未验证 提交 57bbee65 编写于 作者: Q qingqing01 提交者: GitHub

Merge branch 'develop' into cmake_speed

......@@ -183,15 +183,20 @@ set(DEPS_OPS
array_to_lod_tensor_op
lstm_op
tensor_array_read_write_op
gru_op)
gru_op
adagrad_op
sgd_op)
op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
op_library(cross_entropy_op DEPS cross_entropy)
op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library(softmax_op DEPS softmax)
op_library(sequence_softmax_op DEPS softmax)
op_library(sum_op DEPS selected_rows_functor)
op_library(sgd_op DEPS selected_rows_functor)
op_library(adagrad_op DEPS selected_rows_functor)
op_library(conv_op DEPS vol2col)
op_library(sum_op DEPS net_op selected_rows_functor)
op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling)
op_library(lod_rank_table_op SRCS lod_rank_table_op.cc DEPS lod_rank_table)
......
......@@ -14,6 +14,11 @@ limitations under the License. */
#include "paddle/operators/adagrad_op.h"
#include <cmath>
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
namespace paddle {
namespace operators {
......@@ -21,7 +26,7 @@ class AdagradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of AdagradOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
......@@ -54,8 +59,8 @@ class AdagradOp : public framework::OperatorWithKernel {
class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AdagradOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
AdagradOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
......@@ -87,10 +92,85 @@ for numerical stability to avoid the division by zero error.
)DOC");
}
};
namespace {
size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
return std::find(rows.begin(), rows.end(), value) - rows.begin();
}
} // namespace
template <typename T>
struct SparseAdagradFunctor<platform::CPUPlace, T> {
void operator()(const platform::DeviceContext& context,
const framework::SelectedRows& grad,
const framework::Tensor& learning_rate, T epsilon,
framework::Tensor* moment, framework::Tensor* param) {
// 1. g_m.rows = set(g.rows)
auto grad_rows = grad.rows();
std::set<int64_t> row_set(grad_rows.begin(), grad_rows.end());
std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
auto grad_width = grad.value().dims()[1];
std::unique_ptr<framework::SelectedRows> grad_merge{
new framework::SelectedRows()};
grad_merge->set_rows(merge_rows);
grad_merge->set_height(grad.height());
grad_merge->mutable_value()->mutable_data<T>(
framework::make_ddim(
{static_cast<int64_t>(merge_rows.size()), grad_width}),
context.GetPlace());
math::SetConstant<platform::CPUPlace, T> constant_functor;
constant_functor(context, grad_merge->mutable_value(), 0.0);
auto* grad_merge_data = grad_merge->mutable_value()->data<T>();
auto* grad_data = grad.value().data<T>();
for (size_t i = 0; i < grad_rows.size(); i++) {
size_t grad_merge_i = FindPos(merge_rows, grad_rows[i]);
for (int64_t j = 0; j < grad_width; j++) {
grad_merge_data[grad_merge_i * grad_width + j] +=
grad_data[i * grad_width + j];
}
}
// 2. m += g_m * g_m
std::unique_ptr<framework::SelectedRows> grad_square{
new framework::SelectedRows()};
grad_square->set_rows(grad_merge->rows());
grad_square->set_height(grad_merge->height());
grad_square->mutable_value()->mutable_data<T>(grad_merge->value().dims(),
context.GetPlace());
auto gs =
framework::EigenVector<T>::Flatten(*(grad_square->mutable_value()));
auto gm = framework::EigenVector<T>::Flatten(grad_merge->value());
gs.device(*context.GetEigenDevice<platform::CPUPlace>()) = gm * gm;
math::SelectedRowsAddToTensor<platform::CPUPlace, T> functor;
functor(context, *grad_square, moment);
// 3. update parameter
auto* lr = learning_rate.data<T>();
auto* param_data = param->data<T>();
auto* moment_data = moment->data<T>();
for (size_t i = 0; i < merge_rows.size(); i++) {
for (int64_t j = 0; j < grad_width; j++) {
param_data[merge_rows[i] * grad_width + j] -=
lr[0] * grad_merge_data[i * grad_width + j] /
(std::sqrt(moment_data[merge_rows[i] * grad_width + j]) + epsilon);
}
}
}
};
template struct SparseAdagradFunctor<platform::CPUPlace, float>;
template struct SparseAdagradFunctor<platform::CPUPlace, double>;
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
REGISTER_OP_CPU_KERNEL(adagrad,
ops::AdagradOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
adagrad, ops::AdagradOpKernel<paddle::platform::CPUPlace, float>,
ops::AdagradOpKernel<paddle::platform::CPUPlace, double>);
......@@ -14,7 +14,138 @@
#define EIGEN_USE_GPU
#include "paddle/operators/adagrad_op.h"
#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/platform/cuda_helper.h"
namespace paddle {
namespace operators {
namespace {
template <typename T, int block_size>
__global__ void MergeGradKernel(const T* grad, const int64_t* grad_rows,
T* grad_merge, const int64_t* grad_merge_rows,
size_t grad_merge_rows_size,
int64_t row_numel) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
__shared__ size_t grad_merge_idx;
if (tid == 0) {
for (size_t i = 0; i < grad_merge_rows_size; i++) {
if (grad_rows[ty] == grad_merge_rows[i]) {
grad_merge_idx = i;
}
}
}
__syncthreads();
grad += ty * row_numel;
grad_merge += grad_merge_idx * row_numel;
for (int index = tid; index < row_numel; index += block_size) {
paddle::platform::CudaAtomicAdd(grad_merge + index, grad[index]);
}
}
template <typename T, int block_size>
__global__ void SparseAdagradFunctorKernel(const T* grad, const int64_t* rows,
const T* learning_rate, T* param,
T* moment, int64_t row_numel,
T epsilon) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
grad += ty * row_numel;
param += rows[ty] * row_numel;
moment += rows[ty] * row_numel;
for (int index = tid; index < row_numel; index += block_size) {
// Since index in rows of SelectedRows can be duplicate, we have to use
// Atomic Operation to avoid concurrent write error.
paddle::platform::CudaAtomicAdd(param + index,
-1.0 * learning_rate[0] * grad[index] /
(sqrt(moment[index]) + epsilon));
}
}
} // namespace
template <typename T>
struct SparseAdagradFunctor<platform::GPUPlace, T> {
void operator()(const platform::DeviceContext& context,
const framework::SelectedRows& grad,
const framework::Tensor& learning_rate, T epsilon,
framework::Tensor* moment, framework::Tensor* param) {
// 1. g_m.rows = set(g.rows)
auto grad_rows = grad.rows();
std::set<int64_t> row_set(grad_rows.begin(), grad_rows.end());
std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
auto grad_width = grad.value().dims()[1];
std::unique_ptr<framework::SelectedRows> grad_merge{
new framework::SelectedRows()};
grad_merge->set_rows(merge_rows);
grad_merge->set_height(grad.height());
grad_merge->mutable_value()->mutable_data<T>(
framework::make_ddim(
{static_cast<int64_t>(merge_rows.size()), grad_width}),
context.GetPlace());
math::SetConstant<platform::GPUPlace, T> constant_functor;
constant_functor(context, grad_merge->mutable_value(), 0.0);
auto* grad_merge_data = grad_merge->mutable_value()->data<T>();
auto* grad_data = grad.value().data<T>();
const int block_size = 256;
dim3 threads(block_size, 1);
dim3 grid1(1, grad_rows.size());
MergeGradKernel<
T, 256><<<grid1, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(grad_data, grad.rows().data(),
grad_merge_data, grad_merge->rows().data(),
grad_merge->rows().size(), grad_width);
// 2. m += g_m * g_m
std::unique_ptr<framework::SelectedRows> grad_square{
new framework::SelectedRows()};
grad_square->set_rows(grad_merge->rows());
grad_square->set_height(grad_merge->height());
grad_square->mutable_value()->mutable_data<T>(grad_merge->value().dims(),
context.GetPlace());
auto gs =
framework::EigenVector<T>::Flatten(*(grad_square->mutable_value()));
auto gm = framework::EigenVector<T>::Flatten(grad_merge->value());
gs.device(*context.GetEigenDevice<platform::GPUPlace>()) = gm * gm;
math::SelectedRowsAddToTensor<platform::GPUPlace, T> functor;
functor(context, *grad_square, moment);
// 3. update parameter
auto* lr = learning_rate.data<T>();
auto* param_data = param->data<T>();
auto* moment_data = moment->data<T>();
dim3 grid2(1, merge_rows.size());
SparseAdagradFunctorKernel<
T, 256><<<grid2, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(grad_merge_data, grad_merge->rows().data(),
lr, param_data,
moment_data, grad_width, epsilon);
}
};
template struct SparseAdagradFunctor<platform::GPUPlace, float>;
template struct SparseAdagradFunctor<platform::GPUPlace, double>;
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(adagrad,
ops::AdagradOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
adagrad, ops::AdagradOpKernel<paddle::platform::GPUPlace, float>,
ops::AdagradOpKernel<paddle::platform::GPUPlace, double>);
......@@ -19,18 +19,28 @@ limitations under the License. */
namespace paddle {
namespace operators {
template <typename Place, typename T>
struct SparseAdagradFunctor {
void operator()(const platform::DeviceContext& context,
const framework::SelectedRows& grad,
const framework::Tensor& learning_rate, T epsilon,
framework::Tensor* moment, framework::Tensor* param);
};
template <typename Place, typename T>
class AdagradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
auto* param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto* moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
param_out_tensor->mutable_data<T>(ctx.GetPlace());
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
float epsilon = ctx.Attr<float>("epsilon");
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
auto* grad_var = ctx.InputVar("Grad");
if (grad_var->IsType<framework::LoDTensor>()) {
auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
......@@ -48,6 +58,20 @@ class AdagradOpKernel : public framework::OpKernel<T> {
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
param_out.device(place) =
param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
} else if (grad_var->IsType<framework::SelectedRows>()) {
auto* param_tensor = ctx.Input<framework::Tensor>("Param");
PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor);
auto* moment_tensor = ctx.Input<framework::Tensor>("Moment");
PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor);
SparseAdagradFunctor<Place, T> functor;
functor(ctx.device_context(), *ctx.Input<framework::SelectedRows>("Grad"),
*ctx.Input<framework::Tensor>("LearningRate"), epsilon,
moment_out_tensor, param_out_tensor);
} else {
PADDLE_THROW("Unsupported Variable Type of Grad");
}
}
};
......
......@@ -20,11 +20,11 @@ namespace paddle {
namespace operators {
namespace {
template <typename T>
template <typename T, int block_size>
__global__ void SparseSGDFunctorKernel(const T* selected_rows,
const int64_t* rows,
const T* learning_rate, T* tensor_out,
int64_t row_numel, int block_size) {
int64_t row_numel) {
const int ty = blockIdx.y;
int tid = threadIdx.x;
......@@ -59,14 +59,15 @@ struct SparseSGDFunctor<platform::GPUPlace, T> {
auto* in_data = in_value.data<T>();
auto* out_data = output->data<T>();
int block_size = 256;
const int block_size = 256;
dim3 threads(block_size, 1);
dim3 grid(1, in_rows.size());
SparseSGDFunctorKernel<
T><<<grid, threads, 0,
T, 256><<<grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.stream()>>>(in_data, in_rows.data(), learning_rate.data<T>(),
out_data, in_row_numel, block_size);
.stream()>>>(in_data, in_rows.data(),
learning_rate.data<T>(), out_data,
in_row_numel);
}
};
......
......@@ -12,7 +12,6 @@ limitations under the License. */
#include "paddle/operators/sum_op.h"
#include <vector>
#include "paddle/framework/var_type_inference.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
......
import unittest
import numpy as np
import paddle.v2.fluid.core as core
from paddle.v2.fluid.op import Operator
from op_test import OpTest
import math
class TestAdagradOp1(OpTest):
......@@ -65,5 +68,110 @@ class TestAdagradOp2(OpTest):
self.check_output()
class TestSparseAdagradOp(unittest.TestCase):
def check_with_place(self, place):
scope = core.Scope()
# create and initialize Grad Variable
height = 10
rows = [0, 4, 7, 4]
row_numel = 12
grad_selected_rows = scope.var('Grad').get_selected_rows()
grad_selected_rows.set_height(height)
grad_selected_rows.set_rows(rows)
np_array = np.ones((len(rows), row_numel)).astype("float32")
np_array[0, 0] = 2.0
np_array[2, 8] = 4.0
grad_tensor = grad_selected_rows.get_tensor()
grad_tensor.set(np_array, place)
# create and initialize Param Variable
param = scope.var('Param').get_tensor()
param_array = np.full((height, row_numel), 5.0).astype("float32")
param.set(param_array, place)
# create and initialize LeraningRate Variable
lr = scope.var('LearningRate').get_tensor()
lr_array = np.full((1), 2.0).astype("float32")
lr.set(lr_array, place)
# create and initialize moment Variable
moment = scope.var('Moment').get_tensor()
moment_np_array = np.full((height, row_numel), 2.0).astype("float32")
moment.set(moment_np_array, place)
# create and run sgd operator
adagrad_op = Operator(
"adagrad",
Param='Param',
Grad='Grad',
ParamOut='Param',
Moment='Moment',
MomentOut='Moment',
LearningRate='LearningRate',
epsilon=2.0)
ctx = core.DeviceContext.create(place)
adagrad_op.run(scope, ctx)
# get and compare moment result
moment_result_array = np.array(moment)
self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0])
self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2])
self.assertAlmostEqual(2.0, moment_result_array[1, 0])
# 2.0 + (1.0 + 1.0)^2
self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10])
self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4])
self.assertAlmostEqual(2.0, moment_result_array[5, 8])
self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1])
self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8])
# get and compare param result
result_array = np.array(param)
def get_out(param, lr, grad, m, epsilon):
return param - lr * grad / (math.sqrt(m) + epsilon)
self.assertAlmostEqual(
get_out(5.0, 2.0, 2.0, 6.0, 2.0),
result_array[rows[0], 0],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 1.0, 3.0, 2.0),
result_array[rows[0], 2],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[1, 0], places=5)
# grad_merge = 1.0 + 1.0
# m = 6.0
self.assertAlmostEqual(
get_out(5.0, 2.0, 2.0, 6.0, 2.0),
result_array[rows[1], 10],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[5, 8], places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 1.0, 3.0, 2.0),
result_array[rows[2], 1],
places=5)
self.assertAlmostEqual(
get_out(5.0, 2.0, 4.0, 18.0, 2.0),
result_array[rows[2], 8],
places=5)
def test_sparse_adagrad(self):
places = [core.CPUPlace()]
if core.is_compile_gpu():
places.append(core.GPUPlace(0))
for place in places:
self.check_with_place(place)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册