未验证 提交 56a714a1 编写于 作者: A Adam 提交者: GitHub

Add isCached() machinism to oneDNN pooling primitive (#24724)

上级 a0846b62
...@@ -38,57 +38,14 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -38,57 +38,14 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Operator DNNL Pool must use CPUPlace")); "Operator DNNL Pool must use CPUPlace"));
auto& dev_ctx = auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>(); ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("X"); const Tensor* input = ctx.Input<Tensor>("X");
Tensor* output = ctx.Output<Tensor>("Out"); Tensor* output = ctx.Output<Tensor>("Out");
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN, platform::PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, mkldnn_engine,
"Wrong layout set for Input tensor"); ctx.GetPlace(), input, output,
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef, ctx.OutputName("Out"));
"Wrong format set for Input tensor");
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
bool global_pooling = ctx.Attr<bool>("global_pooling");
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
// Only 2D pooling is supported now
PADDLE_ENFORCE_EQ(ksize.size(), 2, "ksize must be 2D, i.e. 2D pooling");
PADDLE_ENFORCE_EQ(pooling_type == "max" || pooling_type == "avg", true,
"pooling_type must be 'max' or 'avg'");
PADDLE_ENFORCE_EQ(input->dims().size(), 4,
"Input dim must be with 4, i.e. NCHW");
auto input_dims = input->dims();
framework::DDim data_dims =
framework::slice_ddim(input_dims, 2, input_dims.size());
if (global_pooling) {
UpdateKsize(&ksize, data_dims);
}
UpdatePadding(&paddings, global_pooling, 0, padding_algorithm, data_dims,
strides, ksize);
auto src_tz = paddle::framework::vectorize<int64_t>(input->dims());
auto dst_tz = paddle::framework::vectorize<int64_t>(output->dims());
auto is_test = ctx.Attr<bool>("is_test");
platform::PoolingMKLDNNHandler<T> handler(
src_tz, dst_tz, ksize, strides, paddings, pooling_type,
ctx.Attr<bool>("ceil_mode"), input->format(),
paddle::framework::ToMKLDNNDataType(input->type()), is_test, dev_ctx,
ctx.GetPlace(), ctx.OutputName("Out"), ctx.Attr<bool>("exclusive"));
auto src_memory = handler.AcquireSrcMemory(input); auto src_memory = handler.AcquireSrcMemory(input);
auto dst_memory = handler.AcquireDstMemory(output); auto dst_memory = handler.AcquireDstMemory(output);
...@@ -96,7 +53,8 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -96,7 +53,8 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto pool_p = handler.AcquireForwardPrimitive(); auto pool_p = handler.AcquireForwardPrimitive();
mkldnn::stream astream(dev_ctx.GetEngine()); mkldnn::stream astream(dev_ctx.GetEngine());
if ((is_test == false) && (pooling_type == "max")) { if ((ctx.Attr<bool>("is_test") == false) &&
(ctx.Attr<std::string>("pooling_type") == "max")) {
// Training // Training
auto workspace_memory = handler.AcquireWorkspaceMemory(); auto workspace_memory = handler.AcquireWorkspaceMemory();
pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory}, pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
......
...@@ -21,6 +21,7 @@ limitations under the License. */ ...@@ -21,6 +21,7 @@ limitations under the License. */
#include "boost/optional.hpp" #include "boost/optional.hpp"
#include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
...@@ -592,30 +593,87 @@ template <typename T> ...@@ -592,30 +593,87 @@ template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward, class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward> { mkldnn::pooling_backward> {
public: public:
PoolingMKLDNNHandler( PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
const std::vector<int64_t>& src_dims, const MKLDNNDeviceContext& dev_ctx,
const std::vector<int64_t>& dst_dims, const std::vector<int64_t>& ksize, const mkldnn::engine mkldnn_engine,
const std::vector<int64_t>& strides, const std::vector<int64_t>& paddings, platform::Place cpu_place, const Tensor* input,
const std::string& pooling_type, bool ceil_mode, Tensor* output, const std::string& unique_name)
const MKLDNNMemoryFormat fmt, mkldnn::memory::data_type dt, bool is_test,
const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
const std::string& unique_name, bool exclude_padding)
: platform::MKLDNNHandlerT<T, mkldnn::pooling_forward, : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
mkldnn::pooling_backward>( mkldnn::pooling_backward>(
dev_ctx, dev_ctx.GetEngine(), cpu_place, dev_ctx, dev_ctx.GetEngine(), cpu_place,
platform::CreateKey(src_dims, dt, unique_name)) { platform::CreateKey(framework::vectorize(input->dims()),
auto src_md = mkldnn::memory::desc(src_dims, dt, fmt); framework::ToMKLDNNDataType(input->type()),
unique_name)) {
if (!this->isCached()) {
PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument(
"Wrong layout set for Input tensor"));
PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument(
"Wrong format set for Input tensor"));
const std::string pooling_type = ctx.Attr<std::string>("pooling_type");
std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));
std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
const bool global_pooling = ctx.Attr<bool>("global_pooling");
const std::string padding_algorithm =
ctx.Attr<std::string>("padding_algorithm");
// Only 2D pooling is supported now
PADDLE_ENFORCE_EQ(ksize.size(), 2,
platform::errors::InvalidArgument(
"ksize must be 2D, i.e. 2D pooling"));
PADDLE_ENFORCE_EQ(pooling_type == "max" || pooling_type == "avg", true,
platform::errors::InvalidArgument(
"pooling_type must be 'max' or 'avg'"));
PADDLE_ENFORCE_EQ(input->dims().size(), 4,
platform::errors::InvalidArgument(
"Input dim must be with 4, i.e. NCHW"));
const auto input_dims = input->dims();
framework::DDim data_dims =
framework::slice_ddim(input_dims, 2, input_dims.size());
if (global_pooling) {
operators::UpdateKsize(&ksize, data_dims);
}
operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
data_dims, strides, ksize);
const auto src_tz = paddle::framework::vectorize(input->dims());
const auto dst_tz = paddle::framework::vectorize(output->dims());
const auto is_test = ctx.Attr<bool>("is_test");
const auto dt = framework::ToMKLDNNDataType(input->type());
const auto fmt = input->format();
const auto exclude_padding = ctx.Attr<bool>("exclusive");
const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
/* create memory descriptor for pooling without specified format /* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose * ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance * the memory format preferred for best performance
*/ */
auto dst_md =
platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any); const auto dst_md =
platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
auto mkldnn_paddings = ToMkldnnPadding(paddings); auto mkldnn_paddings = ToMkldnnPadding(paddings);
const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
if (ceil_mode) { if (ceil_mode) {
CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides, CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
mkldnn_paddings[1]); mkldnn_paddings[1]);
} }
this->AcquireForwardPrimitiveDescriptor( this->AcquireForwardPrimitiveDescriptor(
...@@ -626,7 +684,9 @@ class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward, ...@@ -626,7 +684,9 @@ class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
: (exclude_padding : (exclude_padding
? mkldnn::algorithm::pooling_avg_exclude_padding ? mkldnn::algorithm::pooling_avg_exclude_padding
: mkldnn::algorithm::pooling_avg_include_padding), : mkldnn::algorithm::pooling_avg_include_padding),
src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]); src_md, dst_md, strides, ksize, mkldnn_paddings[0],
mkldnn_paddings[1]);
}
} }
PoolingMKLDNNHandler( PoolingMKLDNNHandler(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册