Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
584ae4d7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
584ae4d7
编写于
6月 16, 2023
作者:
R
ronnywang
提交者:
GitHub
6月 16, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CustomDevice] add MOE support, PART3 (#54676)
上级
ff806111
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
650 addition
and
3 deletion
+650
-3
paddle/fluid/operators/custom_device_common_op_registry.cc
paddle/fluid/operators/custom_device_common_op_registry.cc
+631
-1
python/paddle/incubate/distributed/models/moe/moe_layer.py
python/paddle/incubate/distributed/models/moe/moe_layer.py
+6
-1
python/paddle/nn/layer/layers.py
python/paddle/nn/layer/layers.py
+7
-0
python/paddle/static/io.py
python/paddle/static/io.py
+6
-1
未找到文件。
paddle/fluid/operators/custom_device_common_op_registry.cc
浏览文件 @
584ae4d7
...
...
@@ -279,7 +279,7 @@ class CEmbeddingGradOpCustomDeviceKernel : public framework::OpKernel<T> {
x_tensor
,
start_index
+
N
,
x_tensor
.
dtype
(),
x_tensor
.
place
());
auto
ids_mask_tensor
=
paddle
::
experimental
::
logical_and
(
x_tensor
.
greater_equal
(
start_index_tensor
),
x_tensor
.
less_
equal
(
end_index_tensor
));
x_tensor
.
less_
than
(
end_index_tensor
));
auto
real_ids_tensor
=
(
x_tensor
-
start_index_tensor
)
.
multiply
(
paddle
::
experimental
::
cast
(
ids_mask_tensor
,
x_tensor
.
dtype
()));
...
...
@@ -668,6 +668,594 @@ class BarrierOpCustomDeviceKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
class
NumberCountOpCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
numbers
=
context
.
Input
<
phi
::
DenseTensor
>
(
"numbers"
);
auto
upper_range
=
context
.
Attr
<
int
>
(
"upper_range"
);
auto
number_count
=
context
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
const
auto
&
dev_ctx
=
context
.
template
device_context
<
phi
::
CustomContext
>();
number_count
->
Resize
({
upper_range
});
dev_ctx
.
template
Alloc
<
T
>(
number_count
);
phi
::
DenseTensor
cpu_tensor
;
framework
::
TensorCopySync
(
*
numbers
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
std
::
vector
<
T
>
count
(
upper_range
);
for
(
auto
i
=
0
;
i
<
cpu_tensor
.
numel
();
++
i
)
{
auto
idx
=
static_cast
<
int64_t
>
(
cpu_tensor
.
data
<
T
>
()[
i
]);
if
(
idx
>=
0
&&
idx
<
upper_range
)
{
count
[
idx
]
+=
1
;
}
}
framework
::
TensorFromVector
<
T
>
(
count
,
dev_ctx
,
number_count
);
number_count
->
Resize
({
upper_range
});
}
};
template
<
typename
T
>
class
LimitByCapacityOpCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
expert_count
=
context
.
Input
<
phi
::
DenseTensor
>
(
"expert_count"
);
auto
capacity
=
context
.
Input
<
phi
::
DenseTensor
>
(
"capacity"
);
auto
out
=
context
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
auto
n_worker
=
context
.
Attr
<
int
>
(
"n_worker"
);
auto
n_expert
=
expert_count
->
numel
()
/
n_worker
;
const
auto
&
dev_ctx
=
context
.
template
device_context
<
phi
::
CustomContext
>();
dev_ctx
.
template
Alloc
<
T
>(
out
);
std
::
vector
<
T
>
out_data
(
out
->
numel
());
phi
::
DenseTensor
expert_count_cpu
,
capacity_cpu
;
framework
::
TensorCopySync
(
*
expert_count
,
platform
::
CPUPlace
(),
&
expert_count_cpu
);
framework
::
TensorCopySync
(
*
capacity
,
platform
::
CPUPlace
(),
&
capacity_cpu
);
auto
*
ec_data
=
expert_count_cpu
.
data
<
T
>
();
auto
*
capacity_data
=
capacity_cpu
.
data
<
T
>
();
int
eid
,
wid
;
for
(
int64_t
i
=
0
;
i
<
expert_count
->
numel
();
++
i
)
{
wid
=
i
/
n_expert
;
eid
=
i
%
n_expert
;
auto
proposal
=
ec_data
[
i
];
auto
cap_left
=
capacity_data
[
eid
];
capacity_data
[
eid
]
-=
proposal
;
if
(
cap_left
>=
proposal
)
{
out_data
[
wid
*
n_expert
+
eid
]
=
proposal
;
}
else
if
(
cap_left
>=
0
)
{
out_data
[
wid
*
n_expert
+
eid
]
=
cap_left
;
}
else
{
out_data
[
wid
*
n_expert
+
eid
]
=
0
;
}
}
auto
out_dims
=
out
->
dims
();
framework
::
TensorFromVector
<
T
>
(
out_data
,
dev_ctx
,
out
);
out
->
Resize
(
out_dims
);
}
};
template
<
typename
T
>
class
PruneGateByCapacityCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
gate_idx
=
context
.
Input
<
phi
::
DenseTensor
>
(
"GateIdx"
);
auto
*
expert_count
=
context
.
Input
<
phi
::
DenseTensor
>
(
"ExpertCount"
);
auto
*
new_gate_idx
=
context
.
Output
<
phi
::
DenseTensor
>
(
"NewGateIdx"
);
const
auto
&
dev_ctx
=
context
.
template
device_context
<
phi
::
CustomContext
>();
dev_ctx
.
template
Alloc
<
T
>(
new_gate_idx
);
phi
::
DenseTensor
expert_count_cpu
,
gate_idx_cpu
;
framework
::
TensorCopySync
(
*
expert_count
,
platform
::
CPUPlace
(),
&
expert_count_cpu
);
framework
::
TensorCopySync
(
*
gate_idx
,
platform
::
CPUPlace
(),
&
gate_idx_cpu
);
auto
expert_count_data
=
expert_count_cpu
.
data
<
T
>
();
auto
gate_idx_data
=
gate_idx_cpu
.
data
<
T
>
();
std
::
vector
<
T
>
new_gate_idx_data
(
gate_idx
->
numel
());
for
(
auto
i
=
0
;
i
<
gate_idx
->
numel
();
++
i
)
{
auto
orig_cap
=
expert_count_data
[
gate_idx_data
[
i
]]
--
;
if
(
orig_cap
<=
0
)
{
new_gate_idx_data
[
i
]
=
-
1
;
}
else
{
new_gate_idx_data
[
i
]
=
gate_idx_data
[
i
];
}
}
}
};
template
<
typename
T
>
class
RandomRoutingOpCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
topk_idx
=
context
.
Input
<
phi
::
DenseTensor
>
(
"TopK_Idx"
);
auto
topk_value
=
context
.
Input
<
phi
::
DenseTensor
>
(
"TopK_Value"
);
auto
prob
=
context
.
Input
<
phi
::
DenseTensor
>
(
"Prob"
);
auto
out
=
context
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
const
auto
&
dev_ctx
=
context
.
template
device_context
<
phi
::
CustomContext
>();
size_t
D
=
topk_idx
->
dims
()[
1
];
phi
::
DenseTensor
topk_value_cpu
,
prob_cpu
;
framework
::
TensorCopySync
(
*
topk_value
,
platform
::
CPUPlace
(),
&
topk_value_cpu
);
framework
::
TensorCopySync
(
*
prob
,
platform
::
CPUPlace
(),
&
prob_cpu
);
auto
*
topk_value_data
=
topk_value_cpu
.
data
<
T
>
();
auto
*
prob_data
=
prob_cpu
.
data
<
T
>
();
std
::
vector
<
int64_t
>
out_data
(
topk_idx
->
numel
());
for
(
int64_t
idx
=
0
;
idx
<
topk_idx
->
numel
();
++
idx
)
{
size_t
row
=
idx
/
D
;
size_t
col
=
idx
%
D
;
if
(
col
==
1
&&
static_cast
<
T
>
(
2
)
*
topk_value_data
[
idx
]
<
prob_data
[
row
])
{
out_data
[
idx
]
=
static_cast
<
int64_t
>
(
-
1
);
}
}
auto
out_dims
=
out
->
dims
();
framework
::
TensorFromVector
<
int64_t
>
(
out_data
,
dev_ctx
,
out
);
out
->
Resize
(
out_dims
);
}
};
template
<
typename
T
>
class
AssignPosCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// assign pos decides which tokens should be fetched belong to specially
// counter orderingly.
auto
cum_count
=
context
.
Input
<
phi
::
DenseTensor
>
(
"cum_count"
);
// (counter number) int32 | int64
auto
numbers
=
context
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
// (batch_size * seq_len, topk) int32
auto
eff_num_len
=
context
.
Input
<
phi
::
DenseTensor
>
(
"eff_num_len"
);
// (sum(cum_count))
auto
out
=
context
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
// (cum_count) value ranges
// from 0 to batch_size *
// seq_len * topk
const
auto
&
dev_ctx
=
context
.
template
device_context
<
phi
::
CustomContext
>();
phi
::
DenseTensor
cpu_eff_num_len
;
int64_t
cpu_eff_num_len_data
=
0
;
if
(
platform
::
is_cpu_place
(
eff_num_len
->
place
()))
{
cpu_eff_num_len_data
=
eff_num_len
->
data
<
T
>
()[
0
];
}
else
{
framework
::
TensorCopySync
(
*
eff_num_len
,
platform
::
CPUPlace
(),
&
cpu_eff_num_len
);
cpu_eff_num_len_data
=
cpu_eff_num_len
.
data
<
T
>
()[
0
];
}
out
->
Resize
({
cpu_eff_num_len_data
});
dev_ctx
.
template
Alloc
<
T
>(
out
);
phi
::
DenseTensor
numbers_cpu
,
cum_count_cpu
;
framework
::
TensorCopySync
(
*
numbers
,
platform
::
CPUPlace
(),
&
numbers_cpu
);
framework
::
TensorCopySync
(
*
cum_count
,
platform
::
CPUPlace
(),
&
cum_count_cpu
);
auto
*
numbers_data
=
numbers_cpu
.
data
<
T
>
();
auto
*
cum_count_data
=
cum_count_cpu
.
data
<
T
>
();
std
::
vector
<
T
>
out_data
(
cpu_eff_num_len_data
);
for
(
int64_t
i
=
0
;
i
<
numbers
->
numel
();
++
i
)
{
int
number_idx
=
numbers_data
[
i
];
if
(
number_idx
>
-
1
)
{
cum_count_data
[
number_idx
]
-=
1
;
int
p
=
cum_count_data
[
number_idx
];
out_data
[
p
]
=
i
;
}
}
framework
::
TensorFromVector
<
int64_t
>
(
out_data
,
dev_ctx
,
out
);
}
};
template
<
typename
T
>
class
GlobalScatterOpCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
local_count
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"local_count"
);
auto
global_count
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"global_count"
);
auto
out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
const
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
phi
::
CustomContext
>();
auto
place
=
ctx
.
GetPlace
();
PADDLE_ENFORCE_EQ
(
local_count
->
dtype
(),
phi
::
DataType
::
INT64
,
platform
::
errors
::
InvalidArgument
(
"Please use int64 type in local_count."
));
PADDLE_ENFORCE_EQ
(
global_count
->
dtype
(),
phi
::
DataType
::
INT64
,
platform
::
errors
::
InvalidArgument
(
"Please use int64 type in global_count."
));
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
const
int64_t
*
cpu_local_count_data
;
const
int64_t
*
cpu_global_count_data
;
phi
::
DenseTensor
cpu_local_count
;
if
(
platform
::
is_cpu_place
(
local_count
->
place
()))
{
cpu_local_count_data
=
local_count
->
data
<
int64_t
>
();
}
else
{
framework
::
TensorCopySync
(
*
local_count
,
platform
::
CPUPlace
(),
&
cpu_local_count
);
cpu_local_count_data
=
cpu_local_count
.
data
<
int64_t
>
();
}
auto
global_count_len
=
0
;
phi
::
DenseTensor
cpu_global_count
;
if
(
platform
::
is_cpu_place
(
global_count
->
place
()))
{
cpu_global_count_data
=
global_count
->
data
<
int64_t
>
();
global_count_len
=
global_count
->
numel
();
}
else
{
framework
::
TensorCopySync
(
*
global_count
,
platform
::
CPUPlace
(),
&
cpu_global_count
);
cpu_global_count_data
=
cpu_global_count
.
data
<
int64_t
>
();
global_count_len
=
cpu_global_count
.
numel
();
}
if
(
map
->
has
(
rid
))
{
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
auto
stream
=
reinterpret_cast
<
phi
::
CustomContext
*>
(
pg
->
GetDeviceContext
(
place
))
->
GetStream
();
int
nranks
=
pg
->
GetSize
();
int
rank
=
pg
->
GetRank
();
auto
in_feat
=
x
->
dims
()[
1
];
auto
n_expert
=
local_count
->
dims
()[
0
]
/
nranks
;
int64_t
fwd_count
=
0
;
for
(
auto
i
=
0
;
i
<
global_count_len
;
++
i
)
{
fwd_count
+=
cpu_global_count_data
[
i
];
}
framework
::
DDim
out_dims
=
phi
::
make_ddim
({
fwd_count
,
in_feat
});
int64_t
*
expert_ptr
=
new
int64_t
[
n_expert
*
nranks
];
expert_ptr
[
0
]
=
0
;
auto
tot_experts
=
n_expert
*
nranks
;
for
(
auto
i
=
1
;
i
<
tot_experts
;
++
i
)
{
expert_ptr
[
i
]
=
expert_ptr
[
i
-
1
]
+
cpu_local_count_data
[
i
-
1
];
}
auto
recv_ptr
=
0
;
out
->
Resize
(
out_dims
);
dev_ctx
.
template
Alloc
<
T
>(
out
);
for
(
auto
i
=
0
;
i
<
n_expert
;
++
i
)
{
for
(
auto
j
=
0
;
j
<
rank
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
pg
->
Recv
(
out
,
j
,
recv_ptr
*
in_feat
,
cpu_global_count_data
[
idx
]
*
in_feat
,
/*sync_op*/
true
);
recv_ptr
+=
cpu_global_count_data
[
idx
];
}
}
for
(
auto
j
=
0
;
j
<
nranks
;
++
j
)
{
if
(
j
!=
rank
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
phi
::
DenseTensor
tmp
=
*
x
;
pg
->
Send
(
tmp
,
j
,
expert_ptr
[
idx
]
*
in_feat
,
cpu_local_count_data
[
idx
]
*
in_feat
,
/*sync_op*/
true
);
}
}
}
if
(
cpu_local_count_data
[
i
+
rank
*
n_expert
])
{
phi
::
DeviceManager
::
GetDeviceWithPlace
(
place
)
->
MemoryCopyD2D
(
reinterpret_cast
<
void
*>
(
out
->
data
<
T
>
()
+
recv_ptr
*
in_feat
),
reinterpret_cast
<
const
void
*>
(
x
->
data
<
T
>
()
+
expert_ptr
[
rank
]
*
in_feat
),
(
cpu_local_count_data
[
rank
]
*
in_feat
)
*
phi
::
SizeOf
(
x
->
dtype
()),
stream
.
get
());
recv_ptr
+=
cpu_global_count_data
[
rank
];
}
for
(
auto
j
=
rank
+
1
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
pg
->
Recv
(
out
,
j
,
recv_ptr
*
in_feat
,
cpu_global_count_data
[
idx
]
*
in_feat
,
/*sync_op*/
true
);
recv_ptr
+=
cpu_global_count_data
[
idx
];
}
}
}
}
else
{
auto
comm
=
platform
::
XCCLCommContext
::
Instance
(
place
.
GetDeviceType
())
.
Get
(
rid
,
place
);
std
::
shared_ptr
<
phi
::
stream
::
Stream
>
stream
;
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
stream
=
dev_ctx
.
GetStream
();
}
else
{
stream
=
comm
->
stream
();
}
int
nranks
=
comm
->
nranks
();
int
rank
=
comm
->
rank
();
auto
in_feat
=
x
->
dims
()[
1
];
auto
n_expert
=
local_count
->
dims
()[
0
]
/
nranks
;
int64_t
fwd_count
=
0
;
for
(
auto
i
=
0
;
i
<
global_count_len
;
++
i
)
{
fwd_count
+=
cpu_global_count_data
[
i
];
}
framework
::
DDim
out_dims
=
phi
::
make_ddim
({
fwd_count
,
in_feat
});
int64_t
*
expert_ptr
=
new
int64_t
[
n_expert
*
nranks
];
expert_ptr
[
0
]
=
0
;
auto
tot_experts
=
n_expert
*
nranks
;
for
(
auto
i
=
1
;
i
<
tot_experts
;
++
i
)
{
expert_ptr
[
i
]
=
expert_ptr
[
i
-
1
]
+
cpu_local_count_data
[
i
-
1
];
}
auto
recv_ptr
=
0
;
auto
send_buf
=
x
->
data
<
T
>
();
out
->
Resize
(
out_dims
);
auto
recv_buf
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
for
(
auto
i
=
0
;
i
<
n_expert
;
++
i
)
{
for
(
auto
j
=
0
;
j
<
rank
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
phi
::
DeviceManager
::
CCLRecv
(
place
.
GetDeviceType
(),
reinterpret_cast
<
void
*>
(
recv_buf
+
recv_ptr
*
in_feat
),
cpu_global_count_data
[
idx
]
*
in_feat
,
phi
::
ccl
::
ToCCLDataType
(
x
->
dtype
()),
j
,
comm
->
comm
(),
*
stream
);
recv_ptr
+=
cpu_global_count_data
[
idx
];
}
}
for
(
auto
j
=
0
;
j
<
nranks
;
++
j
)
{
if
(
j
!=
rank
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
phi
::
DeviceManager
::
CCLSend
(
place
.
GetDeviceType
(),
const_cast
<
void
*>
(
reinterpret_cast
<
const
void
*>
(
send_buf
+
expert_ptr
[
idx
]
*
in_feat
)),
cpu_local_count_data
[
idx
]
*
in_feat
,
phi
::
ccl
::
ToCCLDataType
(
x
->
dtype
()),
j
,
comm
->
comm
(),
*
stream
);
}
}
}
if
(
cpu_local_count_data
[
i
+
rank
*
n_expert
])
{
phi
::
DeviceManager
::
GetDeviceWithPlace
(
place
)
->
MemoryCopyD2D
(
reinterpret_cast
<
void
*>
(
recv_buf
+
recv_ptr
*
in_feat
),
reinterpret_cast
<
const
void
*>
(
send_buf
+
expert_ptr
[
rank
]
*
in_feat
),
(
cpu_local_count_data
[
rank
]
*
in_feat
)
*
phi
::
SizeOf
(
x
->
dtype
()),
stream
.
get
());
recv_ptr
+=
cpu_global_count_data
[
rank
];
}
for
(
auto
j
=
rank
+
1
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
phi
::
DeviceManager
::
CCLRecv
(
place
.
GetDeviceType
(),
reinterpret_cast
<
void
*>
(
recv_buf
+
recv_ptr
*
in_feat
),
cpu_global_count_data
[
idx
]
*
in_feat
,
phi
::
ccl
::
ToCCLDataType
(
x
->
dtype
()),
j
,
comm
->
comm
(),
*
stream
);
recv_ptr
+=
cpu_global_count_data
[
idx
];
}
}
}
}
phi
::
DeviceManager
::
SynchronizeDevice
(
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
GlobalGatherOpCustomDeviceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
local_count
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"local_count"
);
auto
global_count
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"global_count"
);
const
int
rid
=
ctx
.
Attr
<
int
>
(
"ring_id"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
phi
::
CustomContext
>();
auto
place
=
ctx
.
GetPlace
();
auto
out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
PADDLE_ENFORCE_EQ
(
local_count
->
dtype
(),
phi
::
DataType
::
INT64
,
platform
::
errors
::
InvalidArgument
(
"Please use int64 type in local_count."
));
PADDLE_ENFORCE_EQ
(
global_count
->
dtype
(),
phi
::
DataType
::
INT64
,
platform
::
errors
::
InvalidArgument
(
"Please use int64 type in global_count."
));
const
int64_t
*
cpu_local_count_data
;
const
int64_t
*
cpu_global_count_data
;
auto
local_count_len
=
0
;
phi
::
DenseTensor
cpu_local_count
;
if
(
platform
::
is_cpu_place
(
local_count
->
place
()))
{
cpu_local_count_data
=
local_count
->
data
<
int64_t
>
();
local_count_len
=
local_count
->
numel
();
}
else
{
framework
::
TensorCopySync
(
*
local_count
,
platform
::
CPUPlace
(),
&
cpu_local_count
);
cpu_local_count_data
=
cpu_local_count
.
data
<
int64_t
>
();
local_count_len
=
cpu_local_count
.
numel
();
}
phi
::
DenseTensor
cpu_global_count
;
if
(
platform
::
is_cpu_place
(
global_count
->
place
()))
{
cpu_global_count_data
=
global_count
->
data
<
int64_t
>
();
}
else
{
framework
::
TensorCopySync
(
*
global_count
,
platform
::
CPUPlace
(),
&
cpu_global_count
);
cpu_global_count_data
=
cpu_global_count
.
data
<
int64_t
>
();
}
auto
map
=
distributed
::
ProcessGroupMapFromGid
::
getInstance
();
if
(
map
->
has
(
rid
))
{
distributed
::
ProcessGroup
*
pg
=
map
->
get
(
rid
);
auto
stream
=
reinterpret_cast
<
phi
::
CustomContext
*>
(
pg
->
GetDeviceContext
(
place
))
->
GetStream
();
int
nranks
=
pg
->
GetSize
();
int
rank
=
pg
->
GetRank
();
auto
in_feat
=
x
->
dims
()[
1
];
auto
n_expert
=
local_count
->
dims
()[
0
]
/
nranks
;
auto
fwd_count
=
0
;
for
(
auto
i
=
0
;
i
<
local_count_len
;
++
i
)
{
fwd_count
+=
cpu_local_count_data
[
i
];
}
framework
::
DDim
out_dims
=
phi
::
make_ddim
({
fwd_count
,
in_feat
});
int64_t
*
expert_ptr
=
new
int64_t
[
n_expert
*
nranks
];
expert_ptr
[
0
]
=
0
;
auto
tot_experts
=
n_expert
*
nranks
;
for
(
auto
i
=
1
;
i
<
tot_experts
;
++
i
)
{
expert_ptr
[
i
]
=
expert_ptr
[
i
-
1
]
+
cpu_local_count_data
[
i
-
1
];
}
auto
send_ptr
=
0
;
out
->
Resize
(
out_dims
);
dev_ctx
.
template
Alloc
<
T
>(
out
);
for
(
auto
i
=
0
;
i
<
n_expert
;
++
i
)
{
for
(
auto
j
=
0
;
j
<
rank
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
pg
->
Recv
(
out
,
j
,
expert_ptr
[
idx
]
*
in_feat
,
cpu_local_count_data
[
idx
]
*
in_feat
,
/*sync_op*/
true
);
}
}
for
(
auto
j
=
0
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
if
(
j
!=
rank
)
{
phi
::
DenseTensor
tmp
=
*
x
;
pg
->
Send
(
tmp
,
j
,
send_ptr
*
in_feat
,
cpu_global_count_data
[
idx
]
*
in_feat
,
/*sync_op*/
true
);
}
else
{
phi
::
DeviceManager
::
GetDeviceWithPlace
(
place
)
->
MemoryCopyD2D
(
reinterpret_cast
<
void
*>
(
out
->
data
<
T
>
()
+
expert_ptr
[
idx
]
*
in_feat
),
reinterpret_cast
<
const
void
*>
(
x
->
data
<
T
>
()
+
send_ptr
*
in_feat
),
(
cpu_global_count_data
[
idx
]
*
in_feat
)
*
phi
::
SizeOf
(
x
->
dtype
()),
stream
.
get
());
}
send_ptr
+=
cpu_global_count_data
[
idx
];
}
}
for
(
auto
j
=
rank
+
1
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
pg
->
Recv
(
out
,
j
,
expert_ptr
[
idx
]
*
in_feat
,
cpu_local_count_data
[
idx
]
*
in_feat
,
/*sync_op*/
true
);
}
}
}
}
else
{
auto
comm
=
platform
::
XCCLCommContext
::
Instance
(
place
.
GetDeviceType
())
.
Get
(
rid
,
place
);
std
::
shared_ptr
<
phi
::
stream
::
Stream
>
stream
;
if
(
ctx
.
Attr
<
bool
>
(
"use_calc_stream"
))
{
stream
=
dev_ctx
.
GetStream
();
}
else
{
stream
=
comm
->
stream
();
}
int
nranks
=
comm
->
nranks
();
int
rank
=
comm
->
rank
();
auto
in_feat
=
x
->
dims
()[
1
];
auto
n_expert
=
local_count
->
dims
()[
0
]
/
nranks
;
auto
fwd_count
=
0
;
for
(
auto
i
=
0
;
i
<
local_count_len
;
++
i
)
{
fwd_count
+=
cpu_local_count_data
[
i
];
}
framework
::
DDim
out_dims
=
phi
::
make_ddim
({
fwd_count
,
in_feat
});
int64_t
*
expert_ptr
=
new
int64_t
[
n_expert
*
nranks
];
expert_ptr
[
0
]
=
0
;
auto
tot_experts
=
n_expert
*
nranks
;
for
(
auto
i
=
1
;
i
<
tot_experts
;
++
i
)
{
expert_ptr
[
i
]
=
expert_ptr
[
i
-
1
]
+
cpu_local_count_data
[
i
-
1
];
}
auto
send_ptr
=
0
;
auto
send_buf
=
x
->
data
<
T
>
();
out
->
Resize
(
out_dims
);
auto
recv_buf
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
for
(
auto
i
=
0
;
i
<
n_expert
;
++
i
)
{
for
(
auto
j
=
0
;
j
<
rank
+
1
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
phi
::
DeviceManager
::
CCLRecv
(
place
.
GetDeviceType
(),
recv_buf
+
expert_ptr
[
idx
]
*
in_feat
,
cpu_local_count_data
[
idx
]
*
in_feat
,
phi
::
ccl
::
ToCCLDataType
(
x
->
dtype
()),
j
,
comm
->
comm
(),
*
stream
);
}
}
for
(
auto
j
=
0
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_global_count_data
[
idx
])
{
if
(
j
!=
rank
)
{
phi
::
DeviceManager
::
CCLSend
(
place
.
GetDeviceType
(),
const_cast
<
void
*>
(
reinterpret_cast
<
const
void
*>
(
send_buf
+
send_ptr
*
in_feat
)),
cpu_global_count_data
[
idx
]
*
in_feat
,
phi
::
ccl
::
ToCCLDataType
(
x
->
dtype
()),
j
,
comm
->
comm
(),
*
stream
);
}
else
{
phi
::
DeviceManager
::
GetDeviceWithPlace
(
place
)
->
MemoryCopyD2D
(
reinterpret_cast
<
void
*>
(
recv_buf
+
expert_ptr
[
idx
]
*
in_feat
),
reinterpret_cast
<
const
void
*>
(
send_buf
+
send_ptr
*
in_feat
),
(
cpu_global_count_data
[
idx
]
*
in_feat
)
*
phi
::
SizeOf
(
x
->
dtype
()),
stream
.
get
());
}
send_ptr
+=
cpu_global_count_data
[
idx
];
}
}
for
(
auto
j
=
rank
+
1
;
j
<
nranks
;
++
j
)
{
int
idx
=
i
+
j
*
n_expert
;
if
(
cpu_local_count_data
[
idx
])
{
phi
::
DeviceManager
::
CCLRecv
(
place
.
GetDeviceType
(),
recv_buf
+
expert_ptr
[
idx
]
*
in_feat
,
cpu_local_count_data
[
idx
]
*
in_feat
,
phi
::
ccl
::
ToCCLDataType
(
x
->
dtype
()),
j
,
comm
->
comm
(),
*
stream
);
}
}
}
}
phi
::
DeviceManager
::
SynchronizeDevice
(
ctx
.
GetPlace
());
}
};
template
<
typename
Context
>
void
FeedDenseTensorKernel
(
const
Context
&
dev_ctx
,
const
phi
::
ExtendedTensor
&
x
,
...
...
@@ -918,6 +1506,48 @@ void RegisterCustomDeviceCommonKernel(const std::string& dev_type) {
barrier
,
device_type
,
paddle
::
operators
::
BarrierOpCustomDeviceKernel
<
int
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
number_count
,
device_type
,
paddle
::
operators
::
NumberCountOpCustomDeviceKernel
<
int64_t
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
limit_by_capacity
,
device_type
,
paddle
::
operators
::
LimitByCapacityOpCustomDeviceKernel
<
int64_t
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
prune_gate_by_capacity
,
device_type
,
paddle
::
operators
::
PruneGateByCapacityCustomDeviceKernel
<
int64_t
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
random_routing
,
device_type
,
paddle
::
operators
::
RandomRoutingOpCustomDeviceKernel
<
float
>
,
paddle
::
operators
::
RandomRoutingOpCustomDeviceKernel
<
double
>
,
paddle
::
operators
::
RandomRoutingOpCustomDeviceKernel
<
paddle
::
platform
::
float16
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
assign_pos
,
device_type
,
paddle
::
operators
::
AssignPosCustomDeviceKernel
<
int64_t
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
global_scatter
,
device_type
,
paddle
::
operators
::
GlobalScatterOpCustomDeviceKernel
<
float
>
,
paddle
::
operators
::
GlobalScatterOpCustomDeviceKernel
<
double
>
,
paddle
::
operators
::
GlobalScatterOpCustomDeviceKernel
<
int32_t
>
,
paddle
::
operators
::
GlobalScatterOpCustomDeviceKernel
<
int64_t
>
,
paddle
::
operators
::
GlobalScatterOpCustomDeviceKernel
<
paddle
::
platform
::
float16
>
)
{}
REGISTER_OP_CUSTOM_DEVICE_KERNEL
(
global_gather
,
device_type
,
paddle
::
operators
::
GlobalGatherOpCustomDeviceKernel
<
float
>
,
paddle
::
operators
::
GlobalGatherOpCustomDeviceKernel
<
double
>
,
paddle
::
operators
::
GlobalGatherOpCustomDeviceKernel
<
int32_t
>
,
paddle
::
operators
::
GlobalGatherOpCustomDeviceKernel
<
int64_t
>
,
paddle
::
operators
::
GlobalGatherOpCustomDeviceKernel
<
paddle
::
platform
::
float16
>
)
{}
#endif
}
...
...
python/paddle/incubate/distributed/models/moe/moe_layer.py
浏览文件 @
584ae4d7
...
...
@@ -19,6 +19,8 @@
# Copyright 2021, Jiaao He. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License").
import
os
import
numpy
as
np
import
paddle
...
...
@@ -352,7 +354,10 @@ class MoELayer(nn.Layer):
assert
experts
is
not
None
self
.
experts
=
experts
if
self
.
world_size
>
1
:
if
(
self
.
world_size
>
1
and
os
.
getenv
(
"PADDLE_DISTRI_BACKEND"
,
None
)
!=
"xccl"
):
check_nccl_version_for_p2p
()
self
.
mp_group
=
mp_group
...
...
python/paddle/nn/layer/layers.py
浏览文件 @
584ae4d7
...
...
@@ -1913,6 +1913,13 @@ class Layer:
p
=
core
.
Place
()
p
.
set_place
(
t
.
_place
())
place
=
core
.
XPUPlace
(
p
.
xpu_device_id
())
elif
p
.
is_custom_place
():
p
=
core
.
Place
()
p
.
set_place
(
t
.
_place
())
place
=
core
.
CustomPlace
(
paddle
.
device
.
get_device
().
split
(
':'
)[
0
],
p
.
custom_device_id
(),
)
else
:
p
=
core
.
Place
()
p
.
set_place
(
t
.
_place
())
...
...
python/paddle/static/io.py
浏览文件 @
584ae4d7
...
...
@@ -1540,7 +1540,12 @@ def load(program, model_path, executor=None, var_list=None):
p
=
paddle
.
fluid
.
core
.
Place
()
p
.
set_place
(
t
.
_place
())
place
=
paddle
.
fluid
.
XPUPlace
(
p
.
xpu_device_id
())
elif
p
.
is_custom_place
():
p
=
paddle
.
fluid
.
core
.
Place
()
p
.
set_place
(
t
.
_place
())
place
=
paddle
.
fluid
.
CustomPlace
(
paddle
.
device
.
get_device
().
split
(
':'
)[
0
],
p
.
custom_device_id
()
)
else
:
p
=
paddle
.
fluid
.
core
.
Place
()
p
.
set_place
(
t
.
_place
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录