Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
589cd878
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
589cd878
编写于
3月 24, 2020
作者:
C
cc
提交者:
GitHub
3月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Post_training_quantizaion supports min_max methon (#23078)
* Post_training_quantizaion supports min_max methon
上级
194a22c5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
268 addition
and
184 deletion
+268
-184
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+193
-110
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+47
-66
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+25
-6
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
...ib/slim/tests/test_post_training_quantization_resnet50.py
+3
-2
未找到文件。
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
589cd878
...
...
@@ -37,7 +37,10 @@ def _load_variable_data(scope, var_name):
'''
Load variable value from scope
'''
return
np
.
array
(
scope
.
find_var
(
var_name
).
get_tensor
())
var_node
=
scope
.
find_var
(
var_name
)
assert
var_node
is
not
None
,
\
"Cannot find "
+
var_name
+
" in scope."
return
np
.
array
(
var_node
.
get_tensor
())
def
_set_variable_data
(
scope
,
place
,
var_name
,
np_value
):
...
...
@@ -53,6 +56,12 @@ def _set_variable_data(scope, place, var_name, np_value):
class
PostTrainingQuantization
(
object
):
"""
Utilizing post training quantization methon to quantize the FP32 model,
and it uses calibrate data to get the quantization information for all
quantized variables.
"""
def
__init__
(
self
,
executor
=
None
,
scope
=
None
,
...
...
@@ -70,13 +79,10 @@ class PostTrainingQuantization(object):
is_use_cache_file
=
False
,
cache_dir
=
"./temp_post_training"
):
'''
The class utilizes post training quantization methon to quantize the
fp32 model. It uses calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Constructor.
Args:
executor(fluid.Executor): The executor to load, run and save the
executor(fluid.Executor): The executor to load, run and save the
quantized model.
scope(fluid.Scope, optional): The scope of the program, use it to load
and save variables. If scope=None, get scope by global_scope().
...
...
@@ -96,9 +102,11 @@ class PostTrainingQuantization(object):
batch_nums(int, optional): If batch_nums is not None, the number of
calibrate data is batch_size*batch_nums. If batch_nums is None, use
all data provided by sample_generator as calibrate data.
algo(str, optional): If algo=KL, use KL-divergenc method to
get the more precise scale factor. If algo='direct', use
abs_max methon to get the scale factor. Default is KL.
algo(str, optional): If algo='KL', use KL-divergenc method to
get the KL threshold for quantized activations and get the abs_max
value for quantized weights. If algo='abs_max', get the abs max
value for activations and weights. If algo= 'min_max', get the min
and max value for quantized activations and weights. Default is KL.
quantizable_op_type(list[str], optional): List the type of ops
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
"mul"].
...
...
@@ -158,7 +166,9 @@ class PostTrainingQuantization(object):
assert
executor
is
not
None
,
"The executor cannot be None."
assert
model_dir
is
not
None
,
"The model_dir cannot be None."
assert
sample_generator
is
not
None
,
\
"The sample_generator cannot be None."
"The sample_generator cannot be None."
assert
algo
in
[
'KL'
,
'abs_max'
,
'min_max'
],
\
"The algo should be KL, abs_max or min_max."
self
.
_executor
=
executor
self
.
_scope
=
global_scope
()
if
scope
==
None
else
scope
...
...
@@ -182,8 +192,7 @@ class PostTrainingQuantization(object):
else
:
self
.
_quantizable_op_type
=
quantizable_op_type
for
op_type
in
self
.
_quantizable_op_type
:
assert
op_type
in
supported_quantizable_op_type
+
\
AddQuantDequantPass
.
_activation_type
,
\
assert
op_type
in
supported_quantizable_op_type
,
\
op_type
+
" is not supported for quantization."
self
.
_place
=
self
.
_executor
.
place
...
...
@@ -197,20 +206,25 @@ class PostTrainingQuantization(object):
self
.
_quantized_weight_var_name
=
set
()
self
.
_quantized_act_var_name
=
set
()
self
.
_sampling_data
=
{}
self
.
_quantized_var_scale_factor
=
{}
self
.
_quantized_var_kl_threshold
=
{}
self
.
_quantized_var_min
=
{}
self
.
_quantized_var_max
=
{}
self
.
_quantized_var_abs_max
=
{}
def
quantize
(
self
):
'''
Quantize the fp32 model. Use calibrate data to calculate the scale factor of
quantized variables, and inserts fake quant/dequant op to obtain the
quantized model.
Load the FP32 model, and use the calibrate data to calculate the forward-stage.
Based on the sample data, we can get the quantization information, and obtain
the final
quantized model.
Args:
None
Returns:
the program of quantized model.
'''
self
.
_preprocess
()
self
.
_load_model_data
()
self
.
_collect_quantized_varnames
()
self
.
_set_activation_persistable
()
batch_id
=
0
for
data
in
self
.
_data_loader
():
...
...
@@ -218,22 +232,29 @@ class PostTrainingQuantization(object):
feed
=
data
,
fetch_list
=
self
.
_fetch_list
,
return_numpy
=
False
)
self
.
_sample_data
(
batch_id
)
if
self
.
_algo
==
"KL"
:
self
.
_sample_data
(
batch_id
)
else
:
self
.
_sample_threshold
()
if
batch_id
%
5
==
0
:
_logger
.
info
(
"
r
un batch: "
+
str
(
batch_id
))
_logger
.
info
(
"
R
un batch: "
+
str
(
batch_id
))
batch_id
+=
1
if
self
.
_batch_nums
and
batch_id
>=
self
.
_batch_nums
:
break
_logger
.
info
(
"
all run
batch: "
+
str
(
batch_id
))
_logger
.
info
(
"
Finish all
batch: "
+
str
(
batch_id
))
_logger
.
info
(
"calculate scale factor ..."
)
self
.
_calculate_scale_factor
()
self
.
_reset_activation_persistable
()
_logger
.
info
(
"update the program ..."
)
self
.
_update_program
()
if
self
.
_algo
==
"KL"
:
self
.
_calculate_kl_threshold
()
self
.
_save_output_scale
()
if
self
.
_algo
in
[
"KL"
,
"abs_max"
]:
self
.
_update_program
()
else
:
self
.
_save_input_threhold
()
self
.
_save_output_threshold
()
return
self
.
_program
def
save_quantized_model
(
self
,
save_model_path
):
...
...
@@ -252,12 +273,11 @@ class PostTrainingQuantization(object):
executor
=
self
.
_executor
,
main_program
=
self
.
_program
)
def
_
preprocess
(
self
):
def
_
load_model_data
(
self
):
'''
Load model and set data loader, collect the variable names for sampling,
and set activation variables to be persistable.
Load model and set data loader.
'''
# load model and set data loader
_logger
.
info
(
"Load model and set data loader ..."
)
[
self
.
_program
,
self
.
_feed_list
,
self
.
_fetch_list
]
=
\
io
.
load_inference_model
(
dirname
=
self
.
_model_dir
,
executor
=
self
.
_executor
,
...
...
@@ -273,7 +293,12 @@ class PostTrainingQuantization(object):
drop_last
=
True
,
places
=
self
.
_place
)
# collect the variable names for sampling.
def
_collect_quantized_varnames
(
self
):
'''
Collect the variable names for sampling, and set activation
variables to be persistable.
'''
_logger
.
info
(
"Collect quantized variable names ..."
)
# TODO(juncaipeng), consider the name_scope of skip_quant and
# reduce the variables for sampling
persistable_var_names
=
[]
...
...
@@ -284,46 +309,109 @@ class PostTrainingQuantization(object):
for
op
in
self
.
_program
.
global_block
().
ops
:
op_type
=
op
.
type
if
op_type
in
self
.
_quantizable_op_type
:
if
op_type
in
(
"conv2d"
,
"depthwise_conv2d"
):
self
.
_quantized_act_var_name
.
add
(
op
.
input
(
"Input"
)[
0
])
self
.
_quantized_weight_var_name
.
add
(
op
.
input
(
"Filter"
)[
0
])
self
.
_quantized_act_var_name
.
add
(
op
.
output
(
"Output"
)[
0
])
elif
op_type
in
[
"mul"
,
"matmul"
]:
x_var_name
=
op
.
input
(
"X"
)[
0
]
if
x_var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
x_var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
x_var_name
)
y_var_name
=
op
.
input
(
"Y"
)[
0
]
if
y_var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
y_var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
y_var_name
)
self
.
_quantized_act_var_name
.
add
(
op
.
output
(
"Out"
)[
0
])
else
:
# process other quantizable op type, the input must all not persistable
if
self
.
_is_input_all_not_persistable
(
op
,
persistable_var_names
):
input_output_name_list
=
self
.
_op_real_in_out_name
[
op_type
]
for
input_name
in
input_output_name_list
[
0
]:
for
var_name
in
op
.
input
(
input_name
):
self
.
_quantized_act_var_name
.
add
(
var_name
)
for
output_name
in
input_output_name_list
[
1
]:
for
var_name
in
op
.
output
(
output_name
):
self
.
_quantized_act_var_name
.
add
(
var_name
)
# set activation variables to be persistable, so can obtain
# the tensor data in sample_data
name_list
=
self
.
_op_real_in_out_name
[
op_type
]
for
input_name
in
name_list
[
0
]:
for
var_name
in
op
.
input
(
input_name
):
if
var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
var_name
)
for
output_name
in
name_list
[
1
]:
for
var_name
in
op
.
output
(
output_name
):
if
var_name
in
persistable_var_names
:
self
.
_quantized_weight_var_name
.
add
(
var_name
)
else
:
self
.
_quantized_act_var_name
.
add
(
var_name
)
def
_set_activation_persistable
(
self
):
'''
Set activation variables to be persistable, so can obtain
the tensor data in sample_data
'''
persistable_var_names
=
[]
for
var
in
self
.
_program
.
list_vars
():
if
var
.
persistable
:
persistable_var_names
.
append
(
var
.
name
)
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
True
def
_reset_activation_persistable
(
self
):
'''
Reset activations to be not persistable.
'''
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
def
_sample_threshold
(
self
):
'''
Sample the input threshold(min, max, or abs_max) in every iterations.
'''
assert
self
.
_algo
in
[
"abs_max"
,
"min_max"
],
\
"The algo should be abs_max or min_max to sample min max value."
if
self
.
_algo
==
"abs_max"
:
# Only calculate abs_max value for weight for once
if
self
.
_quantized_var_abs_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_per_channel
=
[]
for
i
in
range
(
var_tensor
.
shape
[
0
]):
abs_max_per_channel
.
append
(
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_per_channel
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
abs_max_value
=
float
(
np
.
max
(
np
.
abs
(
var_tensor
)))
if
(
var_name
not
in
self
.
_quantized_var_abs_max
)
or
\
(
abs_max_value
>
self
.
_quantized_var_abs_max
[
var_name
]):
self
.
_quantized_var_abs_max
[
var_name
]
=
abs_max_value
elif
self
.
_algo
==
"min_max"
:
if
self
.
_quantized_var_min
==
{}
and
self
.
_quantized_var_max
==
{}:
for
var_name
in
self
.
_quantized_weight_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
min_per_channel
=
[]
max_per_channle
=
[]
for
i
in
range
(
var_tensor
.
shape
[
0
]):
min_per_channel
.
append
(
float
(
np
.
min
(
var_tensor
[
i
])))
max_per_channle
.
append
(
float
(
np
.
max
(
var_tensor
[
i
])))
self
.
_quantized_var_min
[
var_name
]
=
min_per_channel
self
.
_quantized_var_max
[
var_name
]
=
max_per_channle
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
min_value
=
float
(
np
.
min
(
var_tensor
))
max_value
=
float
(
np
.
max
(
var_tensor
))
if
(
var_name
not
in
self
.
_quantized_var_min
)
or
\
(
min_value
<
self
.
_quantized_var_min
[
var_name
]):
self
.
_quantized_var_min
[
var_name
]
=
min_value
if
(
var_name
not
in
self
.
_quantized_var_max
)
or
\
(
max_value
>
self
.
_quantized_var_max
[
var_name
]):
self
.
_quantized_var_max
[
var_name
]
=
max_value
def
_save_input_threhold
(
self
):
'''
Save input threshold to the quantized op.
'''
assert
self
.
_algo
==
"min_max"
,
\
"The algo should be min_max to save input threshold."
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
input_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
0
]
for
input_name
in
input_name_list
:
for
var_name
in
op
.
input
(
input_name
):
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
def
_sample_data
(
self
,
iter
):
'''
Sample the tensor data of quantized variables,
applied in every iteration.
'''
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to sample data."
for
var_name
in
self
.
_quantized_weight_var_name
:
if
var_name
not
in
self
.
_sampling_data
:
var_tensor
=
_load_variable_data
(
self
.
_scope
,
var_name
)
...
...
@@ -344,19 +432,20 @@ class PostTrainingQuantization(object):
var_tensor
=
var_tensor
.
ravel
()
self
.
_sampling_data
[
var_name
].
append
(
var_tensor
)
def
_calculate_
scale_factor
(
self
):
def
_calculate_
kl_threshold
(
self
):
'''
Calculate the
scale factor
of quantized variables.
Calculate the
KL threshold
of quantized variables.
'''
_logger
.
info
(
"Calculate KL threshold ..."
)
assert
self
.
_algo
==
"KL"
,
"The algo should be KL to calculate kl threshold."
# apply channel_wise_abs_max quantization for weights
for
var_name
in
self
.
_quantized_weight_var_name
:
data
=
self
.
_sampling_data
[
var_name
]
scale_factor
_per_channel
=
[]
threshold
_per_channel
=
[]
for
i
in
range
(
data
.
shape
[
0
]):
abs_max_value
=
np
.
max
(
np
.
abs
(
data
[
i
]))
scale_factor_per_channel
.
append
(
abs_max_value
)
self
.
_quantized_var_scale_factor
[
var_name
]
=
scale_factor_per_channel
threshold_per_channel
.
append
(
abs_max_value
)
self
.
_quantized_var_kl_threshold
[
var_name
]
=
threshold_per_channel
# apply kl quantization for activation
if
self
.
_is_use_cache_file
:
...
...
@@ -369,36 +458,25 @@ class PostTrainingQuantization(object):
sampling_data
.
append
(
np
.
load
(
file_path
))
os
.
remove
(
file_path
)
sampling_data
=
np
.
concatenate
(
sampling_data
)
if
self
.
_algo
==
"KL"
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
sampling_data
))
else
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
np
.
max
(
np
.
abs
(
sampling_data
))
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
sampling_data
))
else
:
for
var_name
in
self
.
_quantized_act_var_name
:
self
.
_sampling_data
[
var_name
]
=
np
.
concatenate
(
self
.
_sampling_data
[
var_name
])
if
self
.
_algo
==
"KL"
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
else
:
self
.
_quantized_var_scale_factor
[
var_name
]
=
\
np
.
max
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
self
.
_quantized_var_kl_threshold
[
var_name
]
=
\
self
.
_get_kl_scaling_factor
(
np
.
abs
(
self
.
_sampling_data
[
var_name
]))
def
_update_program
(
self
):
'''
Insert fake_quantize/fake_dequantize op to the program.
Use QuantizationTransformPass and AddQuantDequantPass to insert
fake_quantize, fake_dequantize and fake_quant_dequant op.
Besides, save all kl threshold to the scale var node.
'''
# reset quantized activation variable
for
var
in
self
.
_program
.
list_vars
():
if
var
.
name
in
self
.
_quantized_act_var_name
:
var
.
persistable
=
False
# use QuantizationTransformPass to insert fake_quantize/fake_dequantize op
_logger
.
info
(
"Update the program ..."
)
graph
=
IrGraph
(
core
.
Graph
(
self
.
_program
.
desc
),
for_test
=
True
)
# use QuantizationTransformPass to insert fake_quant/fake_dequantize op
major_quantizable_op_types
=
[]
for
op_type
in
QuantizationTransformPass
.
_supported_quantizable_op_type
:
if
op_type
in
self
.
_quantizable_op_type
:
...
...
@@ -424,8 +502,12 @@ class PostTrainingQuantization(object):
quantizable_op_type
=
minor_quantizable_op_types
)
add_quant_dequant_pass
.
apply
(
graph
)
# save scale factor to scale var node
for
key
,
val
in
self
.
_quantized_var_scale_factor
.
items
():
# save abs_max or KL threshold to scale var node
if
self
.
_algo
==
"KL"
:
scale_dict
=
self
.
_quantized_var_kl_threshold
else
:
scale_dict
=
self
.
_quantized_var_abs_max
for
key
,
val
in
scale_dict
.
items
():
_set_variable_data
(
self
.
_scope
,
self
.
_place
,
...
...
@@ -450,33 +532,34 @@ class PostTrainingQuantization(object):
freeze_pass
.
apply
(
graph
)
self
.
_program
=
graph
.
to_program
()
def
_save_output_
scale
(
self
):
def
_save_output_
threshold
(
self
):
'''
Save output
scale
to the quantized op.
Save output
threshold
to the quantized op.
'''
output_scale_name
=
"output_scale"
for
op
in
self
.
_program
.
global_block
().
ops
:
if
op
.
type
in
self
.
_quantizable_op_type
:
output_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
1
]
for
output_name
in
output_name_list
:
for
output_var_name
in
op
.
output
(
output_name
):
if
output_var_name
in
self
.
_quantized_var_scale_factor
:
op
.
_set_attr
(
output_scale_name
,
self
.
_quantized_var_scale_factor
[
output_var_name
])
def
_is_input_all_not_persistable
(
self
,
op
,
persistable_var_names
):
'''
Analyze the real inputs of the op are all not persistable.
'''
is_input_all_not_persistable
=
True
input_name_list
=
self
.
_op_real_in_out_name
[
op
.
type
][
0
]
for
input_name
in
input_name_list
:
for
var_name
in
op
.
input
(
input_name
):
if
var_name
in
persistable_var_names
:
is_input_all_not_persistable
=
False
break
return
is_input_all_not_persistable
for
var_name
in
op
.
output
(
output_name
):
if
self
.
_algo
==
"KL"
:
assert
var_name
in
self
.
_quantized_var_kl_threshold
op
.
_set_attr
(
var_name
+
".threshold"
,
self
.
_quantized_var_kl_threshold
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_kl"
)
elif
self
.
_algo
==
"abs_max"
:
assert
var_name
in
self
.
_quantized_var_abs_max
op
.
_set_attr
(
var_name
+
".threshold"
,
self
.
_quantized_var_abs_max
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_abs_max"
)
elif
self
.
_algo
==
"min_max"
:
assert
var_name
in
self
.
_quantized_var_min
assert
var_name
in
self
.
_quantized_var_max
op
.
_set_attr
(
var_name
+
".min"
,
self
.
_quantized_var_min
[
var_name
])
op
.
_set_attr
(
var_name
+
".max"
,
self
.
_quantized_var_max
[
var_name
])
op
.
_set_attr
(
"quantization_type"
,
"post_min_max"
)
def
_get_kl_scaling_factor
(
self
,
activation_blob
,
num_quantized_bins
=
255
):
'''
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
589cd878
...
...
@@ -35,6 +35,10 @@ _fake_dequant_op_list = [
'fake_dequantize_max_abs'
,
'fake_channel_wise_dequantize_max_abs'
]
_fake_quant_dequant_op_list
=
[
'fake_quantize_dequantize_moving_average_abs_max'
]
_out_scale_op_list
=
[
"mul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
"softmax"
,
"sigmoid"
,
"depthwise_conv2d"
,
"batch_norm"
,
"concat"
,
"tanh"
,
"pad"
,
"elementwise_add"
,
"elementwise_mul"
,
...
...
@@ -44,7 +48,7 @@ _out_scale_op_list = [
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name
=
{
"conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
],
[
"Output"
]],
"depthwise_conv2d"
:
[[
"Input"
,
"Filter"
],
[
"Output"
]],
"mul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"matmul"
:
[[
"X"
,
"Y"
],
[
"Out"
]],
"pool2d"
:
[[
"X"
],
[
"Out"
]],
...
...
@@ -236,6 +240,7 @@ class QuantizationTransformPass(object):
op_node
.
op
().
_set_attr
(
"skip_quant"
,
True
)
def
_transform_forward
(
graph
,
op
):
op
.
op
().
_set_attr
(
"quantization_type"
,
"qat_with_weight"
)
for
var_node
in
op
.
inputs
:
if
var_node
.
name
()
not
in
op
.
input_arg_names
():
continue
...
...
@@ -290,7 +295,7 @@ class QuantizationTransformPass(object):
# The loop for transforming the forward graph:
for
op
in
ops
:
if
op
.
name
()
in
self
.
_quantizable_ops
:
if
not
QuantizationTransformPass
.
_is_skip_quant
(
graph
,
op
):
if
not
self
.
_is_skip_quant
(
graph
,
op
):
_transform_forward
(
graph
,
op
)
# The loop for renaming the inputs of backward op.
for
op
in
ops
:
...
...
@@ -636,8 +641,7 @@ class QuantizationTransformPass(object):
"""
return
"%s.scale"
%
(
var_name
)
@
staticmethod
def
_is_skip_quant
(
graph
,
op_node
):
def
_is_skip_quant
(
self
,
graph
,
op_node
):
"""
Analyse whether the op node skips quantization.
"""
...
...
@@ -650,20 +654,20 @@ class QuantizationTransformPass(object):
if
op_node
.
name
()
in
[
"mul"
,
"matmul"
]
and
\
_is_input_all_not_persistable
(
graph
,
op_node
):
is_skip
=
True
if
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_without_weight"
:
is_skip
=
True
return
is_skip
class
QuantizationFreezePass
(
object
):
_supported_quantizable_op_type
=
\
QuantizationTransformPass
.
_supported_quantizable_op_type
def
__init__
(
self
,
scope
,
place
,
weight_bits
=
8
,
activation_bits
=
8
,
weight_quantize_type
=
'abs_max'
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
):
quantizable_op_type
=
None
):
"""
The freeze pass is used to adjust the quantize operator order, for example:
1) `activation -> quant -> dequant -> conv2d` will be frozen into
...
...
@@ -679,9 +683,8 @@ class QuantizationFreezePass(object):
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationTransformPass and ConvertToInt8Pass must be the same as this.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
will process all quantized op, so it is not necessary to set the input param.
"""
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
...
...
@@ -692,16 +695,12 @@ class QuantizationFreezePass(object):
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
quantizable_op_type
for
op
in
self
.
_quantizable_ops
:
assert
op
in
QuantizationFreezePass
.
_supported_quantizable_op_type
,
\
op
+
" is not supported for quantization."
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
_fake_quant_op_names
=
_fake_quant_op_list
self
.
_fake_dequant_op_names
=
_fake_dequant_op_list
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
self
.
_op_output_rename_map
=
collections
.
OrderedDict
()
self
.
_var_scale_map
=
collections
.
OrderedDict
()
self
.
_
quant_
var_scale_map
=
collections
.
OrderedDict
()
def
apply
(
self
,
graph
):
"""
...
...
@@ -712,6 +711,7 @@ class QuantizationFreezePass(object):
Returns:
None
"""
# Get input scales in fake quant op and process weights
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
...
...
@@ -733,7 +733,7 @@ class QuantizationFreezePass(object):
else
:
scale_v
=
self
.
_load_var
(
op_node
.
output
(
'OutScale'
)[
0
])[
0
]
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_
quant_
var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# quantize weight and restore
param_v
=
self
.
_load_var
(
input_arg_name
)
...
...
@@ -743,32 +743,29 @@ class QuantizationFreezePass(object):
else
:
scale_v
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
self
.
_
quant_
var_scale_map
[
input_arg_name
]
=
scale_v
# Remove all fake dequant op
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_fake_dequant_op_names
:
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# Insert post dequant op
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_quantizable_ops
:
# only process the node that is quantized by QuantizationTransformPass
is_op_node_quantized
=
False
for
var_node
in
op_node
.
inputs
:
var_name
=
var_node
.
name
()
if
var_name
.
endswith
(
'.dequantized'
):
is_op_node_quantized
=
True
if
is_op_node_quantized
:
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
and
op_name
in
self
.
_conv_ops
:
self
.
_insert_post_channel_dequant_op
(
graph
,
op_node
)
else
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
op_node_desc
=
op_node
.
op
()
if
op_node_desc
.
has_attr
(
"quantization_type"
)
and
\
op_node_desc
.
attr
(
"quantization_type"
)
==
"qat_with_weight"
:
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
\
and
op_node
.
name
()
in
self
.
_conv_ops
:
self
.
_insert_post_channel_dequant_op
(
graph
,
op_node
)
else
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
# Rename inputs of the followed ops after inserting dequant_op after fc/conv
for
op_node
in
ops
:
# insert dequant_op after fc/conv, need to rename inputs of the followed ops
for
var_node
in
op_node
.
inputs
:
if
var_node
.
node
in
self
.
_op_output_rename_map
:
old_in
=
var_node
...
...
@@ -802,7 +799,7 @@ class QuantizationFreezePass(object):
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
scale_v
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
assert
isinstance
(
scale_v
,
...
...
@@ -811,7 +808,7 @@ class QuantizationFreezePass(object):
channel_scale
=
np
.
array
(
scale_v
)
else
:
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
scale_var_node
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
len
(
op_node
.
output_arg_names
())
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
...
...
@@ -867,7 +864,7 @@ class QuantizationFreezePass(object):
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
scale_v
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
assert
self
.
_is_float
(
scale_v
),
'The scale of parameter %s is not a float.'
%
(
...
...
@@ -876,7 +873,7 @@ class QuantizationFreezePass(object):
else
:
max_range
*=
act_range
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
scale_var_node
=
self
.
_
quant_
var_scale_map
[
original_var_name
]
if
len
(
op_node
.
output_arg_names
())
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
...
...
@@ -963,13 +960,7 @@ class QuantizationFreezePass(object):
class
ConvertToInt8Pass
(
object
):
_supported_quantizable_op_type
=
\
QuantizationTransformPass
.
_supported_quantizable_op_type
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]):
def
__init__
(
self
,
scope
,
place
,
quantizable_op_type
=
None
):
"""
Convert the weights into int8_t type.
...
...
@@ -977,9 +968,8 @@ class ConvertToInt8Pass(object):
scope(fluid.Scope): scope is used to get the weight tensor values.
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
8bits weight tensors.
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationTransformPass and QuantizationFreezePass must be the same as this.
quantizable_op_type(list[str]): This input param will be removed latter. The pass
will process all quantized op, so it is not necessary to set the input param.
"""
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
...
...
@@ -987,10 +977,6 @@ class ConvertToInt8Pass(object):
'The place cannot be set None.'
self
.
_scope
=
scope
self
.
_place
=
place
self
.
_quantizable_ops
=
quantizable_op_type
for
op
in
self
.
_quantizable_ops
:
assert
op
in
ConvertToInt8Pass
.
_supported_quantizable_op_type
,
\
op
+
" is not supported for quantization."
def
apply
(
self
,
graph
):
"""
...
...
@@ -1006,10 +992,8 @@ class ConvertToInt8Pass(object):
ops
=
graph
.
all_op_nodes
()
input_map
=
{}
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_quantizable_ops
:
if
QuantizationTransformPass
.
_is_skip_quant
(
graph
,
op_node
):
continue
if
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
:
for
var_node
in
op_node
.
inputs
:
name
=
var_node
.
name
()
if
name
in
persistable_vars
:
...
...
@@ -1259,9 +1243,9 @@ class AddQuantDequantPass(object):
"equal"
,
"gather"
,
"greater_equal"
,
"greater_than"
,
"less_equal"
,
"less_than"
,
"mean"
,
"not_equal"
,
"reshape"
,
"reshape2"
,
"bilinear_interp"
,
"nearest_interp"
,
"trilinear_interp"
,
"slice"
,
"squeeze"
,
"elementwise_sub"
,
"mul"
,
"matmul"
"squeeze"
,
"elementwise_sub"
,
"mul"
,
"matmul"
,
"relu"
,
"relu6"
,
"leaky_relu"
,
"tanh"
,
"swish"
]
_activation_type
=
[
"relu"
,
"relu6"
,
"leaky_relu"
,
"tanh"
,
"swish"
]
def
__init__
(
self
,
scope
=
None
,
...
...
@@ -1307,8 +1291,7 @@ class AddQuantDequantPass(object):
else
:
self
.
_quantizable_op_type
=
quantizable_op_type
for
op_type
in
quantizable_op_type
:
assert
op_type
in
AddQuantDequantPass
.
_supported_quantizable_op_type
+
\
AddQuantDequantPass
.
_activation_type
,
\
assert
op_type
in
AddQuantDequantPass
.
_supported_quantizable_op_type
,
\
op_type
+
" is not supported for quantization."
self
.
_quantizable_grad_op_type
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_op_type
...
...
@@ -1343,17 +1326,15 @@ class AddQuantDequantPass(object):
elif
isinstance
(
self
.
_skip_pattern
,
str
):
is_skip
=
op_node
.
op
().
has_attr
(
"op_namescope"
)
and
\
op_node
.
op
().
attr
(
"op_namescope"
).
find
(
self
.
_skip_pattern
)
!=
-
1
is_op_node_quantized
=
False
for
var_node
in
op_node
.
inputs
:
var_name
=
var_node
.
name
()
if
var_name
.
endswith
(
'.dequantized'
):
is_op_node_quantized
=
True
if
is_skip
or
is_op_node_quantized
or
\
is_quantized
=
op_node
.
op
().
has_attr
(
"quantization_type"
)
and
\
op_node
.
op
().
attr
(
"quantization_type"
)
==
"qat_with_weight"
if
is_skip
or
is_quantized
or
\
(
not
_is_input_all_not_persistable
(
graph
,
op_node
)):
continue
op_node
.
op
().
_set_attr
(
"quantization_type"
,
"qat_without_weight"
)
op_node
.
op
().
_set_attr
(
"activation_bits"
,
self
.
_quant_bits
)
input_name_list
=
_op_real_in_out_name
[
op_node
.
name
()][
0
]
arg_names
=
[]
for
input_name
in
input_name_list
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
589cd878
...
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
ptq
.
save_quantized_model
(
self
.
int8_model
)
def
run_test
(
self
,
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
):
is_full_quantize
,
is_use_cache_file
,
diff_threshold
):
infer_iterations
=
self
.
infer_iterations
batch_size
=
self
.
batch_size
sample_iterations
=
self
.
sample_iterations
...
...
@@ -296,11 +296,11 @@ class TestPostTrainingQuantization(unittest.TestCase):
sys
.
stdout
.
flush
()
delta_value
=
fp32_acc1
-
int8_acc1
self
.
assertLess
(
delta_value
,
0.025
)
self
.
assertLess
(
delta_value
,
diff_threshold
)
class
TestPostTrainingForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_mobilenetv1
(
self
):
class
TestPostTraining
KL
ForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_
kl_
mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"KL"
data_urls
=
[
...
...
@@ -310,10 +310,29 @@ class TestPostTrainingForMobilenetv1(TestPostTrainingQuantization):
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
]
is_full_quantize
=
Tru
e
is_full_quantize
=
Fals
e
is_use_cache_file
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
)
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
class
TestPostTrainingAbsMaxForMobilenetv1
(
TestPostTrainingQuantization
):
def
test_post_training_abs_max_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"abs_max"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s
=
[
'13892b0716d26443a8cdea15b3c6438b'
]
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"pool2d"
,
"elementwise_add"
]
is_full_quantize
=
False
is_use_cache_file
=
False
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
浏览文件 @
589cd878
...
...
@@ -20,7 +20,7 @@ from test_post_training_quantization_mobilenetv1 import TestPostTrainingQuantiza
class
TestPostTrainingForResnet50
(
TestPostTrainingQuantization
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"
direct
"
algo
=
"
min_max
"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
...
...
@@ -28,8 +28,9 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
)
is_full_quantize
,
is_use_cache_file
,
diff_threshold
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录