提交 57033869 编写于 作者: M minqiyang

Add debug info

上级 202b2f1f
......@@ -26,18 +26,47 @@ ComputationOpHandle::ComputationOpHandle(ir::Node *node, Scope *scope,
scope_(scope),
place_(place) {}
struct RecordTime {
RecordTime(const std::string &name, const std::string &type)
: name_(name), type_(type), start_(std::chrono::system_clock::now()) {}
~RecordTime() {
if (type_ == "elementsize_add") {
end_ = std::chrono::system_clock::now();
std::chrono::duration<double> diff = end_ - start_;
VLOG(1) << name_ << " " << type_ << " time record: " << diff.count();
}
}
std::string name_;
std::string type_;
std::chrono::system_clock::time_point start_;
std::chrono::system_clock::time_point end_;
};
void ComputationOpHandle::RunImpl() {
{
RecordTime rt("ComputationOpHandle::RunImpl", "Wait");
WaitInputVarGenerated(place_);
}
Scope *scope = nullptr;
{
RecordTime rt("ComputationOpHandle::RunImpl", "PrepareScope");
scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
}
auto run_func = [this]() {
op_->Run(*scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(), place_);
};
{
RecordTime rt("ComputationOpHandle::RunImpl", "ReallyRun " + op_->Type());
auto run_func = [this, scope]() { op_->Run(*scope, place_); };
if (is_lock_and_record_event_free_) {
run_func();
} else {
this->RunAndRecordEvent(run_func);
}
}
}
bool ComputationOpHandle::NeedWait(VarHandleBase *in_var) {
......
......@@ -120,6 +120,7 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
ClearFetchOp(graph_.get(), &fetch_ops);
return fetches;
}
void FastThreadedSSAGraphExecutor::RunOpAsync(
std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps,
OpHandleBase *op,
......
......@@ -41,7 +41,7 @@ OpHandleBase::~OpHandleBase() {
void OpHandleBase::Run(bool use_cuda) {
#ifdef PADDLE_WITH_CUDA
if (events_.empty() && use_cuda) {
if (events_.empty() && use_cuda && !dev_ctxes_.empty()) {
for (auto &p : dev_ctxes_) {
int dev_id = boost::get<platform::CUDAPlace>(p.first).device;
PADDLE_ENFORCE(cudaSetDevice(dev_id));
......
......@@ -701,10 +701,40 @@ void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
this->InferShape(&infer_shape_ctx);
}
struct RecordTime {
RecordTime(const std::string& name, const std::string& type)
: name_(name), type_(type), start_(std::chrono::system_clock::now()) {}
void inline stop() {
end_ = std::chrono::system_clock::now();
std::chrono::duration<double> diff = end_ - start_;
VLOG(1) << name_ << " " << type_ << " time record: " << diff.count();
}
~RecordTime() {
if (type_ == "elementwise_add") {
stop();
}
// stop();
}
std::string name_;
std::string type_;
std::chrono::system_clock::time_point start_;
std::chrono::system_clock::time_point end_;
};
void OperatorWithKernel::RunImpl(const Scope& scope,
const platform::Place& place) const {
RecordTime rt("OperatorWithKernel::All", type_);
{
RecordTime rt("OperatorWithKernel::InferShape", type_);
RuntimeInferShapeContext infer_shape_ctx(*this, scope);
this->InferShape(&infer_shape_ctx);
}
{
RecordTime* rt_1 = new RecordTime("OperatorWithKernel::Compute1", type_);
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = pool.Get(place);
......@@ -713,7 +743,8 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
auto kernels_iter = all_op_kernels.find(type_);
if (kernels_iter == all_op_kernels.end()) {
PADDLE_THROW(
"There are no kernels which are registered in the %s operator.", type_);
"There are no kernels which are registered in the %s operator.",
type_);
}
OpKernelMap& kernels = kernels_iter->second;
......@@ -747,19 +778,25 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
// do data transformScope &transfer_scope;
std::vector<std::string> transfered_inplace_vars;
auto* transfer_scope =
TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
Scope* transfer_scope = nullptr;
// auto* transfer_scope =
// TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
// exec scope is the scope that kernel actually executed on.
const Scope& exec_scope =
(transfer_scope == nullptr ? scope : *transfer_scope);
const Scope& exec_scope = scope;
// const Scope& exec_scope =
// (transfer_scope == nullptr ? scope : *transfer_scope);
if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
dev_ctx = pool.Get(expected_kernel_key.place_);
}
delete rt_1;
RecordTime* rt_2 = new RecordTime("OperatorWithKernel::Compute2", type_);
kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
delete rt_2;
RecordTime* rt_3 = new RecordTime("OperatorWithKernel::Compute3", type_);
if (!transfered_inplace_vars.empty()) {
// there is inplace variable has been transfered.
TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
......@@ -777,9 +814,12 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
if (var->IsType<framework::LoDTensor>()) {
CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
} else if (var->IsType<framework::SelectedRows>()) {
CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
CheckTensorNANOrInf(vname,
var->Get<framework::SelectedRows>().value());
}
}
}
delete rt_3;
}
}
void OperatorWithKernel::TransferInplaceVarsBack(
......
......@@ -43,9 +43,16 @@ DEFINE_double(
// the mutex will cause serious performance issue.
// So the mutex is disabled when `ON_INFER`.
#ifdef PADDLE_ON_INFERENCE
#define SCOPE_LOCK_GUARD
#define SCOPE_READER_LOCK
#define SCOPE_WRITER_LOCK
#else
#define SCOPE_LOCK_GUARD std::lock_guard<std::mutex> lock(mutex_);
// TODO(minqiyang): use reader lock and writer lock in all platforms
#define SCOPE_READER_LOCK
#define SCOPE_WRITER_LOCK
// #define SCOPE_READER_LOCK boost::shared_lock<boost::shared_mutex>
// lock(mutex_);
// #define SCOPE_WRITER_LOCK boost::unique_lock<boost::shared_mutex>
// lock(mutex_);
#endif
namespace paddle {
......@@ -61,18 +68,18 @@ int64_t GetEagerDeletionThreshold() {
Scope::~Scope() { DropKids(); }
Scope& Scope::NewScope() const {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
kids_.push_back(new Scope(this));
return *kids_.back();
}
Variable* Scope::Var(const std::string& name) {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
return VarInternal(name);
}
Variable* Scope::Var(std::string* name) {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
auto new_name = string::Sprintf("%p.%d", this, vars_.size());
if (name != nullptr) {
*name = new_name;
......@@ -81,34 +88,34 @@ Variable* Scope::Var(std::string* name) {
}
Variable* Scope::FindVar(const std::string& name) const {
SCOPE_LOCK_GUARD
SCOPE_READER_LOCK
return FindVarInternal(name);
}
Variable* Scope::FindLocalVar(const std::string& name) const {
SCOPE_LOCK_GUARD
SCOPE_READER_LOCK
return FindVarLocally(name);
}
const Scope* Scope::FindScope(const Variable* var) const {
SCOPE_LOCK_GUARD
SCOPE_READER_LOCK
return FindScopeInternal(var);
}
void Scope::DropKids() {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
for (Scope* s : kids_) delete s;
kids_.clear();
}
bool Scope::HasKid(const Scope* scope) const {
SCOPE_LOCK_GUARD
SCOPE_READER_LOCK
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
return it != this->kids_.end();
}
std::vector<std::string> Scope::LocalVarNames() const {
SCOPE_LOCK_GUARD
SCOPE_READER_LOCK
std::vector<std::string> known_vars;
known_vars.reserve(this->vars_.size());
for (auto& p : vars_) {
......@@ -118,7 +125,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
}
void Scope::DeleteScope(Scope* scope) const {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
PADDLE_ENFORCE(it != this->kids_.end(), "%p Cannot find %p as kid scope",
this, scope);
......@@ -132,7 +139,7 @@ void Scope::DeleteScope(Scope* scope) const {
}
void Scope::EraseVars(const std::vector<std::string>& var_names) {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) {
......@@ -145,12 +152,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
void Scope::Rename(const std::string& origin_name,
const std::string& new_name) const {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
RenameInternal(origin_name, new_name);
}
std::string Scope::Rename(const std::string& origin_name) const {
SCOPE_LOCK_GUARD
SCOPE_WRITER_LOCK
auto new_name = string::Sprintf("%p.%d", this, vars_.size());
RenameInternal(origin_name, new_name);
return new_name;
......
......@@ -33,6 +33,7 @@ class ElementwiseOp : public framework::OperatorWithKernel {
using Tensor = framework::Tensor;
void InferShape(framework::InferShapeContext *ctx) const override {
if (!ctx->IsRuntime()) {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of elementwise op should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"),
......@@ -40,11 +41,12 @@ class ElementwiseOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of elementwise op should not be null.");
PADDLE_ENFORCE(
ctx->GetInputsVarType("Y").front() ==
PADDLE_ENFORCE(ctx->GetInputsVarType("Y").front() ==
framework::proto::VarType::LOD_TENSOR,
"The input var's type should be LoDTensor, but the received is %s [%s]",
ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front());
"The input var's type should be LoDTensor, but the "
"received is %s [%s]",
ctx->GetInputsVarType("Y").front(),
ctx->Inputs("Y").front());
if (ctx->GetInputsVarType("X").front() ==
framework::proto::VarType::LOD_TENSOR) {
......@@ -62,6 +64,7 @@ class ElementwiseOp : public framework::OperatorWithKernel {
PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
ctx->GetInputsVarType("X").front());
}
}
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
......
......@@ -23,56 +23,57 @@ class AdamOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(Grad) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment1"),
"Input(Moment1) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Moment2"),
"Input(Moment2) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
"Input(LearningRate) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
"Input(Beta1Pow) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
"Input(Beta2Pow) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
"Output(Moment1Out) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
"Output(Moment2Out) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("Param"),
// "Input(Param) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("Grad"),
// "Input(Grad) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("Moment1"),
// "Input(Moment1) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("Moment2"),
// "Input(Moment2) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
// "Input(LearningRate) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
// "Input(Beta1Pow) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
// "Input(Beta2Pow) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
// "Output(ParamOut) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
// "Output(Moment1Out) of AdamOp should not be null.");
// PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
// "Output(Moment2Out) of AdamOp should not be null.");
auto lr_dims = ctx->GetInputDim("LearningRate");
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
"Learning rate should have 1 dimension");
// PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
// "Learning rate should have 1 dimension");
auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
"Beta1 power accumulator should have 1 dimension");
// PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
// "Beta1 power accumulator should have 1 dimension");
auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
"Beta2 power accumulator should have 1 dimension");
// PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
// "Beta2 power accumulator should have 1 dimension");
auto param_dims = ctx->GetInputDim("Param");
if (ctx->GetInputsVarType("Grad")[0] ==
framework::proto::VarType::LOD_TENSOR) {
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Grad"),
"Param and Grad input of AdamOp should have same dimension");
}
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Moment1"),
"Param and Moment1 input of AdamOp should have same dimension");
PADDLE_ENFORCE_EQ(
param_dims, ctx->GetInputDim("Moment2"),
"Param and Moment2 input of AdamOp should have same dimension");
// if (ctx->GetInputsVarType("Grad")[0] ==
// framework::proto::VarType::LOD_TENSOR) {
// PADDLE_ENFORCE_EQ(
// param_dims, ctx->GetInputDim("Grad"),
// "Param and Grad input of AdamOp should have same dimension");
// }
// PADDLE_ENFORCE_EQ(
// param_dims, ctx->GetInputDim("Moment1"),
// "Param and Moment1 input of AdamOp should have same dimension");
// PADDLE_ENFORCE_EQ(
// param_dims, ctx->GetInputDim("Moment2"),
// "Param and Moment2 input of AdamOp should have same dimension");
ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("Moment1Out", param_dims);
ctx->SetOutputDim("Moment2Out", param_dims);
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto input_data_type =
......
......@@ -92,7 +92,8 @@ def cuda_profiler(output_file, output_mode=None, config=None):
config_file = 'nvprof_config_file'
with open(config_file, 'wb') as fp:
fp.writelines([six.b("%s\n" % item) for item in config])
core.nvprof_init(output_file, output_mode, config_file)
#Comment this for nvprof
#core.nvprof_init(output_file, output_mode, config_file)
# Enables profiler collection by the active CUDA profiling tool.
core.nvprof_start()
yield
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册