Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5a6cd05f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5a6cd05f
编写于
6月 29, 2023
作者:
TaoTao Li
提交者:
GitHub
6月 29, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update dygraph collective process group (#54863)
* update dygraph collective fix ut * remove debug log
上级
bbcaaffd
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
132 addition
and
295 deletion
+132
-295
paddle/fluid/distributed/collective/process_group_nccl.cc
paddle/fluid/distributed/collective/process_group_nccl.cc
+122
-293
paddle/fluid/distributed/collective/process_group_nccl.h
paddle/fluid/distributed/collective/process_group_nccl.h
+5
-1
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+1
-0
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+4
-1
未找到文件。
paddle/fluid/distributed/collective/process_group_nccl.cc
浏览文件 @
5a6cd05f
...
...
@@ -26,6 +26,8 @@
#include "paddle/phi/core/flags.h"
#include "paddle/phi/core/utils/data_type.h"
#include "paddle/phi/core/distributed/comm_context_manager.h"
PHI_DECLARE_bool
(
nccl_blocking_wait
);
DECLARE_bool
(
use_stream_safe_cuda_allocator
);
...
...
@@ -144,26 +146,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
// numel > 0 indicates the tensor need to be sliced
const
phi
::
DenseTensor
&
in_tensor_maybe_partial
=
numel
>
0
?
GetPartialTensor
(
in_tensor
,
offset
,
numel
)
:
in_tensor
;
phi
::
distributed
::
CommStaticCheck
::
GatherLikeShape
(
*
out_tensor
,
in_tensor_maybe_partial
,
/*dst_rank*/
rank_
,
/*cur_rank*/
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
0
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclAllGather
(
in_tensor_maybe_partial
.
data
(),
out_tensor
->
data
(),
in_tensor_maybe_partial
.
numel
(),
phi
::
ToNCCLDataType
(
in_tensor_maybe_partial
.
dtype
()),
comm
,
stream
));
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
AllGather
(
out_tensor
,
in_tensor_maybe_partial
,
stream
);
},
in_tensor_maybe_partial
,
CommType
::
ALLGATHER
,
...
...
@@ -177,27 +163,11 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
const
AllreduceOptions
&
opts
,
bool
sync_op
,
bool
use_calc_stream
)
{
phi
::
distributed
::
CommStaticCheck
::
SameShape
(
*
out_tensor
,
in_tensor
,
/*dst_rank*/
rank_
,
/*cur_rank*/
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
0
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclAllReduce
(
in_tensor
.
data
(),
out_tensor
->
data
(),
in_tensor
.
numel
(),
phi
::
ToNCCLDataType
(
in_tensor
.
dtype
()),
ToNCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
));
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
AllReduce
(
out_tensor
,
in_tensor
,
ToNCCLRedType
(
opts
.
reduce_op
),
stream
);
},
in_tensor
,
CommType
::
ALLREDUCE
,
...
...
@@ -221,49 +191,37 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
// simply be covered by static checks. Factors are set to 0 here to skip the
// shape check. Its shape check will be done by dynamic checks with
// FLAGS_enable_nccl_dynamic_check.
phi
::
distributed
::
CommStaticCheck
::
CheckShape
(
*
out_tensor
,
in_tensor
,
/*dst_rank*/
rank_
,
/*cur_rank*/
rank_
,
size_
,
/*out_size_factor*/
0
,
/*in_size_factor*/
0
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
in_tensor
,
in_size_each_rank
,
rank_
,
size_
,
comm
);
*
out_tensor
,
in_tensor
,
in_size_each_rank
,
rank_
,
size_
,
comm_context
->
GetNcclComm
());
}
int64_t
in_row_size
=
in_tensor
.
numel
()
/
in_dim
[
0
],
out_row_size
=
out_tensor
->
numel
()
/
out_dim
[
0
];
int64_t
in_offset
=
0
,
in_numel
=
0
,
out_offset
=
0
,
out_numel
=
0
;
phi
::
DenseTensor
input_partial
,
output_partial
;
GroupStart
();
comm_context
->
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
in_numel
=
in_size_each_rank
[
i
]
*
in_row_size
;
input_partial
=
GetPartialTensor
(
in_tensor
,
in_offset
,
in_numel
);
NCCL_CHECK
(
phi
::
dynload
::
ncclSend
(
input_partial
.
data
(),
in_numel
,
phi
::
ToNCCLDataType
(
input_partial
.
dtype
()),
i
,
comm
,
stream
));
comm_context
->
Send
(
input_partial
,
in_numel
,
i
,
stream
);
in_offset
+=
in_numel
;
out_numel
=
out_size_each_rank
[
i
]
*
out_row_size
;
output_partial
=
GetPartialTensor
(
*
out_tensor
,
out_offset
,
out_numel
);
NCCL_CHECK
(
phi
::
dynload
::
ncclRecv
(
output_partial
.
data
(),
out_numel
,
phi
::
ToNCCLDataType
(
output_partial
.
dtype
()),
i
,
comm
,
stream
));
comm_context
->
Recv
(
&
output_partial
,
out_numel
,
i
,
stream
);
out_offset
+=
out_numel
;
}
GroupEnd
();
comm_context
->
GroupEnd
();
},
in_tensor
,
CommType
::
ALLTOALL
,
...
...
@@ -299,26 +257,11 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
const
BroadcastOptions
&
opts
,
bool
sync_op
,
bool
use_calc_stream
)
{
phi
::
distributed
::
CommStaticCheck
::
SameShape
(
*
out_tensor
,
in_tensor
,
/*dst_rank*/
rank_
,
/*cur_rank*/
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
[
&
](
gpuStream_t
stream
)
{
int
root
=
opts
.
source_rank
+
opts
.
source_root
;
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
root
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclBroadcast
(
in_tensor
.
data
(),
out_tensor
->
data
(),
in_tensor
.
numel
(),
phi
::
ToNCCLDataType
(
in_tensor
.
dtype
()),
root
,
comm
,
stream
));
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Broadcast
(
out_tensor
,
in_tensor
,
root
,
stream
);
},
in_tensor
,
CommType
::
BROADCAST
,
...
...
@@ -332,29 +275,14 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
const
ReduceOptions
&
opts
,
bool
sync_op
,
bool
use_calc_stream
)
{
phi
::
distributed
::
CommStaticCheck
::
SameShape
(
*
out_tensor
,
in_tensor
,
/*dst_rank*/
opts
.
root_rank
,
/*cur_rank*/
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
opts
.
root_rank
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclReduce
(
in_tensor
.
data
(),
out_tensor
->
data
(),
in_tensor
.
numel
(),
phi
::
ToNCCLDataType
(
in_tensor
.
dtype
()),
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Reduce
(
out_tensor
,
in_tensor
,
ToNCCLRedType
(
opts
.
reduce_op
),
opts
.
root_rank
,
comm
,
stream
));
stream
);
},
in_tensor
,
CommType
::
REDUCE
,
...
...
@@ -368,27 +296,11 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
const
ReduceScatterOptions
&
opts
,
bool
sync_op
,
bool
use_calc_stream
)
{
phi
::
distributed
::
CommStaticCheck
::
ScatterLikeShape
(
*
out_tensor
,
in_tensor
,
/*dst_rank*/
rank_
,
/*cur_rank*/
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
0
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclReduceScatter
(
in_tensor
.
data
(),
out_tensor
->
data
(),
out_tensor
->
numel
(),
phi
::
ToNCCLDataType
(
in_tensor
.
dtype
()),
ToNCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
));
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
ReduceScatter
(
out_tensor
,
in_tensor
,
ToNCCLRedType
(
opts
.
reduce_op
),
stream
);
},
in_tensor
,
CommType
::
REDUCE_SCATTER
,
...
...
@@ -409,46 +321,30 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
/*cur_rank*/
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
opts
.
root_rank
,
rank_
,
comm
);
comm
_context
->
GetNcclComm
()
);
}
int64_t
numel
=
in_tensor
.
numel
()
/
size_
;
if
(
rank_
==
opts
.
root_rank
)
{
int64_t
offset
=
0
;
phi
::
DenseTensor
partial_tensor
;
GroupStart
();
comm_context
->
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
partial_tensor
=
GetPartialTensor
(
in_tensor
,
offset
,
numel
);
NCCL_CHECK
(
phi
::
dynload
::
ncclSend
(
partial_tensor
.
data
(),
numel
,
phi
::
ToNCCLDataType
(
partial_tensor
.
dtype
()),
i
,
comm
,
stream
));
comm_context
->
Send
(
partial_tensor
,
numel
,
i
,
stream
);
offset
+=
numel
;
}
NCCL_CHECK
(
phi
::
dynload
::
ncclRecv
(
out_tensor
->
data
(),
numel
,
phi
::
ToNCCLDataType
(
out_tensor
->
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
GroupEnd
();
comm_context
->
Recv
(
out_tensor
,
numel
,
opts
.
root_rank
,
stream
);
comm_context
->
GroupEnd
();
}
else
{
NCCL_CHECK
(
phi
::
dynload
::
ncclRecv
(
out_tensor
->
data
(),
numel
,
phi
::
ToNCCLDataType
(
out_tensor
->
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
comm_context
->
Recv
(
out_tensor
,
numel
,
opts
.
root_rank
,
stream
);
}
},
in_tensor
,
...
...
@@ -489,34 +385,30 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Gather(
"root world size [%d] is less than root rank [%d]"
,
size_
,
opts
.
root_rank
));
auto
gather_func
=
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
auto
gather_func
=
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
// shape check
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckGatherShape
(
in_tensor
,
gather_tensors
,
opts
.
root_rank
,
rank_
,
size_
,
comm
);
in_tensor
,
gather_tensors
,
opts
.
root_rank
,
rank_
,
size_
,
comm_context
->
GetNcclComm
());
}
GroupStart
();
comm_context
->
GroupStart
();
// root receive from all devices
if
(
rank_
==
opts
.
root_rank
)
{
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
auto
&
gather_tensor
=
gather_tensors
[
i
];
NCCL_CHECK
(
phi
::
dynload
::
ncclRecv
(
gather_tensor
.
data
(),
gather_tensor
.
numel
(),
phi
::
ToNCCLDataType
(
gather_tensor
.
dtype
()),
i
,
comm
,
stream
));
comm_context
->
Recv
(
&
gather_tensor
,
gather_tensor
.
numel
(),
i
,
stream
);
}
}
// send to root
NCCL_CHECK
(
phi
::
dynload
::
ncclSend
(
in_tensor
.
data
(),
in_tensor
.
numel
(),
phi
::
ToNCCLDataType
(
in_tensor
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
GroupEnd
();
comm_context
->
Send
(
in_tensor
,
in_tensor
.
numel
(),
opts
.
root_rank
,
stream
);
comm_context
->
GroupEnd
();
};
return
RunFnInNCCLEnv
(
gather_func
,
in_tensor
,
CommType
::
GATHER
,
sync_op
,
use_calc_stream
);
...
...
@@ -536,21 +428,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
tensor
=
&
partial_tensor
;
}
phi
::
distributed
::
CommStaticCheck
::
CheckShape
(
*
tensor
,
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
*
tensor
,
/*root_rank*/
src_rank
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclRecv
(
tensor
->
data
(),
tensor
->
numel
(),
phi
::
ToNCCLDataType
(
tensor
->
dtype
()),
src_rank
,
comm
,
stream
));
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Recv
(
tensor
,
tensor
->
numel
(),
src_rank
,
stream
);
},
*
tensor
,
CommType
::
RECV
,
...
...
@@ -569,23 +450,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
const
phi
::
DenseTensor
&
tensor_maybe_partial
=
numel
>
0
?
GetPartialTensor
(
tensor
,
offset
,
numel
)
:
tensor
;
phi
::
distributed
::
CommStaticCheck
::
CheckShape
(
tensor_maybe_partial
,
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
phi
::
distributed
::
NCCLDynamicCheck
::
CheckShape
(
tensor_maybe_partial
,
/*root_rank*/
rank_
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclSend
(
tensor_maybe_partial
.
data
(),
[
&
](
gpuStream_t
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Send
(
tensor_maybe_partial
,
tensor_maybe_partial
.
numel
(),
phi
::
ToNCCLDataType
(
tensor_maybe_partial
.
dtype
()),
dst_rank
,
comm
,
stream
));
stream
);
},
tensor_maybe_partial
,
CommType
::
SEND
,
...
...
@@ -623,23 +494,14 @@ void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
VLOG
(
3
)
<<
"Warning: Tensors from multiple devices are not supported yet."
;
}
ncclUniqueId
nccl_id
;
if
(
rank_
==
0
)
{
NCCL_CHECK
(
phi
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
}
BroadcastUniqueNCCLID
(
&
nccl_id
);
VLOG
(
3
)
<<
"init nccl rank: "
<<
rank_
<<
", nranks: "
<<
size_
<<
", place: "
<<
place_key
<<
", nccl uniqueid: "
<<
SerializeNCCLUniqueId
(
nccl_id
);
<<
", place: "
<<
place_key
;
auto
*
calc_ctx
=
static_cast
<
phi
::
GPUContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
auto
comm_ctx
=
std
::
make_unique
<
phi
::
GPUContext
>
(
place
);
ncclComm_t
nccl_comm
;
NCCL_CHECK
(
phi
::
dynload
::
ncclCommInitRank
(
&
nccl_comm
,
GetSize
(),
nccl_id
,
GetRank
()));
comm_ctx
->
set_nccl_comm
(
nccl_comm
);
auto
nccl_comm_ctx
=
this
->
GetCommContext
();
comm_ctx
->
set_nccl_comm
(
nccl_comm_ctx
->
GetNcclComm
());
place_to_calc_event_
.
emplace
(
place_key
,
place
);
place_to_calc_ctx_
.
emplace
(
place_key
,
calc_ctx
);
...
...
@@ -661,7 +523,7 @@ void ProcessGroupNCCL::SyncCalcStream(const Place& place) {
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
RunFnInNCCLEnv
(
std
::
function
<
void
(
ncclComm_t
,
gpuStream_t
)
>
fn
,
std
::
function
<
void
(
gpuStream_t
)
>
fn
,
const
phi
::
DenseTensor
&
tensor
,
CommType
comm_type
,
bool
sync_op
,
...
...
@@ -683,9 +545,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::RunFnInNCCLEnv(
const
auto
*
calc_ctx
=
place_to_calc_ctx_
.
at
(
key
);
const
auto
&
comm_ctx
=
place_to_comm_ctx_
.
at
(
key
);
auto
nccl_comm
=
comm_ctx
->
nccl_comm
();
auto
nccl_stream
=
use_calc_stream
?
calc_ctx
->
stream
()
:
comm_ctx
->
stream
();
fn
(
nccl_
comm
,
nccl_
stream
);
fn
(
nccl_stream
);
if
(
!
use_calc_stream
)
{
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
...
...
@@ -900,13 +761,9 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
phi
::
dynload
::
ncclAllReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
phi
::
ToNCCLDataType
(
input
.
type
()),
ToNCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
AllReduce
(
&
output
,
input
,
ToNCCLRedType
(
opts
.
reduce_op
),
stream
);
},
CommType
::
ALLREDUCE
);
}
...
...
@@ -929,13 +786,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
const
gpuStream_t
&
stream
)
{
const
auto
root
=
opts
.
source_rank
*
in_tensors
.
size
()
+
opts
.
source_root
;
return
phi
::
dynload
::
ncclBroadcast
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
phi
::
ToNCCLDataType
(
input
.
type
()),
root
,
comm
,
stream
);
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Broadcast
(
&
output
,
input
,
root
,
stream
);
},
CommType
::
BROADCAST
);
}
...
...
@@ -978,12 +830,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
dst_rank
)
{
return
phi
::
dynload
::
ncclSend
(
input
.
data
(),
input
.
numel
(),
phi
::
ToNCCLDataType
(
input
.
dtype
()),
dst_rank
,
comm
,
stream
);
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Send
(
input
,
input
.
numel
(),
dst_rank
,
stream
);
},
dst_rank
,
CommType
::
SEND
);
...
...
@@ -1000,12 +848,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
src_rank
)
{
return
phi
::
dynload
::
ncclRecv
(
output
.
data
(),
output
.
numel
(),
phi
::
ToNCCLDataType
(
output
.
dtype
()),
src_rank
,
comm
,
stream
);
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Recv
(
&
output
,
output
.
numel
(),
src_rank
,
stream
);
},
src_rank
,
CommType
::
RECV
);
...
...
@@ -1030,12 +874,8 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
phi
::
dynload
::
ncclAllGather
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
phi
::
ToNCCLDataType
(
input
.
dtype
()),
comm
,
stream
);
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
AllGather
(
&
output
,
input
,
stream
);
},
CommType
::
ALLGATHER
);
}
...
...
@@ -1059,25 +899,17 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
size_t
offset
=
0
;
GroupStart
();
size_t
count
=
input
.
numel
()
/
size_
;
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
input
.
numel
()
/
size_
,
phi
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclRecv
(
GetPointerByOffset
(
output
.
data
(),
offset
,
input
.
dtype
()),
input
.
numel
()
/
size_
,
phi
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
offset
+=
input
.
numel
()
/
size_
;
auto
input_data
=
GetPartialTensor
(
input
,
offset
,
count
);
comm_context
->
Send
(
input_data
,
count
,
i
,
stream
);
auto
output_data
=
GetPartialTensor
(
output
,
offset
,
count
);
comm_context
->
Recv
(
&
output_data
,
count
,
i
,
stream
);
offset
+=
count
;
}
GroupEnd
();
comm_context
->
GroupEnd
();
},
CommType
::
ALLTOALL
);
}
...
...
@@ -1097,15 +929,12 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
phi
::
ToNCCLDataType
(
input
.
dtype
()),
auto
comm_context
=
this
->
GetCommContext
();
comm_context
->
Reduce
(
&
output
,
input
,
ToNCCLRedType
(
opts
.
reduce_op
),
opts
.
root_rank
,
comm
,
stream
));
stream
);
},
CommType
::
REDUCE
);
}
...
...
@@ -1129,35 +958,21 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
auto
comm_context
=
this
->
GetCommContext
();
size_t
offset
=
0
;
size_t
count
=
input
.
numel
()
/
size_
;
if
(
rank_
==
opts
.
root_rank
)
{
GroupStart
();
comm_context
->
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
input
.
numel
()
/
size_
,
phi
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
offset
+=
input
.
numel
()
/
size_
;
auto
input_data
=
reinterpret_cast
<
phi
::
DenseTensor
*>
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()));
comm_context
->
Send
(
*
input_data
,
count
,
i
,
stream
);
offset
+=
count
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclRecv
(
output
.
data
(),
input
.
numel
()
/
size_
,
phi
::
ToNCCLDataType
(
input
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
GroupEnd
();
comm_context
->
Recv
(
&
output
,
count
,
opts
.
root_rank
,
stream
);
comm_context
->
GroupEnd
();
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclRecv
(
output
.
data
(),
input
.
numel
()
/
size_
,
phi
::
ToNCCLDataType
(
input
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
comm_context
->
Recv
(
&
output
,
count
,
opts
.
root_rank
,
stream
);
}
},
CommType
::
SCATTER
);
...
...
@@ -1165,14 +980,28 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
std
::
shared_ptr
<
ProcessGroupNCCL
>
ProcessGroupNCCL
::
CreateProcessGroupNCCL
(
const
std
::
shared_ptr
<
phi
::
distributed
::
Store
>&
store
,
int
device_id
,
int
rank
,
int
size
,
int
gid
)
{
phi
::
distributed
::
CommContextManager
::
CreateNCCLCommContext
(
store
,
device_id
,
gid
,
rank
,
size
);
auto
process_group
=
std
::
make_shared
<
ProcessGroupNCCL
>
(
store
,
rank
,
size
,
gid
);
ProcessGroupIdMap
::
GetInstance
().
emplace
(
gid
,
process_group
);
return
process_group
;
}
phi
::
distributed
::
NCCLCommContext
*
ProcessGroupNCCL
::
GetCommContext
()
{
const
auto
&
comm_context_manager
=
phi
::
distributed
::
CommContextManager
::
GetInstance
();
auto
comm_context
=
static_cast
<
phi
::
distributed
::
NCCLCommContext
*>
(
comm_context_manager
.
Get
(
this
->
gid_
));
PADDLE_ENFORCE_NE
(
comm_context
,
nullptr
,
phi
::
errors
::
Unavailable
(
"NCCLCommContext is nullptr"
));
return
comm_context
;
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/process_group_nccl.h
浏览文件 @
5a6cd05f
...
...
@@ -26,6 +26,7 @@
#include "paddle/phi/backends/gpu/forwards.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/core/distributed/nccl_comm_context.h"
#include "paddle/phi/core/distributed/store/store.h"
namespace
paddle
{
...
...
@@ -68,6 +69,7 @@ class ProcessGroupNCCL final : public ProcessGroupWithStream {
public:
static
std
::
shared_ptr
<
ProcessGroupNCCL
>
CreateProcessGroupNCCL
(
const
std
::
shared_ptr
<
phi
::
distributed
::
Store
>&
store
,
int
device_id
,
int
rank
,
int
size
,
int
gid
);
...
...
@@ -219,7 +221,7 @@ class ProcessGroupNCCL final : public ProcessGroupWithStream {
void
SyncCalcStream
(
const
Place
&
place
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
RunFnInNCCLEnv
(
std
::
function
<
void
(
ncclComm_t
,
gpuStream_t
)
>
fn
,
std
::
function
<
void
(
gpuStream_t
)
>
fn
,
const
phi
::
DenseTensor
&
tensor
,
CommType
comm_type
,
bool
sync_op
,
...
...
@@ -249,6 +251,8 @@ class ProcessGroupNCCL final : public ProcessGroupWithStream {
void
CreateNCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
phi
::
distributed
::
NCCLCommContext
*
GetCommContext
();
private:
std
::
shared_ptr
<
phi
::
distributed
::
Store
>
store_
;
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
5a6cd05f
...
...
@@ -1238,6 +1238,7 @@ void BindDistributed(py::module *m) {
.
def_static
(
"create"
,
distributed
::
ProcessGroupNCCL
::
CreateProcessGroupNCCL
,
py
::
arg
(
"store"
),
py
::
arg
(
"device_id"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"group_id"
)
=
0
,
...
...
python/paddle/distributed/collective.py
浏览文件 @
5a6cd05f
...
...
@@ -151,7 +151,10 @@ def _new_process_group_impl(
if
backend
==
"gloo"
:
pg
=
core
.
ProcessGroupGloo
.
create
(
store
,
rank
,
world_size
,
group_id
)
elif
backend
==
"nccl"
:
pg
=
core
.
ProcessGroupNCCL
.
create
(
store
,
rank
,
world_size
,
group_id
)
pg
=
core
.
ProcessGroupNCCL
.
create
(
store
,
genv
.
device_id
,
rank
,
world_size
,
group_id
)
elif
backend
==
"xccl"
:
pg
=
core
.
ProcessGroupCustom
.
create
(
store
,
genv
.
device_type
,
rank
,
world_size
,
group_id
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录