提交 58d5be1a 编写于 作者: H Helin Wang

update docker tag, add translate for jupyter notebook

上级 438c3145
......@@ -56,6 +56,26 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do
cd /paddle/build
ctest
4. 在Docker容器中运行PaddlePaddle书籍
Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。
PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nodebook。
如果您想要更深入了解deep learning,PaddlePaddle书籍一定是您最好的选择。
当您进入容器内之后,只用运行以下命令:
.. code-block:: bash
jupyter notebook
然后在浏览器中输入以下网址:
.. code-block:: text
http://localhost:8888/
就这么简单,享受您的旅程!
纯CPU和GPU的docker镜像
----------------------
......@@ -64,20 +84,20 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do
.. code-block:: bash
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
以交互容器方式运行纯CPU的镜像:
.. code-block:: bash
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
或者,可以以后台进程方式运行容器:
.. code-block:: bash
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu
然后用密码 :code:`root` SSH进入容器:
......@@ -94,7 +114,7 @@ SSH方式的一个优点是我们可以从多个终端进入容器。比如,
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
非AVX镜像
......@@ -128,7 +148,7 @@ Paddle的Docker镜像带有一个通过 `woboq code browser
.. code-block:: bash
docker run -d --name paddle-cpu-doc paddle:cpu
docker run -d --name paddle-cpu-doc paddle:0.10.0rc1-cpu
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
接着我们就能够打开浏览器在 http://localhost:8088/paddle/ 浏览代码。
......@@ -116,21 +116,21 @@ automatically runs the following commands:
.. code-block:: bash
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
To run the CPU-only image as an interactive container:
.. code-block:: bash
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
or, we can run it as a daemon container
.. code-block:: bash
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu
and SSH to this container using password :code:`root`:
......@@ -152,7 +152,7 @@ to install CUDA driver and let Docker knows about it:
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
Non-AVX Images
......@@ -194,7 +194,7 @@ container:
.. code-block:: bash
docker run -d --name paddle-cpu-doc paddle:cpu
docker run -d --name paddle-cpu-doc paddle:0.10.0rc1-cpu
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册