From 597dd92e71647fd608a8d40877bca8c0673b5037 Mon Sep 17 00:00:00 2001 From: minqiyang Date: Sun, 28 Oct 2018 20:38:58 +0800 Subject: [PATCH] Polish the doc of hash op test=develop --- python/paddle/fluid/layers/nn.py | 62 ++++++++++++++++++++++++++------ 1 file changed, 51 insertions(+), 11 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 99f1a911192..3aaea684c1a 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -7499,19 +7499,59 @@ def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None): def hash(input, hash_size, num_hash=1, name=None): """ - hash the input - Args: - input (Variable): The input variable which is a one-hot word. - hash_size (int): The space size for hash algorithm. + Hash the input to an integer whose value is less than the given hash size. + + The hash algorithm was implemented in here: + https://github.com/Cyan4973/xxHash/tree/v0.6.5 + + A simple example as below: + + .. code-block:: text + + Given: + + # shape [2, 2] + input.data = [ + [[1], [2]], + [[3], [4]], + ] + + input.lod = [[0, 2]] + + hash_size = 10000 + + num_hash = 4 + + Then: + + Hash op will take all number in input's 2nd dimension as hash algorithm's + input for each time. Each input will be hashed for 4 times, and get an + array whose length is 4. Each value in the array ranges from 0 to 9999. + + # shape [2, 4] + output.data = [ + [[9662], [9217], [1129], [8487]], + [[8310], [1327], [1654], [4567]], + ] + + output.lod = [[0, 2]] + + Args: + input (Variable): The input variable which is a one-hot word. The + dimensions of the input variable must be 2. + hash_size (int): The space size for hash algorithm. The output value + will keep in the range:math:`[0, hash_size - 1]`. num_hash (int): The times of hash, default 1. name (str, default None): The name of this layer. - Returns: - Variable: The hash result variable which is a LoDTensor. - Examples: - .. code-block:: python - word_dict = paddle.dataset.imdb.word_dict() - x = fluid.layers.data(shape[1], dtype='int32', lod_level=1) - out = fluid.layers.hash(input=x, len(word_dict)) + + Returns: + Variable: The hash result variable which is a LoDTensor. + + Examples: + .. code-block:: python + word_dict = paddle.dataset.imdb.word_dict() + x = fluid.layers.data(shape[1], dtype='int32', lod_level=1) + out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000) """ helper = LayerHelper('hash', **locals()) out = helper.create_variable_for_type_inference( -- GitLab