
phi
::
DenseTensor
>
())
{
auto
&
in_lod_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_lod_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_lod_tensor
->
Resize
(
in_lod_tensor
.
dims
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Currently, the input type of ShareDim only can be phi::DenseTensor "
"or SelectedRows."
));
}
}
void
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
override
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input [%s] found error in Op [%s]"
,
in
,
op_
.
Type
()));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output [%s] found error in Op [%s]"
,
out
,
op_
.
Type
()));
auto
&
in_var_list
=
in_it
->
second
;
auto
&
out_var_list
=
out_it
->
second
;
PADDLE_ENFORCE_EQ
(
in_var_list
.
size
(),
out_var_list
.
size
(),
platform
::
errors
::
PreconditionNotMet
(
"Op [%s]: Input var size should be equal with output var size"
,
op_
.
Type
()));
auto
&
out_var_names
=
op_
.
Outputs
(
out
);
for
(
size_t
i
=
0
;
i
<
in_var_list
.
size
();
++
i
)
{
if
(
out_var_names
[
i
]
==
framework
::
kEmptyVarName
)
{
continue
;
}
Variable
*
in_var
=
in_var_list
[
i
];
Variable
*
in_var
=
in_it
->
second
.
at
(
i
);
if
(
!
in_var
->
IsType
<
phi
::
DenseTensor
>
())
return
;
Variable
*
out_var
=
out_var_list
[
i
]
;
Variable
*
out_var
=
out_it
->
second
.
at
(
j
)
;
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
PreconditionNotMet
(
"The %d-th output of Output(%s) must be phi::DenseTensor."
,
i
,
out_var_names
[
i
]));
auto
&
in_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
#ifdef PADDLE_WITH_MKLDNN
if
(
in_tensor
.
layout
()
!=
DataLayout
::
ONEDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
}
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
{
auto
in_it
=
ctx_
.
inputs
.
find
(
in
);
auto
out_it
=
ctx_
.
outputs
.
find
(
out
);
PADDLE_ENFORCE_NE
(
in_it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Input %s does not exist."
,
in
));
PADDLE_ENFORCE_NE
(
out_it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Output %s does not exist."
,
out
));
PADDLE_ENFORCE_LT
(
i
,
in_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of input dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
in_it
->
second
.
size
(),
i
));
PADDLE_ENFORCE_LT
(
j
,
out_it
->
second
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The index of output dimension is out of range, "
"excepted index less than %zu, but received %zu."
,
out_it
->
second
.
size
(),
j
));
Variable
*
in_var
=
in_it
->
second
.
at
(
i
);
if
(
!
in_var
->
IsType
<
phi
::
DenseTensor
>
())
return
;
Variable
*
out_var
=
out_it
->
second
.
at
(
j
);
PADDLE_ENFORCE_EQ
(
out_var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The %zu-th output of Output(%s) must be phi::DenseTensor."
,
j
,
out
));
"The %zu-th output of Output(%s) must be phi::DenseTensor."
,
j
,
out
));
auto
&
in_tensor
=
in_var
->
Get
<
phi
::
DenseTensor
>
();
auto
*
out_tensor
=
out_var
->
GetMutable
<
phi
::
DenseTensor
>
();
out_tensor
->
set_lod
(
in_tensor
.
lod
());
...
...
@@ -995,57 +494,58 @@ class RuntimeInferShapeContext : public InferShapeContext {
if
(
in_tensor
.
layout
()
!=
DataLayout
::
ONEDNN
)
#endif
out_tensor
->
set_layout
(
in_tensor
.
layout
());
}
}
int32_t
GetLoDLevel
(
const
std
::
string
&
in
,
size_t
i
=
0
)
const
override
{
int32_t
RuntimeInferShapeContext
::
GetLoDLevel
(
const
std
::
string
&
in
,
size_t
i
)
const
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."
));
}
}
void
SetLoDLevel
(
const
std
::
string
&
out
,
void
RuntimeInferShapeContext
::
SetLoDLevel
(
const
std
::
string
&
out
,
int32_t
lod_level
,
size_t
j
=
0
)
const
override
{
size_t
j
)
const
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetLoDLevel is only used in compile time. The calculation of "
"output's actual lod is different among operators so that should be "
"set in the runtime kernel."
));
}
}
bool
IsRuntime
()
const
override
{
return
true
;
}
bool
RuntimeInferShapeContext
::
IsRuntime
()
const
{
return
true
;
}
bool
IsRunMKLDNNKernel
()
const
override
{
bool
RuntimeInferShapeContext
::
IsRunMKLDNNKernel
()
const
{
try
{
auto
&
op_with_kernel
=
dynamic_cast
<
const
OperatorWithKernel
&>
(
op_
);
return
((
op_with_kernel
.
kernel_type
())
&&
(
op_with_kernel
.
kernel_type
()
->
data_layout_
==
phi
::
DataLayout
::
ONEDNN
));
}
catch
(
const
std
::
bad_cast
&
exp
)
{
}
catch
(
std
::
bad_cast
&
exp
)
{
return
false
;
}
}
}
// TODO(paddle-dev): Can this be template?
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
GetInputVarPtrs
(
const
std
::
string
&
name
)
const
override
{
// TODO(paddle-dev): Can this be template?
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
RuntimeInferShapeContext
::
GetInputVarPtrs
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
res
;
res
.
reserve
(
vars
.
size
());
res
.
insert
(
res
.
begin
(),
vars
.
begin
(),
vars
.
end
());
return
res
;
}
}
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
GetOutputVarPtrs
(
const
std
::
string
&
name
)
const
override
{
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
RuntimeInferShapeContext
::
GetOutputVarPtrs
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
OutputVars
(
name
);
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
res
;
res
.
reserve
(
vars
.
size
());
res
.
insert
(
res
.
begin
(),
vars
.
begin
(),
vars
.
end
());
return
res
;
}
}
DDim
GetInputDim
(
const
std
::
string
&
name
)
const
override
{
DDim
RuntimeInferShapeContext
::
GetInputDim
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
...
...
@@ -1055,164 +555,665 @@ class RuntimeInferShapeContext : public InferShapeContext {
name
,
vars
.
size
()));
return
this
->
GetDim
(
vars
[
0
]);
}
}
std
::
vector
<
DDim
>
GetInputsDim
(
const
std
::
string
&
name
)
const
override
{
std
::
vector
<
DDim
>
RuntimeInferShapeContext
::
GetInputsDim
(
const
std
::
string
&
name
)
const
{
const
std
::
vector
<
Variable
*>&
vars
=
InputVars
(
name
);
return
GetDims
(
vars
);
}
proto
::
VarType
::
Type
RuntimeInferShapeContext
::
GetInputVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarType
(
InputVars
(
name
).
at
(
0
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
RuntimeInferShapeContext
::
GetInputsVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarTypes
(
InputVars
(
name
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
RuntimeInferShapeContext
::
GetOutputsVarType
(
const
std
::
string
&
name
)
const
{
return
GetVarTypes
(
OutputVars
(
name
));
}
void
RuntimeInferShapeContext
::
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
{
auto
&
vars
=
OutputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output(%s) should hold one element, "
"but now it holds %zu elements."
,
name
,
vars
.
size
()));
SetDim
(
vars
[
0
],
dim
);
}
void
RuntimeInferShapeContext
::
SetOutputsDim
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
{
auto
&
vars
=
OutputVars
(
name
);
SetDims
(
vars
,
dims
);
}
const
phi
::
ArgumentMappingFn
*
RuntimeInferShapeContext
::
GetPhiArgumentMappingFn
()
const
{
return
phi
::
OpUtilsMap
::
Instance
().
GetArgumentMappingFn
(
op_
.
Type
());
}
const
phi
::
KernelSignature
*
RuntimeInferShapeContext
::
GetPhiDefaultKernelSignature
()
const
{
return
&
phi
::
DefaultKernelSignatureMap
::
Instance
().
Get
(
op_
.
Type
());
}
void
RuntimeInferShapeContext
::
SetSkipLoD
(
bool
skip
)
{
can_skip_lod_
=
skip
;
}
DDim
RuntimeInferShapeContext
::
GetDim
(
Variable
*
var
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
InvalidArgument
(
"Input variable is nullptr."
));
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
return
var
->
Get
<
phi
::
DenseTensor
>
().
dims
();
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
return
var
->
Get
<
phi
::
SelectedRows
>
().
GetCompleteDims
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
"Variable's type is %s."
,
ToTypeName
(
var
->
Type
())));
}
}
std
::
vector
<
DDim
>
RuntimeInferShapeContext
::
GetDims
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
DDim
>
ret
;
ret
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
ret
),
[
this
](
Variable
*
var
)
{
return
this
->
GetDim
(
var
);
});
return
ret
;
}
std
::
vector
<
DDim
>
RuntimeInferShapeContext
::
GetRepeatedDims
(
const
std
::
string
&
name
)
const
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetRepeatedDims method only ban be used in compile time."
));
}
void
RuntimeInferShapeContext
::
SetDim
(
Variable
*
var
,
const
DDim
&
dim
)
{
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
var
->
GetMutable
<
phi
::
DenseTensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
var
->
GetMutable
<
phi
::
SelectedRows
>
()
->
set_height
(
dim
[
0
]);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Variable type error, expect phi::DenseTensor or SelectedRows, but "
"received "
"(%s)."
,
ToTypeName
(
var
->
Type
())));
}
}
void
RuntimeInferShapeContext
::
SetDims
(
const
std
::
vector
<
Variable
*>&
vars
,
const
std
::
vector
<
DDim
>&
dims
)
{
size_t
length
=
vars
.
size
();
PADDLE_ENFORCE_EQ
(
length
,
dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of input variables do not match the "
"number of input dimensions, the number of variables "
"is %zu, the number of dimensions is %zu."
,
length
,
dims
.
size
()));
for
(
size_t
i
=
0
;
i
<
length
;
++
i
)
{
if
(
vars
[
i
]
==
nullptr
)
{
continue
;
}
SetDim
(
vars
[
i
],
dims
[
i
]);
}
}
void
RuntimeInferShapeContext
::
SetRepeatedDims
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetRepeatedDims method only can be used in compile time."
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
RuntimeInferShapeContext
::
GetVarTypes
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
proto
::
VarType
::
Type
>
retv
;
retv
.
resize
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
retv
.
begin
(),
std
::
bind
(
std
::
mem_fn
(
&
RuntimeInferShapeContext
::
GetVarType
),
this
,
std
::
placeholders
::
_1
));
return
retv
;
}
proto
::
VarType
::
Type
RuntimeInferShapeContext
::
GetVarType
(
Variable
*
var
)
const
{
return
ToVarType
(
var
->
Type
());
}
const
std
::
vector
<
Variable
*>&
RuntimeInferShapeContext
::
InputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
inputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the input (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
}
const
std
::
vector
<
Variable
*>&
RuntimeInferShapeContext
::
OutputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
outputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the outputs (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
}
void
OperatorBase
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
{
try
{
VLOG
(
4
)
<<
place
<<
" "
<<
DebugStringEx
(
&
scope
);
if
(
platform
::
is_gpu_place
(
place
))
{
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with CUDA support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_xpu_place
(
place
))
{
#ifndef PADDLE_WITH_XPU
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with XPU support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetXPUDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_npu_place
(
place
))
{
#ifndef PADDLE_WITH_ASCEND_CL
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with NPU support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetNPUDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_mlu_place
(
place
))
{
#ifndef PADDLE_WITH_MLU
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with MLU support."
,
place
));
#else
auto
dev_id
=
place
.
device
;
platform
::
SetMLUDeviceId
(
dev_id
);
#endif
}
else
if
(
platform
::
is_custom_place
(
place
))
{
#ifndef PADDLE_WITH_CUSTOM_DEVICE
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"Cannot run operator on place %s, please recompile paddle or "
"reinstall Paddle with CustomDevice support."
,
place
));
#else
phi
::
DeviceManager
::
SetDevice
(
place
);
#endif
}
{
// TODO(wangchaochaohu) : refine code to use only one RecordEvent)
// in order to record different op type cost time
// and different op name cost time,we set two event.
platform
::
RecordEvent
op_type_record_event
(
Type
(),
platform
::
TracerEventType
::
Operator
,
1
);
auto
op_name
=
platform
::
OpName
(
outputs_
,
Type
());
platform
::
RecordEvent
op_name_record_event
(
op_name
,
platform
::
TracerEventType
::
Operator
,
FLAGS_enable_host_event_recorder_hook
?
20
:
1
,
platform
::
EventRole
::
kUniqueOp
);
RunImpl
(
scope
,
place
);
}
VLOG
(
3
)
<<
GetExecutionPlace
(
place
)
<<
" "
<<
DebugStringEx
(
&
scope
);
}
catch
(
platform
::
EnforceNotMet
&
exception
)
{
framework
::
InsertCallStackInfo
(
Type
(),
Attrs
(),
&
exception
);
throw
std
::
move
(
exception
);
}
catch
(
platform
::
EOFException
&
)
{
std
::
rethrow_exception
(
std
::
current_exception
());
}
catch
(
std
::
exception
&
ex
)
{
LOG
(
WARNING
)
<<
Type
()
<<
" raises an exception "
<<
platform
::
demangle
(
typeid
(
ex
).
name
())
<<
", "
<<
ex
.
what
();
std
::
rethrow_exception
(
std
::
current_exception
());
}
catch
(...)
{
LOG
(
WARNING
)
<<
Type
()
<<
" raises an unknown exception"
;
std
::
rethrow_exception
(
std
::
current_exception
());
}
}
bool
OperatorBase
::
HasInputs
(
const
std
::
string
&
name
)
const
{
return
inputs_
.
find
(
name
)
!=
inputs_
.
end
();
}
std
::
string
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_LE
(
ins
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's input %s should contain only one variable."
,
type_
,
name
));
return
ins
.
empty
()
?
kEmptyVarName
:
ins
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Inputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
inputs_
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
inputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s does not have the input %s."
,
type_
,
name
));
return
it
->
second
;
}
bool
OperatorBase
::
HasOutputs
(
const
std
::
string
&
name
)
const
{
if
(
outputs_
.
find
(
name
)
!=
outputs_
.
end
())
{
return
true
;
}
else
{
return
false
;
}
}
std
::
string
OperatorBase
::
Output
(
const
std
::
string
&
name
)
const
{
auto
&
outs
=
Outputs
(
name
);
PADDLE_ENFORCE_LE
(
outs
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's output %s should contain only one variable."
,
type_
,
name
));
return
outs
.
empty
()
?
kEmptyVarName
:
outs
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
outputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s does not have an output called %s."
,
type_
,
name
));
return
it
->
second
;
}
std
::
string
OperatorBase
::
DebugStringEx
(
const
Scope
*
scope
)
const
{
std
::
stringstream
ss
;
ss
<<
"Op("
<<
type_
<<
"), inputs:{"
;
const
std
::
unordered_set
<
std
::
string
>*
no_need_buffer_vars
=
nullptr
;
if
(
info_
&&
info_
->
NoNeedBufferVarsInferer
())
{
no_need_buffer_vars
=
&
(
Info
().
NoNeedBufferVarsInferer
()(
Inputs
(),
Outputs
(),
Attrs
()));
if
(
no_need_buffer_vars
->
empty
())
no_need_buffer_vars
=
nullptr
;
}
for
(
auto
it
=
inputs_
.
begin
();
it
!=
inputs_
.
end
();)
{
auto
&
input
=
*
it
;
bool
is_no_need_buffer_var
=
(
no_need_buffer_vars
&&
no_need_buffer_vars
->
count
(
input
.
first
)
>
0
);
ss
<<
input
.
first
<<
"["
;
for
(
size_t
i
=
0
;
i
<
input
.
second
.
size
();
++
i
)
{
auto
var_name
=
input
.
second
[
i
];
ss
<<
var_name
;
if
(
scope
)
{
if
(
!
VarInited
(
*
scope
,
var_name
))
{
ss
<<
"[uninited]"
;
}
else
{
int
row_size
=
GetRowSize
(
*
scope
,
var_name
);
if
(
row_size
>=
0
)
{
ss
<<
"[row_size="
<<
row_size
<<
"]"
;
}
std
::
string
dtype
=
is_no_need_buffer_var
?
"unknown_dtype"
:
GetDtype
(
*
scope
,
var_name
);
std
::
string
place
=
is_no_need_buffer_var
?
"unknown_place"
:
GetPlace
(
*
scope
,
var_name
);
ss
<<
":"
<<
dtype
;
ss
<<
"["
<<
GetDimsDebug
(
*
scope
,
var_name
,
true
)
<<
"]"
;
ss
<<
"("
<<
GetLoDDebug
(
*
scope
,
var_name
)
<<
")"
;
ss
<<
"("
<<
place
<<
")"
;
}
}
if
(
i
!=
input
.
second
.
size
()
-
1
)
{
ss
<<
", "
;
}
}
ss
<<
"]"
;
++
it
;
if
(
it
!=
inputs_
.
end
())
{
ss
<<
", "
;
}
}
ss
<<
"}, outputs:{"
;
for
(
auto
it
=
outputs_
.
begin
();
it
!=
outputs_
.
end
();)
{
auto
&
output
=
*
it
;
ss
<<
output
.
first
<<
"["
;
for
(
size_t
i
=
0
;
i
<
output
.
second
.
size
();
++
i
)
{
auto
var_name
=
output
.
second
[
i
];
ss
<<
var_name
;
if
(
scope
)
{
if
(
!
VarInited
(
*
scope
,
var_name
))
{
ss
<<
"[uninited]"
;
}
else
{
int
row_size
=
GetRowSize
(
*
scope
,
output
.
second
[
i
]);
if
(
row_size
>=
0
)
{
ss
<<
"[row_size="
<<
row_size
<<
"]"
;
}
std
::
string
dtype
=
GetDtype
(
*
scope
,
output
.
second
[
i
]);
ss
<<
":"
<<
dtype
;
ss
<<
"["
<<
GetDimsDebug
(
*
scope
,
var_name
,
true
)
<<
"]"
;
ss
<<
"("
<<
GetLoDDebug
(
*
scope
,
var_name
)
<<
")"
;
ss
<<
"("
<<
GetPlace
(
*
scope
,
var_name
)
<<
")"
;
}
}
if
(
i
!=
output
.
second
.
size
()
-
1
)
{
ss
<<
", "
;
}
}
ss
<<
"]"
;
++
it
;
if
(
it
!=
outputs_
.
end
())
{
ss
<<
", "
;
}
}
ss
<<
"}."
;
return
ss
.
str
();
}
OperatorBase
::
OperatorBase
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
type_
(
type
),
inputs_
(
inputs
),
outputs_
(
outputs
),
attrs_
(
attrs
),
// NOTE(zjl): why op_info may be nullptr?
info_
(
OpInfoMap
::
Instance
().
GetNullable
(
type
))
{
// In dygraph mode, all the OperatorBase will be constructed by function:
// framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
// Inputs, outputs and attrs will be set to empty map
// to improve the execution efficiency of dygraph.
if
(
inputs_
.
size
()
>
0
||
outputs_
.
size
()
>
0
)
{
GenerateTemporaryNames
();
CheckAllInputOutputSet
();
}
// In OperatorBase level, all attributes with VarDesc type will be considered
// as Input.
for
(
auto
&
attr
:
FilterAttrVar
(
attrs
))
{
VLOG
(
3
)
<<
"found Attribute with Variable type: "
<<
attr
.
first
;
inputs_
[
attr
.
first
]
=
std
::
move
(
AttrVarNames
(
attr
.
second
));
attrs_
.
erase
(
attr
.
first
);
}
}
std
::
vector
<
std
::
string
>
OperatorBase
::
InputVars
()
const
{
std
::
vector
<
std
::
string
>
ret_val
;
for
(
auto
&
o
:
inputs_
)
{
ret_val
.
reserve
(
ret_val
.
size
()
+
o
.
second
.
size
());
ret_val
.
insert
(
ret_val
.
end
(),
o
.
second
.
begin
(),
o
.
second
.
end
());
}
return
ret_val
;
}
std
::
vector
<
std
::
string
>
OperatorBase
::
OutputVars
(
bool
has_intermediate
)
const
{
std
::
vector
<
std
::
string
>
ret_val
;
if
(
has_intermediate
)
{
// push all outputs into ret_val
for
(
auto
&
o
:
outputs_
)
{
ret_val
.
reserve
(
ret_val
.
size
()
+
o
.
second
.
size
());
ret_val
.
insert
(
ret_val
.
end
(),
o
.
second
.
begin
(),
o
.
second
.
end
());
}
return
ret_val
;
}
auto
&
info
=
Info
();
// get all OpProto::Var for outputs
for
(
auto
&
o
:
info
.
Proto
().
outputs
())
{
// ignore all intermediate output
if
(
o
.
intermediate
())
continue
;
auto
out
=
outputs_
.
find
(
o
.
name
());
if
(
out
!=
outputs_
.
end
())
{
ret_val
.
reserve
(
ret_val
.
size
()
+
out
->
second
.
size
());
ret_val
.
insert
(
ret_val
.
end
(),
out
->
second
.
begin
(),
out
->
second
.
end
());
}
}
return
ret_val
;
}
void
OperatorBase
::
CheckAllInputOutputSet
()
const
{
if
(
info_
==
nullptr
||
info_
->
proto_
==
nullptr
)
return
;
for
(
auto
&
in
:
info_
->
Proto
().
inputs
())
{
if
(
!
in
.
dispensable
()
&&
!
in
.
extra
())
{
PADDLE_ENFORCE_NE
(
inputs_
.
find
(
in
.
name
()),
inputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s's input (%s) is not set."
,
Type
(),
in
.
name
()));
}
proto
::
VarType
::
Type
GetInputVarType
(
const
std
::
string
&
name
)
const
override
{
return
GetVarType
(
InputVars
(
name
).
at
(
0
));
}
std
::
vector
<
proto
::
VarType
::
Type
>
GetInputsVarType
(
const
std
::
string
&
name
)
const
override
{
return
GetVarTypes
(
InputVars
(
name
));
for
(
auto
&
out
:
info_
->
Proto
().
outputs
())
{
if
(
!
out
.
dispensable
()
&&
!
out
.
extra
()
&&
!
out
.
intermediate
())
{
PADDLE_ENFORCE_NE
(
outputs_
.
find
(
out
.
name
()),
outputs_
.
end
(),
platform
::
errors
::
NotFound
(
"Operator %s's output (%s) is not set."
,
Type
(),
out
.
name
()));
}
std
::
vector
<
proto
::
VarType
::
Type
>
GetOutputsVarType
(
const
std
::
string
&
name
)
const
override
{
return
GetVarTypes
(
OutputVars
(
name
));
}
}
void
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
override
{
auto
&
vars
=
OutputVars
(
name
);
PADDLE_ENFORCE_EQ
(
vars
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Output(%s) should hold one element, "
"but now it holds %zu elements."
,
name
,
vars
.
size
()));
SetDim
(
vars
[
0
],
dim
);
void
OperatorBase
::
GenerateTemporaryNames
()
{
static
std
::
atomic
<
size_t
>
gUniqId
(
0UL
);
for
(
auto
&
output
:
outputs_
)
{
for
(
auto
&
output_name
:
output
.
second
)
{
if
(
output_name
==
kTempVarName
)
{
output_name
+=
type_
;
output_name
+=
"@"
;
output_name
+=
std
::
to_string
(
gUniqId
.
fetch_add
(
1
));
}
void
SetOutputsDim
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
{
auto
&
vars
=
OutputVars
(
name
);
SetDims
(
vars
,
dims
);
}
const
phi
::
ArgumentMappingFn
*
GetPhiArgumentMappingFn
()
const
override
{
return
phi
::
OpUtilsMap
::
Instance
().
GetArgumentMappingFn
(
op_
.
Type
());
}
}
const
phi
::
KernelSignature
*
GetPhiDefaultKernelSignature
()
const
override
{
return
&
phi
::
DefaultKernelSignatureMap
::
Instance
().
Get
(
op_
.
Type
());
const
phi
::
DenseTensor
*
GetLoDTensorOrSelectedRowsValueFromVar
(
const
Variable
&
var
)
{
if
(
var
.
IsType
<
phi
::
DenseTensor
>
())
{
return
static_cast
<
const
phi
::
DenseTensor
*>
(
&
(
var
.
Get
<
phi
::
DenseTensor
>
()));
}
else
if
(
var
.
IsType
<
phi
::
SelectedRows
>
())
{
return
&
(
var
.
Get
<
phi
::
SelectedRows
>
().
value
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Variable type is %s, expect phi::DenseTensor or SelectedRows."
,
ToTypeName
(
var
.
Type
())));
}
}
protected:
DDim
GetDim
(
Variable
*
var
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
InvalidArgument
(
"Input variable is nullptr."
));
phi
::
DenseTensor
*
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
Variable
*
var
)
{
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
return
var
->
Get
<
phi
::
DenseTensor
>
().
dims
();
return
var
->
GetMutable
<
phi
::
DenseTensor
>
();
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
return
var
->
Get
<
phi
::
SelectedRows
>
().
GetCompleteDims
();
return
var
->
GetMutable
<
phi
::
SelectedRows
>
()
->
mutable_value
();
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
"Variable's type is %s."
,
"Variable type is %s, expect phi::DenseTensor or SelectedRows."
,
ToTypeName
(
var
->
Type
())));
}
}
}
std
::
vector
<
DDim
>
GetDims
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
DDim
>
ret
;
ret
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
ret
),
[
this
](
Variable
*
var
)
{
return
this
->
GetDim
(
var
);
});
return
ret
;
}
OperatorWithKernel
::
OperatorWithKernel
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
std
::
vector
<
DDim
>
GetRepeatedDims
(
const
std
::
string
&
name
)
const
override
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"GetRepeatedDims method only ban be used in compile time."
));
}
OperatorWithKernel
::~
OperatorWithKernel
()
=
default
;
void
SetDim
(
Variable
*
var
,
const
DDim
&
dim
)
{
if
(
var
->
IsType
<
phi
::
DenseTensor
>
())
{
var
->
GetMutable
<
phi
::
DenseTensor
>
()
->
Resize
(
dim
);
}
else
if
(
var
->
IsType
<
phi
::
SelectedRows
>
())
{
var
->
GetMutable
<
phi
::
SelectedRows
>
()
->
set_height
(
dim
[
0
]);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Variable type error, expect phi::DenseTensor or SelectedRows, but "
"received "
"(%s)."
,
ToTypeName
(
var
->
Type
())));
}
}
bool
ExecutionContext
::
HasInput
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
InputVar
(
name
);
return
var
!=
nullptr
;
}
void
SetDims
(
const
std
::
vector
<
Variable
*>&
vars
,
const
std
::
vector
<
DDim
>&
dims
)
{
size_t
length
=
vars
.
size
();
PADDLE_ENFORCE_EQ
(
length
,
dims
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of input variables do not match the "
"number of input dimensions, the number of variables "
"is %zu, the number of dimensions is %zu."
,
length
,
dims
.
size
()));
for
(
size_t
i
=
0
;
i
<
length
;
++
i
)
{
if
(
vars
[
i
]
==
nullptr
)
{
continue
;
bool
ExecutionContext
::
HasInputs
(
const
std
::
string
&
name
)
const
{
const
auto
&
ins
=
ctx_
.
inputs
;
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins
.
end
()
||
it
->
second
.
empty
())
{
return
false
;
}
SetDim
(
vars
[
i
],
dims
[
i
]);
for
(
const
auto
*
input
:
it
->
second
)
{
if
(
input
==
nullptr
)
{
return
false
;
}
}
return
true
;
}
void
SetRepeatedDims
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
{
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"SetRepeatedDims method only can be used in compile time."
));
}
bool
ExecutionContext
::
HasOutput
(
const
std
::
string
&
name
)
const
{
auto
*
var
=
OutputVar
(
name
);
return
var
!=
nullptr
;
}
std
::
vector
<
proto
::
VarType
::
Type
>
GetVarTypes
(
const
std
::
vector
<
Variable
*>&
vars
)
const
{
std
::
vector
<
proto
::
VarType
::
Type
>
retv
;
retv
.
resize
(
vars
.
size
());
const
Variable
*
ExecutionContext
::
InputVar
(
const
std
::
string
&
name
)
const
{
LogVarUsageIfUnusedVarCheckEnabled
(
name
);
auto
it
=
ctx_
.
inputs
.
find
(
name
);
if
(
it
==
ctx_
.
inputs
.
end
())
return
nullptr
;
PADDLE_ENFORCE_LE
(
it
->
second
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's input %s should contain only one variable."
,
op_
.
Type
(),
name
));
return
it
->
second
.
empty
()
?
nullptr
:
it
->
second
[
0
];
}
Variable
*
ExecutionContext
::
OutputVar
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
outputs
.
find
(
name
);
if
(
it
==
ctx_
.
outputs
.
end
())
return
nullptr
;
PADDLE_ENFORCE_LE
(
it
->
second
.
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Operator %s's output %s should contain only one variable."
,
op_
.
Type
(),
name
));
return
it
->
second
.
empty
()
?
nullptr
:
it
->
second
[
0
];
}
template
<
>
const
std
::
vector
<
const
phi
::
DenseTensor
*>
ExecutionContext
::
MultiInput
<
phi
::
DenseTensor
>
(
const
std
::
string
&
name
)
const
{
LogVarUsageIfUnusedVarCheckEnabled
(
name
);
auto
vars
=
MultiInputVar
(
name
);
if
(
vars
.
size
()
==
0
)
{
return
{};
}
std
::
vector
<
const
phi
::
DenseTensor
*>
res
;
res
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
retv
.
begin
(),
std
::
bind
(
std
::
mem_fn
(
&
RuntimeInferShapeContext
::
GetVarType
),
this
,
std
::
placeholders
::
_1
));
return
retv
;
}
std
::
back_inserter
(
res
),
[
&
](
const
Variable
*
var
)
->
const
phi
::
DenseTensor
*
{
if
(
var
==
nullptr
)
return
nullptr
;
PADDLE_ENFORCE_EQ
(
var
->
IsType
<
phi
::
DenseTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Input variable should be phi::DenseTensor, "
"but the received type is %s."
,
ToTypeName
(
var
->
Type
())));
return
&
(
var
->
Get
<
phi
::
DenseTensor
>
());
});
return
res
;
}
proto
::
VarType
::
Type
GetVarType
(
Variable
*
var
)
const
{
return
ToVarType
(
var
->
Type
());
template
<
>
std
::
vector
<
phi
::
DenseTensor
*>
ExecutionContext
::
MultiOutput
<
phi
::
DenseTensor
>
(
const
std
::
string
&
name
)
const
{
auto
vars
=
MultiOutputVar
(
name
);
if
(
vars
.
size
()
==
0
)
{
return
{};
}
std
::
vector
<
phi
::
DenseTensor
*>
res
;
res
.
reserve
(
vars
.
size
());
std
::
transform
(
vars
.
begin
(),
vars
.
end
(),
std
::
back_inserter
(
res
),
[
&
](
Variable
*
var
)
->
phi
::
DenseTensor
*
{
return
var
==
nullptr
?
nullptr
:
var
->
GetMutable
<
phi
::
DenseTensor
>
();
});
return
res
;
}
private:
const
std
::
vector
<
Variable
*>&
InputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
inputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
inputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the input (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
bool
OpSupportGPU
(
const
std
::
string
&
op_type
)
{
// check in new Function kernel first
bool
has_phi_kernel
=
false
;
auto
&
kernel_factory
=
phi
::
KernelFactory
::
Instance
();
auto
kernel_key_map
=
kernel_factory
.
SelectKernelMap
(
phi
::
TransToPhiKernelName
(
op_type
));
for
(
auto
&
kernel
:
kernel_key_map
)
{
has_phi_kernel
=
true
;
if
(
platform
::
is_gpu_place
(
phi
::
TransToPhiPlace
(
kernel
.
first
.
backend
())))
{
return
true
;
}
}
const
std
::
vector
<
Variable
*>&
OutputVars
(
const
std
::
string
&
name
)
const
{
auto
it
=
ctx_
.
outputs
.
find
(
name
);
PADDLE_ENFORCE_NE
(
it
,
ctx_
.
outputs
.
end
(),
platform
::
errors
::
NotFound
(
"Operator (%s) does not have the outputs (%s)."
,
op_
.
Type
(),
name
));
return
it
->
second
;
auto
&
all_kernels
=
OperatorWithKernel
::
AllOpKernels
();
auto
it
=
all_kernels
.
find
(
op_type
);
if
(
it
!=
all_kernels
.
end
())
{
for
(
auto
&
kern_pair
:
it
->
second
)
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
))
{
return
true
;
}
}
}
else
{
if
(
has_phi_kernel
)
{
// if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
// this op doesn't support GPU
return
false
;
}
else
{
// All control operator must support GPU
return
true
;
}
}
const
OperatorBase
&
op_
;
const
RuntimeContext
&
ctx_
;
};
return
false
;
}
struct
OperatorWithKernel
::
CacheImpl
{
static
const
char
kNotAllowInferShapeCahce
[];
...
...
paddle/fluid/framework/operator.h
浏览文件 @
5c1eda19
...
...
@@ -34,6 +34,7 @@ limitations under the License. */
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows_utils.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/unused_var_check.h"
#include "paddle/fluid/memory/malloc.h"
...
...
@@ -47,7 +48,6 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
class
InferShapeContext
;
class
OpInfo
;
class
Scope
;
class
Variable
;
...
...
@@ -146,6 +146,114 @@ class RuntimeContext {
VariableValueMap
outputs
;
};
class
RuntimeInferShapeContext
:
public
InferShapeContext
{
public:
RuntimeInferShapeContext
(
const
OperatorBase
&
op
,
const
RuntimeContext
&
ctx
);
bool
HasInput
(
const
std
::
string
&
name
)
const
override
;
bool
HasOutput
(
const
std
::
string
&
name
)
const
override
;
bool
HasAttr
(
const
std
::
string
&
name
)
const
override
;
bool
HasInputs
(
const
std
::
string
&
name
)
const
override
;
bool
HasOutputs
(
const
std
::
string
&
name
,
bool
allow_null
=
false
)
const
override
;
AttrReader
Attrs
()
const
override
;
std
::
vector
<
std
::
string
>
Inputs
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
std
::
string
>
Outputs
(
const
std
::
string
&
name
)
const
override
;
std
::
string
GetInputNameByIdx
(
size_t
idx
)
const
override
;
std
::
string
GetOutputNameByIdx
(
size_t
idx
)
const
override
;
void
ShareDim
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
override
;
void
ShareAllLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
)
const
override
;
void
ShareLoD
(
const
std
::
string
&
in
,
const
std
::
string
&
out
,
size_t
i
=
0
,
size_t
j
=
0
)
const
override
;
int32_t
GetLoDLevel
(
const
std
::
string
&
in
,
size_t
i
=
0
)
const
override
;
void
SetLoDLevel
(
const
std
::
string
&
out
,
int32_t
lod_level
,
size_t
j
=
0
)
const
override
;
bool
IsRuntime
()
const
override
;
bool
IsRunMKLDNNKernel
()
const
override
;
// TODO(paddle-dev): Can this be template?
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kInputSmallVectorSize
>
GetInputVarPtrs
(
const
std
::
string
&
name
)
const
override
;
paddle
::
small_vector
<
InferShapeVarPtr
,
phi
::
kOutputSmallVectorSize
>
GetOutputVarPtrs
(
const
std
::
string
&
name
)
const
override
;
DDim
GetInputDim
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
DDim
>
GetInputsDim
(
const
std
::
string
&
name
)
const
override
;
proto
::
VarType
::
Type
GetInputVarType
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
proto
::
VarType
::
Type
>
GetInputsVarType
(
const
std
::
string
&
name
)
const
override
;
std
::
vector
<
proto
::
VarType
::
Type
>
GetOutputsVarType
(
const
std
::
string
&
name
)
const
override
;
void
SetOutputDim
(
const
std
::
string
&
name
,
const
DDim
&
dim
)
override
;
void
SetOutputsDim
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
;
const
phi
::
ArgumentMappingFn
*
GetPhiArgumentMappingFn
()
const
override
;
const
phi
::
KernelSignature
*
GetPhiDefaultKernelSignature
()
const
override
;
void
SetSkipLoD
(
bool
skip
);
protected:
DDim
GetDim
(
Variable
*
var
)
const
;
std
::
vector
<
DDim
>
GetDims
(
const
std
::
vector
<
Variable
*>&
vars
)
const
;
std
::
vector
<
DDim
>
GetRepeatedDims
(
const
std
::
string
&
name
)
const
override
;
void
SetDim
(
Variable
*
var
,
const
DDim
&
dim
);
void
SetDims
(
const
std
::
vector
<
Variable
*>&
vars
,
const
std
::
vector
<
DDim
>&
dims
);
void
SetRepeatedDims
(
const
std
::
string
&
name
,
const
std
::
vector
<
DDim
>&
dims
)
override
;
std
::
vector
<
proto
::
VarType
::
Type
>
GetVarTypes
(
const
std
::
vector
<
Variable
*>&
vars
)
const
;
proto
::
VarType
::
Type
GetVarType
(
Variable
*
var
)
const
;
private:
const
std
::
vector
<
Variable
*>&
InputVars
(
const
std
::
string
&
name
)
const
;
const
std
::
vector
<
Variable
*>&
OutputVars
(
const
std
::
string
&
name
)
const
;
const
OperatorBase
&
op_
;
const
RuntimeContext
&
ctx_
;
bool
can_skip_lod_
{
false
};
};
/**
* OperatorBase has the basic elements that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录