Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5b6d2f85
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5b6d2f85
编写于
3月 20, 2023
作者:
H
HongyuJia
提交者:
GitHub
3月 20, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CustomOP unittest] Add customOP multiple inplace unittest (#51758)
上级
89ff0d59
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
310 addition
and
10 deletion
+310
-10
paddle/phi/api/ext/op_meta_info.h
paddle/phi/api/ext/op_meta_info.h
+2
-2
paddle/phi/api/lib/op_meta_info.cc
paddle/phi/api/lib/op_meta_info.cc
+3
-3
python/paddle/fluid/tests/custom_op/custom_inplace.cc
python/paddle/fluid/tests/custom_op/custom_inplace.cc
+83
-5
python/paddle/fluid/tests/custom_op/test_custom_inplace.py
python/paddle/fluid/tests/custom_op/test_custom_inplace.py
+222
-0
未找到文件。
paddle/phi/api/ext/op_meta_info.h
浏览文件 @
5b6d2f85
...
...
@@ -576,7 +576,7 @@ class PADDLE_API OpMetaInfo {
// format: {"<input_name1>:<output_name1>",
// "<input_name2>:<output_name2>",...}
OpMetaInfo
&
Inplace
(
OpMetaInfo
&
SetInplaceMap
(
std
::
unordered_map
<
std
::
string
,
std
::
string
>&&
inplace_map
);
// format: PD_KERNEL(...)
...
...
@@ -635,7 +635,7 @@ class PADDLE_API OpMetaInfoBuilder {
OpMetaInfoBuilder
&
Inputs
(
std
::
vector
<
std
::
string
>&&
inputs
);
OpMetaInfoBuilder
&
Outputs
(
std
::
vector
<
std
::
string
>&&
outputs
);
OpMetaInfoBuilder
&
Attrs
(
std
::
vector
<
std
::
string
>&&
attrs
);
OpMetaInfoBuilder
&
Inplace
(
OpMetaInfoBuilder
&
SetInplaceMap
(
std
::
unordered_map
<
std
::
string
,
std
::
string
>&&
inplace_map
);
OpMetaInfoBuilder
&
SetKernelFn
(
KernelFunc
func
);
OpMetaInfoBuilder
&
SetInferShapeFn
(
InferShapeFunc
func
);
...
...
paddle/phi/api/lib/op_meta_info.cc
浏览文件 @
5b6d2f85
...
...
@@ -211,7 +211,7 @@ OpMetaInfo& OpMetaInfo::Attrs(std::vector<std::string>&& attrs) {
attrs_
=
std
::
forward
<
std
::
vector
<
std
::
string
>>
(
attrs
);
return
*
this
;
}
OpMetaInfo
&
OpMetaInfo
::
Inplace
(
OpMetaInfo
&
OpMetaInfo
::
SetInplaceMap
(
std
::
unordered_map
<
std
::
string
,
std
::
string
>&&
inplace_map
)
{
inplace_map_
=
std
::
forward
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
(
inplace_map
);
...
...
@@ -297,9 +297,9 @@ OpMetaInfoBuilder& OpMetaInfoBuilder::Attrs(std::vector<std::string>&& attrs) {
return
*
this
;
}
OpMetaInfoBuilder
&
OpMetaInfoBuilder
::
Inplace
(
OpMetaInfoBuilder
&
OpMetaInfoBuilder
::
SetInplaceMap
(
std
::
unordered_map
<
std
::
string
,
std
::
string
>&&
inplace_map
)
{
info_ptr_
->
Inplace
(
info_ptr_
->
SetInplaceMap
(
std
::
forward
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
(
inplace_map
));
return
*
this
;
}
...
...
python/paddle/fluid/tests/custom_op/custom_inplace.cc
浏览文件 @
5b6d2f85
...
...
@@ -75,7 +75,7 @@ std::vector<paddle::Tensor> AddBackward(const paddle::Tensor& x,
const
paddle
::
Tensor
&
y
,
paddle
::
Tensor
&
out_grad
)
{
// NOLINT
PD_CHECK
(
x
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"x must be a CPU Tensor."
);
PD_CHECK
(
y
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"
x
must be a CPU Tensor."
);
PD_CHECK
(
y
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"
y
must be a CPU Tensor."
);
paddle
::
Tensor
y_grad
=
paddle
::
empty
(
x
.
shape
(),
x
.
dtype
(),
x
.
place
());
...
...
@@ -91,7 +91,7 @@ std::vector<paddle::Tensor> AddBackward(const paddle::Tensor& x,
PD_BUILD_OP
(
custom_add
)
.
Inputs
({
"X"
,
"Y"
})
.
Outputs
({
"Out"
})
.
Inplace
({{
"X"
,
"Out"
}})
.
SetInplaceMap
({{
"X"
,
"Out"
}})
.
SetKernelFn
(
PD_KERNEL
(
AddForward
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
AddInferShape
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
AddInferDtype
));
...
...
@@ -99,9 +99,87 @@ PD_BUILD_OP(custom_add)
PD_BUILD_GRAD_OP
(
custom_add
)
.
Inputs
({
"X"
,
"Y"
,
paddle
::
Grad
(
"Out"
)})
.
Outputs
({
paddle
::
Grad
(
"X"
),
paddle
::
Grad
(
"Y"
)})
.
Inplace
({{
paddle
::
Grad
(
"Out"
),
paddle
::
Grad
(
"X"
)}})
.
SetInplaceMap
({{
paddle
::
Grad
(
"Out"
),
paddle
::
Grad
(
"X"
)}})
.
SetKernelFn
(
PD_KERNEL
(
AddBackward
));
void
MultiInplaceForward
(
paddle
::
Tensor
&
x
,
// NOLINT
const
paddle
::
Tensor
&
y
,
paddle
::
Tensor
&
a
,
// NOLINT
const
paddle
::
Tensor
&
b
)
{
PD_CHECK
(
x
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"x must be a CPU Tensor."
);
PD_CHECK
(
a
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"a must be a CPU Tensor."
);
PD_DISPATCH_FLOATING_TYPES
(
x
.
type
(),
"MultiInplaceForward"
,
([
&
]
{
add_forward_kernel
<
data_t
>
(
x
.
data
<
data_t
>
(),
y
.
data
<
data_t
>
(),
x
.
size
());
add_forward_kernel
<
data_t
>
(
a
.
data
<
data_t
>
(),
b
.
data
<
data_t
>
(),
a
.
size
());
}));
}
std
::
vector
<
paddle
::
DataType
>
MultiInplaceInferDtype
(
const
paddle
::
DataType
&
x_dtype
,
const
paddle
::
DataType
&
y_dtype
,
const
paddle
::
DataType
&
a_dtype
,
const
paddle
::
DataType
&
b_dtype
)
{
return
{
x_dtype
,
a_dtype
};
}
std
::
vector
<
std
::
vector
<
int64_t
>>
MultiInplaceInferShape
(
const
std
::
vector
<
int64_t
>&
x_shape
,
const
std
::
vector
<
int64_t
>&
y_shape
,
const
std
::
vector
<
int64_t
>&
a_shape
,
const
std
::
vector
<
int64_t
>&
b_shape
)
{
return
{
x_shape
,
a_shape
};
}
std
::
vector
<
paddle
::
Tensor
>
MultiInplaceBackward
(
const
paddle
::
Tensor
&
x
,
const
paddle
::
Tensor
&
y
,
paddle
::
Tensor
&
outxy_grad
,
// NOLINT
const
paddle
::
Tensor
&
a
,
const
paddle
::
Tensor
&
b
,
paddle
::
Tensor
&
outab_grad
)
{
// NOLINT
PD_CHECK
(
x
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"x must be a CPU Tensor."
);
PD_CHECK
(
y
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"y must be a CPU Tensor."
);
PD_CHECK
(
a
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"a must be a CPU Tensor."
);
PD_CHECK
(
b
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"b must be a CPU Tensor."
);
paddle
::
Tensor
y_grad
=
paddle
::
empty
(
x
.
shape
(),
x
.
dtype
(),
x
.
place
());
paddle
::
Tensor
b_grad
=
paddle
::
empty
(
a
.
shape
(),
a
.
dtype
(),
a
.
place
());
PD_DISPATCH_FLOATING_TYPES
(
outxy_grad
.
type
(),
"MultiInplaceBackward"
,
([
&
]
{
add_backward_kernel
<
data_t
>
(
y_grad
.
data
<
data_t
>
(),
outxy_grad
.
data
<
data_t
>
(),
outxy_grad
.
size
());
add_backward_kernel
<
data_t
>
(
b_grad
.
data
<
data_t
>
(),
outab_grad
.
data
<
data_t
>
(),
outab_grad
.
size
());
}));
return
{
y_grad
,
b_grad
};
}
PD_BUILD_OP
(
custom_multi_inplace
)
.
Inputs
({
"X"
,
"Y"
,
"A"
,
"B"
})
.
Outputs
({
"OutXY"
,
"OutAB"
})
.
SetInplaceMap
({{
"X"
,
"OutXY"
},
{
"A"
,
"OutAB"
}})
.
SetKernelFn
(
PD_KERNEL
(
MultiInplaceForward
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
MultiInplaceInferShape
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
MultiInplaceInferDtype
));
PD_BUILD_GRAD_OP
(
custom_multi_inplace
)
.
Inputs
({
"X"
,
"Y"
,
paddle
::
Grad
(
"OutXY"
),
"A"
,
"B"
,
paddle
::
Grad
(
"OutAB"
)})
.
Outputs
({
paddle
::
Grad
(
"X"
),
paddle
::
Grad
(
"Y"
),
paddle
::
Grad
(
"A"
),
paddle
::
Grad
(
"B"
)})
.
SetInplaceMap
({{
paddle
::
Grad
(
"OutXY"
),
paddle
::
Grad
(
"X"
)},
{
paddle
::
Grad
(
"OutAB"
),
paddle
::
Grad
(
"A"
)}})
.
SetKernelFn
(
PD_KERNEL
(
MultiInplaceBackward
));
void
ReluForwardInplace
(
paddle
::
Tensor
&
x
)
{
// NOLINT
PD_CHECK
(
x
.
place
()
==
paddle
::
PlaceType
::
kCPU
,
"x must be a CPU Tensor."
);
...
...
@@ -126,11 +204,11 @@ void ReluBackwardInplace(const paddle::Tensor& x,
PD_BUILD_OP
(
custom_relu_inplace
)
.
Inputs
({
"X"
})
.
Outputs
({
"Out"
})
.
Inplace
({{
"X"
,
"Out"
}})
.
SetInplaceMap
({{
"X"
,
"Out"
}})
.
SetKernelFn
(
PD_KERNEL
(
ReluForwardInplace
));
PD_BUILD_GRAD_OP
(
custom_relu_inplace
)
.
Inputs
({
"X"
,
"Out"
,
paddle
::
Grad
(
"Out"
)})
.
Outputs
({
paddle
::
Grad
(
"X"
)})
.
Inplace
({{
paddle
::
Grad
(
"Out"
),
paddle
::
Grad
(
"X"
)}})
.
SetInplaceMap
({{
paddle
::
Grad
(
"Out"
),
paddle
::
Grad
(
"X"
)}})
.
SetKernelFn
(
PD_KERNEL
(
ReluBackwardInplace
));
python/paddle/fluid/tests/custom_op/test_custom_inplace.py
浏览文件 @
5b6d2f85
...
...
@@ -147,6 +147,105 @@ def inplace_static_relu(func, device, dtype, np_x, np_y, np_z):
return
x_v
,
y_v
,
out_v
,
x_grad_v
,
y_grad_v
def
dynamic_multi_inplace
(
phi_func
,
device
,
dtype
,
np_x
,
np_y
,
np_a
,
np_b
):
paddle
.
set_device
(
device
)
x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
dtype
,
stop_gradient
=
True
)
y
=
paddle
.
to_tensor
(
np_y
,
dtype
=
dtype
,
stop_gradient
=
False
)
a
=
paddle
.
to_tensor
(
np_a
,
dtype
=
dtype
,
stop_gradient
=
True
)
b
=
paddle
.
to_tensor
(
np_b
,
dtype
=
dtype
,
stop_gradient
=
False
)
if
phi_func
:
out_xy
,
out_ab
=
custom_inplace
.
custom_multi_inplace
(
x
,
y
,
a
,
b
)
else
:
out_xy
=
x
.
add_
(
y
)
out_ab
=
a
.
add_
(
b
)
out
=
out_xy
+
out_ab
out
.
backward
()
return
(
x
.
numpy
(),
y
.
numpy
(),
out_xy
.
numpy
(),
x
.
grad
.
numpy
(),
y
.
grad
.
numpy
(),
a
.
numpy
(),
b
.
numpy
(),
out_ab
.
numpy
(),
a
.
grad
.
numpy
(),
b
.
grad
.
numpy
(),
)
def
static_multi_inplace
(
phi_func
,
device
,
dtype
,
np_x
,
np_y
,
np_a
,
np_b
):
paddle
.
enable_static
()
paddle
.
set_device
(
device
)
with
static
.
scope_guard
(
static
.
Scope
()):
with
static
.
program_guard
(
static
.
Program
()):
x
=
static
.
data
(
name
=
"x"
,
shape
=
[
None
,
np_x
.
shape
[
1
]],
dtype
=
dtype
)
y
=
static
.
data
(
name
=
"y"
,
shape
=
[
None
,
np_y
.
shape
[
1
]],
dtype
=
dtype
)
a
=
static
.
data
(
name
=
"a"
,
shape
=
[
None
,
np_x
.
shape
[
1
]],
dtype
=
dtype
)
b
=
static
.
data
(
name
=
"b"
,
shape
=
[
None
,
np_y
.
shape
[
1
]],
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
a
.
stop_gradient
=
False
b
.
stop_gradient
=
False
if
phi_func
:
out_xy
,
out_ab
=
custom_inplace
.
custom_multi_inplace
(
x
,
y
,
a
,
b
)
else
:
out_xy
=
paddle
.
add
(
x
,
y
)
out_ab
=
paddle
.
add
(
a
,
b
)
mean_out
=
paddle
.
mean
(
paddle
.
add
(
out_xy
,
out_ab
))
static
.
append_backward
(
mean_out
)
exe
=
static
.
Executor
()
exe
.
run
(
static
.
default_startup_program
())
(
x_v
,
out_xy_v
,
x_grad_v
,
y_grad_v
,
out_xy_grad_v
,
a_v
,
out_ab_v
,
a_grad_v
,
b_grad_v
,
out_ab_grad_v
,
)
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
"x"
:
np_x
.
astype
(
dtype
),
"y"
:
np_y
.
astype
(
dtype
),
"a"
:
np_a
.
astype
(
dtype
),
"b"
:
np_b
.
astype
(
dtype
),
},
fetch_list
=
[
x
.
name
,
out_xy
.
name
,
x
.
name
+
"@GRAD"
,
y
.
name
+
"@GRAD"
,
out_xy
.
name
+
"@GRAD"
,
a
.
name
,
out_ab
.
name
,
a
.
name
+
"@GRAD"
,
b
.
name
+
"@GRAD"
,
out_ab
.
name
+
"@GRAD"
,
],
)
paddle
.
disable_static
()
return
(
x_v
,
out_xy_v
,
x_grad_v
,
y_grad_v
,
out_xy_grad_v
,
a_v
,
out_ab_v
,
a_grad_v
,
b_grad_v
,
out_ab_grad_v
,
)
class
TestCustomInplaceJit
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtypes
=
[
'float32'
,
'float64'
]
...
...
@@ -154,6 +253,8 @@ class TestCustomInplaceJit(unittest.TestCase):
self
.
np_x
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_y
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_z
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_a
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
self
.
np_b
=
np
.
random
.
random
((
3
,
2
)).
astype
(
"float32"
)
def
check_output
(
self
,
out
,
pd_out
,
name
):
np
.
testing
.
assert_array_equal
(
...
...
@@ -328,6 +429,127 @@ class TestCustomInplaceJit(unittest.TestCase):
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_y_grad
,
pd_y_grad
,
"y_grad"
)
def
test_static_multi_inplace
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
(
pd_x
,
pd_out_xy
,
pd_x_grad
,
pd_y_grad
,
pd_out_xy_grad
,
pd_a
,
pd_out_ab
,
pd_a_grad
,
pd_b_grad
,
pd_out_ab_grad
,
)
=
static_multi_inplace
(
False
,
device
,
dtype
,
self
.
np_x
,
self
.
np_y
,
self
.
np_a
,
self
.
np_b
,
)
(
phi_x
,
phi_out_xy
,
phi_x_grad
,
phi_y_grad
,
phi_out_xy_grad
,
phi_a
,
phi_out_ab
,
phi_a_grad
,
phi_b_grad
,
phi_out_ab_grad
,
)
=
static_multi_inplace
(
True
,
device
,
dtype
,
self
.
np_x
,
self
.
np_y
,
self
.
np_a
,
self
.
np_b
,
)
self
.
check_output
(
phi_x
,
pd_out_xy
,
"inplace_phi_x"
)
self
.
check_output
(
phi_x_grad
,
phi_out_xy_grad
,
"inplace_phi_x_grad"
)
self
.
check_output
(
phi_a
,
pd_out_ab
,
"inplace_phi_a"
)
self
.
check_output
(
phi_a_grad
,
phi_out_ab_grad
,
"inplace_phi_a_grad"
)
self
.
check_output
(
phi_out_xy
,
pd_out_xy
,
"outxy"
)
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_y_grad
,
pd_y_grad
,
"y_grad"
)
self
.
check_output
(
phi_out_xy_grad
,
pd_out_xy_grad
,
"outxy_grad"
)
self
.
check_output
(
phi_out_ab
,
pd_out_ab
,
"outab"
)
self
.
check_output
(
phi_a_grad
,
pd_a_grad
,
"a_grad"
)
self
.
check_output
(
phi_b_grad
,
pd_b_grad
,
"b_grad"
)
self
.
check_output
(
phi_out_ab_grad
,
pd_out_ab_grad
,
"outab_grad"
)
def
test_dynamic_multi_inplace
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
(
pd_x
,
pd_y
,
pd_out_xy
,
pd_x_grad
,
pd_y_grad
,
pd_a
,
pd_b
,
pd_out_ab
,
pd_a_grad
,
pd_b_grad
,
)
=
dynamic_multi_inplace
(
False
,
device
,
dtype
,
self
.
np_x
,
self
.
np_y
,
self
.
np_a
,
self
.
np_b
,
)
(
phi_x
,
phi_y
,
phi_out_xy
,
phi_x_grad
,
phi_y_grad
,
phi_a
,
phi_b
,
phi_out_ab
,
phi_a_grad
,
phi_b_grad
,
)
=
dynamic_multi_inplace
(
True
,
device
,
dtype
,
self
.
np_x
,
self
.
np_y
,
self
.
np_a
,
self
.
np_b
,
)
self
.
check_output
(
phi_x
,
phi_out_xy
,
"inplace_phi_x"
)
self
.
check_output
(
pd_x
,
pd_out_xy
,
"inplace_pd_x"
)
self
.
check_output
(
phi_a
,
phi_out_ab
,
"inplace_phi_a"
)
self
.
check_output
(
pd_a
,
pd_out_ab
,
"inplace_pd_a"
)
self
.
check_output
(
phi_x
,
pd_x
,
"x"
)
self
.
check_output
(
phi_y
,
pd_y
,
"y"
)
self
.
check_output
(
phi_out_xy
,
pd_out_xy
,
"outxy"
)
self
.
check_output
(
phi_x_grad
,
pd_x_grad
,
"x_grad"
)
self
.
check_output
(
phi_y_grad
,
pd_y_grad
,
"y_grad"
)
self
.
check_output
(
phi_a
,
pd_a
,
"a"
)
self
.
check_output
(
phi_b
,
pd_b
,
"b"
)
self
.
check_output
(
phi_out_ab
,
pd_out_ab
,
"outab"
)
self
.
check_output
(
phi_a_grad
,
pd_a_grad
,
"a_grad"
)
self
.
check_output
(
phi_b_grad
,
pd_b_grad
,
"b_grad"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录