Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
559d3632
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
559d3632
编写于
7月 26, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Apply 2to3 to current paddle main python code
上级
3ade95d0
变更
104
隐藏空白更改
内联
并排
Showing
104 changed file
with
805 addition
and
745 deletion
+805
-745
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+4
-2
python/paddle/dataset/cifar.py
python/paddle/dataset/cifar.py
+3
-3
python/paddle/dataset/common.py
python/paddle/dataset/common.py
+14
-12
python/paddle/dataset/conll05.py
python/paddle/dataset/conll05.py
+2
-2
python/paddle/dataset/flowers.py
python/paddle/dataset/flowers.py
+4
-4
python/paddle/dataset/image.py
python/paddle/dataset/image.py
+5
-5
python/paddle/dataset/imdb.py
python/paddle/dataset/imdb.py
+4
-4
python/paddle/dataset/imikolov.py
python/paddle/dataset/imikolov.py
+2
-2
python/paddle/dataset/mnist.py
python/paddle/dataset/mnist.py
+1
-1
python/paddle/dataset/movielens.py
python/paddle/dataset/movielens.py
+4
-4
python/paddle/dataset/mq2007.py
python/paddle/dataset/mq2007.py
+2
-2
python/paddle/dataset/sentiment.py
python/paddle/dataset/sentiment.py
+6
-5
python/paddle/dataset/tests/common_test.py
python/paddle/dataset/tests/common_test.py
+3
-3
python/paddle/dataset/tests/imikolov_test.py
python/paddle/dataset/tests/imikolov_test.py
+1
-1
python/paddle/dataset/tests/test_sentiment.py
python/paddle/dataset/tests/test_sentiment.py
+2
-3
python/paddle/dataset/uci_housing.py
python/paddle/dataset/uci_housing.py
+6
-3
python/paddle/dataset/wmt14.py
python/paddle/dataset/wmt14.py
+2
-2
python/paddle/dataset/wmt16.py
python/paddle/dataset/wmt16.py
+3
-1
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+42
-42
python/paddle/fluid/annotations.py
python/paddle/fluid/annotations.py
+2
-1
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+75
-57
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+6
-7
python/paddle/fluid/concurrency.py
python/paddle/fluid/concurrency.py
+4
-4
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+3
-4
python/paddle/fluid/debugger.py
python/paddle/fluid/debugger.py
+2
-2
python/paddle/fluid/evaluator.py
python/paddle/fluid/evaluator.py
+5
-5
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+5
-5
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+63
-48
python/paddle/fluid/graphviz.py
python/paddle/fluid/graphviz.py
+4
-4
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+8
-8
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+3
-3
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+116
-101
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+8
-8
python/paddle/fluid/layers/__init__.py
python/paddle/fluid/layers/__init__.py
+19
-19
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+6
-5
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+6
-5
python/paddle/fluid/layers/device.py
python/paddle/fluid/layers/device.py
+1
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+18
-18
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+4
-4
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+4
-4
python/paddle/fluid/layers/math_op_patch.py
python/paddle/fluid/layers/math_op_patch.py
+1
-1
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+5
-4
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+1
-1
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+1
-1
python/paddle/fluid/lod_tensor.py
python/paddle/fluid/lod_tensor.py
+13
-13
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+3
-3
python/paddle/fluid/net_drawer.py
python/paddle/fluid/net_drawer.py
+6
-6
python/paddle/fluid/nets.py
python/paddle/fluid/nets.py
+7
-6
python/paddle/fluid/op.py
python/paddle/fluid/op.py
+7
-5
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+10
-10
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+14
-11
python/paddle/fluid/param_attr.py
python/paddle/fluid/param_attr.py
+3
-3
python/paddle/fluid/profiler.py
python/paddle/fluid/profiler.py
+2
-2
python/paddle/fluid/recordio_writer.py
python/paddle/fluid/recordio_writer.py
+1
-1
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+1
-1
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
...d/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
+2
-2
python/paddle/fluid/tests/book/high-level-api/image_classification/cifar10_small_test_set.py
...-level-api/image_classification/cifar10_small_test_set.py
+3
-3
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
.../image_classification/test_image_classification_resnet.py
+2
-4
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
...api/image_classification/test_image_classification_vgg.py
+2
-4
python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py
.../label_semantic_roles/test_label_semantic_roles_newapi.py
+7
-8
python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py
...level-api/machine_translation/test_machine_translation.py
+3
-3
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+10
-8
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+6
-6
python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py
...-api/recommender_system/test_recommender_system_newapi.py
+5
-4
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py
...pi/understand_sentiment/test_understand_sentiment_conv.py
+7
-9
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
...rstand_sentiment/test_understand_sentiment_dynamic_rnn.py
+7
-9
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
...stand_sentiment/test_understand_sentiment_stacked_lstm.py
+7
-9
python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py
...sts/book/high-level-api/word2vec/test_word2vec_new_api.py
+2
-2
python/paddle/fluid/tests/book/notest_understand_sentiment.py
...on/paddle/fluid/tests/book/notest_understand_sentiment.py
+6
-6
python/paddle/fluid/tests/book/test_fit_a_line.py
python/paddle/fluid/tests/book/test_fit_a_line.py
+4
-4
python/paddle/fluid/tests/book/test_image_classification.py
python/paddle/fluid/tests/book/test_image_classification.py
+3
-5
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+6
-6
python/paddle/fluid/tests/book/test_machine_translation.py
python/paddle/fluid/tests/book/test_machine_translation.py
+5
-5
python/paddle/fluid/tests/book/test_recognize_digits.py
python/paddle/fluid/tests/book/test_recognize_digits.py
+3
-4
python/paddle/fluid/tests/book/test_recommender_system.py
python/paddle/fluid/tests/book/test_recommender_system.py
+1
-1
python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py
python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py
+6
-6
python/paddle/fluid/tests/book/test_word2vec.py
python/paddle/fluid/tests/book/test_word2vec.py
+7
-5
python/paddle/fluid/tests/book_memory_optimization/test_memopt_fit_a_line.py
.../tests/book_memory_optimization/test_memopt_fit_a_line.py
+1
-1
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
...ry_optimization/test_memopt_image_classification_train.py
+2
-4
python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py
...ok_memory_optimization/test_memopt_machine_translation.py
+3
-3
python/paddle/fluid/tests/demo/fc_gan.py
python/paddle/fluid/tests/demo/fc_gan.py
+4
-4
python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py
.../fluid/tests/demo/file_reader/convert_data_to_recordio.py
+1
-1
python/paddle/fluid/tests/no_test_concurrency.py
python/paddle/fluid/tests/no_test_concurrency.py
+1
-1
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+4
-5
python/paddle/fluid/tests/test_error_clip.py
python/paddle/fluid/tests/test_error_clip.py
+0
-1
python/paddle/fluid/tests/test_if_else_op.py
python/paddle/fluid/tests/test_if_else_op.py
+6
-6
python/paddle/fluid/tests/unittests/benchmark.py
python/paddle/fluid/tests/unittests/benchmark.py
+8
-9
python/paddle/fluid/tests/unittests/benchmark_sum_op.py
python/paddle/fluid/tests/unittests/benchmark_sum_op.py
+2
-2
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+4
-4
python/paddle/fluid/tests/unittests/testsuite.py
python/paddle/fluid/tests/unittests/testsuite.py
+1
-1
python/paddle/fluid/tests/unittests/transformer_model.py
python/paddle/fluid/tests/unittests/transformer_model.py
+3
-2
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+40
-40
python/paddle/fluid/transpiler/__init__.py
python/paddle/fluid/transpiler/__init__.py
+4
-4
python/paddle/fluid/transpiler/details/__init__.py
python/paddle/fluid/transpiler/details/__init__.py
+2
-2
python/paddle/fluid/transpiler/details/program_utils.py
python/paddle/fluid/transpiler/details/program_utils.py
+2
-2
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+25
-26
python/paddle/fluid/transpiler/inference_transpiler.py
python/paddle/fluid/transpiler/inference_transpiler.py
+1
-1
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
...paddle/fluid/transpiler/memory_optimization_transpiler.py
+19
-15
python/paddle/fluid/unique_name.py
python/paddle/fluid/unique_name.py
+1
-1
python/paddle/reader/creator.py
python/paddle/reader/creator.py
+2
-2
python/paddle/reader/decorator.py
python/paddle/reader/decorator.py
+7
-6
python/paddle/reader/tests/decorator_test.py
python/paddle/reader/tests/decorator_test.py
+2
-2
tools/test_runner.py
tools/test_runner.py
+8
-4
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
559d3632
...
...
@@ -394,8 +394,10 @@ All parameter, weight, gradient are variables in Paddle.
InferenceOptimize
(
*
(
origin
.
Proto
()),
&
pruned_desc
);
return
new
ProgramDesc
(
pruned_desc
);
});
m
.
def
(
"empty_var_name"
,
[]()
{
return
framework
::
kEmptyVarName
;
});
m
.
def
(
"grad_var_suffix"
,
[]()
{
return
framework
::
kGradVarSuffix
;
});
m
.
def
(
"empty_var_name"
,
[]()
{
return
std
::
string
(
framework
::
kEmptyVarName
);
});
m
.
def
(
"grad_var_suffix"
,
[]()
{
return
std
::
string
(
framework
::
kGradVarSuffix
);
});
m
.
def_submodule
(
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
...
...
python/paddle/dataset/cifar.py
浏览文件 @
559d3632
...
...
@@ -28,7 +28,7 @@ images per class.
"""
import
cP
ickle
import
p
ickle
import
itertools
import
numpy
import
paddle.dataset.common
...
...
@@ -48,7 +48,7 @@ def reader_creator(filename, sub_name, cycle=False):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
i
zip
(
data
,
labels
):
for
sample
,
label
in
zip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader
():
...
...
@@ -58,7 +58,7 @@ def reader_creator(filename, sub_name, cycle=False):
while
True
:
for
name
in
names
:
batch
=
cP
ickle
.
load
(
f
.
extractfile
(
name
))
batch
=
p
ickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
read_batch
(
batch
):
yield
item
if
not
cycle
:
...
...
python/paddle/dataset/common.py
浏览文件 @
559d3632
...
...
@@ -20,9 +20,9 @@ import shutil
import
sys
import
importlib
import
paddle.dataset
import
cP
ickle
import
p
ickle
import
glob
import
cP
ickle
as
pickle
import
p
ickle
as
pickle
__all__
=
[
'DATA_HOME'
,
...
...
@@ -75,13 +75,13 @@ def download(url, module_name, md5sum, save_name=None):
retry_limit
=
3
while
not
(
os
.
path
.
exists
(
filename
)
and
md5file
(
filename
)
==
md5sum
):
if
os
.
path
.
exists
(
filename
):
print
"file md5"
,
md5file
(
filename
),
md5sum
print
((
"file md5"
,
md5file
(
filename
),
md5sum
))
if
retry
<
retry_limit
:
retry
+=
1
else
:
raise
RuntimeError
(
"Cannot download {0} within retry limit {1}"
.
format
(
url
,
retry_limit
))
print
"Cache file %s not found, downloading %s"
%
(
filename
,
url
)
print
((
"Cache file %s not found, downloading %s"
%
(
filename
,
url
))
)
r
=
requests
.
get
(
url
,
stream
=
True
)
total_length
=
r
.
headers
.
get
(
'content-length'
)
...
...
@@ -104,8 +104,9 @@ def download(url, module_name, md5sum, save_name=None):
def
fetch_all
():
for
module_name
in
filter
(
lambda
x
:
not
x
.
startswith
(
"__"
),
dir
(
paddle
.
dataset
)):
for
module_name
in
[
x
for
x
in
dir
(
paddle
.
dataset
)
if
not
x
.
startswith
(
"__"
)
]:
if
"fetch"
in
dir
(
importlib
.
import_module
(
"paddle.dataset.%s"
%
module_name
)):
getattr
(
...
...
@@ -114,8 +115,9 @@ def fetch_all():
def
fetch_all_recordio
(
path
):
for
module_name
in
filter
(
lambda
x
:
not
x
.
startswith
(
"__"
),
dir
(
paddle
.
dataset
)):
for
module_name
in
[
x
for
x
in
dir
(
paddle
.
dataset
)
if
not
x
.
startswith
(
"__"
)
]:
if
"convert"
in
dir
(
importlib
.
import_module
(
"paddle.dataset.%s"
%
module_name
))
and
\
not
module_name
==
"common"
:
...
...
@@ -126,7 +128,7 @@ def fetch_all_recordio(path):
"convert"
)(
ds_path
)
def
split
(
reader
,
line_count
,
suffix
=
"%05d.pickle"
,
dumper
=
cP
ickle
.
dump
):
def
split
(
reader
,
line_count
,
suffix
=
"%05d.pickle"
,
dumper
=
p
ickle
.
dump
):
"""
you can call the function as:
...
...
@@ -167,7 +169,7 @@ def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump):
def
cluster_files_reader
(
files_pattern
,
trainer_count
,
trainer_id
,
loader
=
cP
ickle
.
load
):
loader
=
p
ickle
.
load
):
"""
Create a reader that yield element from the given files, select
a file set according trainer count and trainer_id
...
...
@@ -188,7 +190,7 @@ def cluster_files_reader(files_pattern,
my_file_list
=
[]
for
idx
,
fn
in
enumerate
(
file_list
):
if
idx
%
trainer_count
==
trainer_id
:
print
"append file: %s"
%
fn
print
((
"append file: %s"
%
fn
))
my_file_list
.
append
(
fn
)
for
fn
in
my_file_list
:
with
open
(
fn
,
"r"
)
as
f
:
...
...
@@ -221,7 +223,7 @@ def convert(output_path, reader, line_count, name_prefix):
for
l
in
lines
:
# FIXME(Yancey1989):
# dumps with protocol: pickle.HIGHEST_PROTOCOL
writer
.
write
(
cP
ickle
.
dumps
(
l
))
writer
.
write
(
p
ickle
.
dumps
(
l
))
writer
.
close
()
lines
=
[]
...
...
python/paddle/dataset/conll05.py
浏览文件 @
559d3632
...
...
@@ -87,12 +87,12 @@ def corpus_reader(data_path, words_name, props_name):
sentences
=
[]
labels
=
[]
one_seg
=
[]
for
word
,
label
in
itertools
.
i
zip
(
words_file
,
props_file
):
for
word
,
label
in
zip
(
words_file
,
props_file
):
word
=
word
.
strip
()
label
=
label
.
strip
().
split
()
if
len
(
label
)
==
0
:
# end of sentence
for
i
in
x
range
(
len
(
one_seg
[
0
])):
for
i
in
range
(
len
(
one_seg
[
0
])):
a_kind_lable
=
[
x
[
i
]
for
x
in
one_seg
]
labels
.
append
(
a_kind_lable
)
...
...
python/paddle/dataset/flowers.py
浏览文件 @
559d3632
...
...
@@ -28,10 +28,10 @@ Graphics and Image Processing (2008)
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
"""
import
cP
ickle
import
p
ickle
import
itertools
import
functools
from
common
import
download
from
.
common
import
download
import
tarfile
import
scipy.io
as
scio
from
paddle.dataset.image
import
*
...
...
@@ -116,10 +116,10 @@ def reader_creator(data_file,
file
=
file
.
strip
()
batch
=
None
with
open
(
file
,
'r'
)
as
f
:
batch
=
cP
ickle
.
load
(
f
)
batch
=
p
ickle
.
load
(
f
)
data
=
batch
[
'data'
]
labels
=
batch
[
'label'
]
for
sample
,
label
in
itertools
.
i
zip
(
data
,
batch
[
'label'
]):
for
sample
,
label
in
zip
(
data
,
batch
[
'label'
]):
yield
sample
,
int
(
label
)
-
1
if
not
cycle
:
break
...
...
python/paddle/dataset/image.py
浏览文件 @
559d3632
...
...
@@ -36,7 +36,7 @@ except ImportError:
cv2
=
None
import
os
import
tarfile
import
cP
ickle
import
p
ickle
__all__
=
[
"load_image_bytes"
,
"load_image"
,
"resize_short"
,
"to_chw"
,
"center_crop"
,
...
...
@@ -86,10 +86,10 @@ def batch_images_from_tar(data_file,
output
=
{}
output
[
'label'
]
=
labels
output
[
'data'
]
=
data
cP
ickle
.
dump
(
p
ickle
.
dump
(
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'w'
),
protocol
=
cP
ickle
.
HIGHEST_PROTOCOL
)
protocol
=
p
ickle
.
HIGHEST_PROTOCOL
)
file_id
+=
1
data
=
[]
labels
=
[]
...
...
@@ -97,10 +97,10 @@ def batch_images_from_tar(data_file,
output
=
{}
output
[
'label'
]
=
labels
output
[
'data'
]
=
data
cP
ickle
.
dump
(
p
ickle
.
dump
(
output
,
open
(
'%s/batch_%d'
%
(
out_path
,
file_id
),
'w'
),
protocol
=
cP
ickle
.
HIGHEST_PROTOCOL
)
protocol
=
p
ickle
.
HIGHEST_PROTOCOL
)
with
open
(
meta_file
,
'a'
)
as
meta
:
for
file
in
os
.
listdir
(
out_path
):
...
...
python/paddle/dataset/imdb.py
浏览文件 @
559d3632
...
...
@@ -42,13 +42,13 @@ def tokenize(pattern):
# sequential access of member files, other than
# tarfile.extractfile, which does random access and might
# destroy hard disks.
tf
=
tarf
.
next
(
)
tf
=
next
(
tarf
)
while
tf
!=
None
:
if
bool
(
pattern
.
match
(
tf
.
name
)):
# newline and punctuations removal and ad-hoc tokenization.
yield
tarf
.
extractfile
(
tf
).
read
().
rstrip
(
"
\n\r
"
).
translate
(
None
,
string
.
punctuation
).
lower
().
split
()
tf
=
tarf
.
next
(
)
tf
=
next
(
tarf
)
def
build_dict
(
pattern
,
cutoff
):
...
...
@@ -62,11 +62,11 @@ def build_dict(pattern, cutoff):
word_freq
[
word
]
+=
1
# Not sure if we should prune less-frequent words here.
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
cutoff
,
word_freq
.
items
())
word_freq
=
[
x
for
x
in
list
(
word_freq
.
items
())
if
x
[
1
]
>
cutoff
]
dictionary
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
dictionary
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
=
dict
(
list
(
zip
(
words
,
list
(
range
(
len
(
words
))
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
...
...
python/paddle/dataset/imikolov.py
浏览文件 @
559d3632
...
...
@@ -64,11 +64,11 @@ def build_dict(min_word_freq=50):
# remove <unk> for now, since we will set it as last index
del
word_freq
[
'<unk>'
]
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
min_word_freq
,
word_freq
.
items
())
word_freq
=
[
x
for
x
in
list
(
word_freq
.
items
())
if
x
[
1
]
>
min_word_freq
]
word_freq_sorted
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
word_freq_sorted
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
=
dict
(
list
(
zip
(
words
,
list
(
range
(
len
(
words
))
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
...
...
python/paddle/dataset/mnist.py
浏览文件 @
559d3632
...
...
@@ -65,7 +65,7 @@ def reader_creator(image_filename, label_filename, buffer_size):
images
=
images
/
255.0
*
2.0
-
1.0
for
i
in
x
range
(
buffer_size
):
for
i
in
range
(
buffer_size
):
yield
images
[
i
,
:],
int
(
labels
[
i
])
finally
:
try
:
...
...
python/paddle/dataset/movielens.py
浏览文件 @
559d3632
...
...
@@ -187,7 +187,7 @@ def max_movie_id():
Get the maximum value of movie id.
"""
__initialize_meta_info__
()
return
reduce
(
__max_index_info__
,
MOVIE_INFO
.
viewvalues
(
)).
index
return
reduce
(
__max_index_info__
,
list
(
MOVIE_INFO
.
values
()
)).
index
def
max_user_id
():
...
...
@@ -195,7 +195,7 @@ def max_user_id():
Get the maximum value of user id.
"""
__initialize_meta_info__
()
return
reduce
(
__max_index_info__
,
USER_INFO
.
viewvalues
(
)).
index
return
reduce
(
__max_index_info__
,
list
(
USER_INFO
.
values
()
)).
index
def
__max_job_id_impl__
(
a
,
b
):
...
...
@@ -210,7 +210,7 @@ def max_job_id():
Get the maximum value of job id.
"""
__initialize_meta_info__
()
return
reduce
(
__max_job_id_impl__
,
USER_INFO
.
viewvalues
(
)).
job_id
return
reduce
(
__max_job_id_impl__
,
list
(
USER_INFO
.
values
()
)).
job_id
def
movie_categories
():
...
...
@@ -243,7 +243,7 @@ def unittest():
for
test_count
,
_
in
enumerate
(
test
()()):
pass
print
train_count
,
test_count
print
((
train_count
,
test_count
))
def
fetch
():
...
...
python/paddle/dataset/mq2007.py
浏览文件 @
559d3632
...
...
@@ -26,7 +26,7 @@ http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ20
import
os
import
functools
import
rarfile
from
common
import
download
from
.
common
import
download
import
numpy
as
np
# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
...
...
@@ -330,4 +330,4 @@ if __name__ == "__main__":
mytest
=
functools
.
partial
(
__reader__
,
filepath
=
"MQ2007/MQ2007/Fold1/sample"
,
format
=
"listwise"
)
for
label
,
query
in
mytest
():
print
label
,
query
print
((
label
,
query
))
python/paddle/dataset/sentiment.py
浏览文件 @
559d3632
...
...
@@ -43,11 +43,11 @@ def download_data_if_not_yet():
nltk
.
data
.
path
.
append
(
paddle
.
dataset
.
common
.
DATA_HOME
)
movie_reviews
.
categories
()
except
LookupError
:
print
"Downloading movie_reviews data set, please wait....."
print
(
"Downloading movie_reviews data set, please wait....."
)
nltk
.
download
(
'movie_reviews'
,
download_dir
=
paddle
.
dataset
.
common
.
DATA_HOME
)
print
"Download data set success....."
print
"Path is "
+
nltk
.
data
.
find
(
'corpora/movie_reviews'
).
path
print
(
"Download data set success....."
)
print
((
"Path is "
+
nltk
.
data
.
find
(
'corpora/movie_reviews'
).
path
))
def
get_word_dict
():
...
...
@@ -64,7 +64,7 @@ def get_word_dict():
for
field
in
movie_reviews
.
fileids
(
category
):
for
words
in
movie_reviews
.
words
(
field
):
word_freq_dict
[
words
]
+=
1
words_sort_list
=
word_freq_dict
.
items
(
)
words_sort_list
=
list
(
word_freq_dict
.
items
()
)
words_sort_list
.
sort
(
cmp
=
lambda
a
,
b
:
b
[
1
]
-
a
[
1
])
for
index
,
word
in
enumerate
(
words_sort_list
):
words_freq_sorted
.
append
((
word
[
0
],
index
))
...
...
@@ -80,7 +80,8 @@ def sort_files():
files_list
=
list
()
neg_file_list
=
movie_reviews
.
fileids
(
'neg'
)
pos_file_list
=
movie_reviews
.
fileids
(
'pos'
)
files_list
=
list
(
chain
.
from_iterable
(
zip
(
neg_file_list
,
pos_file_list
)))
files_list
=
list
(
chain
.
from_iterable
(
list
(
zip
(
neg_file_list
,
pos_file_list
))))
return
files_list
...
...
python/paddle/dataset/tests/common_test.py
浏览文件 @
559d3632
...
...
@@ -36,7 +36,7 @@ class TestCommon(unittest.TestCase):
def
test_split
(
self
):
def
test_reader
():
def
reader
():
for
x
in
x
range
(
10
):
for
x
in
range
(
10
):
yield
x
return
reader
...
...
@@ -49,7 +49,7 @@ class TestCommon(unittest.TestCase):
def
test_cluster_file_reader
(
self
):
_
,
temp_path
=
tempfile
.
mkstemp
()
for
x
in
x
range
(
5
):
for
x
in
range
(
5
):
with
open
(
temp_path
+
'/%05d.test'
%
x
)
as
f
:
f
.
write
(
'%d
\n
'
%
x
)
reader
=
paddle
.
dataset
.
common
.
cluster_files_reader
(
...
...
@@ -63,7 +63,7 @@ class TestCommon(unittest.TestCase):
def
test_reader
():
def
reader
():
for
x
in
x
range
(
record_num
):
for
x
in
range
(
record_num
):
yield
x
return
reader
...
...
python/paddle/dataset/tests/imikolov_test.py
浏览文件 @
559d3632
...
...
@@ -59,7 +59,7 @@ class TestMikolov(unittest.TestCase):
self
.
assertEqual
(
first_line
,
read_line
)
def
test_total
(
self
):
_
,
idx
=
zip
(
*
WORD_DICT
.
items
(
))
_
,
idx
=
list
(
zip
(
*
list
(
WORD_DICT
.
items
())
))
self
.
assertEqual
(
sorted
(
idx
)[
-
1
],
len
(
WORD_DICT
)
-
1
)
...
...
python/paddle/dataset/tests/test_sentiment.py
浏览文件 @
559d3632
...
...
@@ -24,9 +24,8 @@ from nltk.corpus import movie_reviews
class
TestSentimentMethods
(
unittest
.
TestCase
):
def
test_get_word_dict
(
self
):
word_dict
=
st
.
get_word_dict
()[
0
:
10
]
test_word_list
=
[(
u
','
,
0
),
(
u
'the'
,
1
),
(
u
'.'
,
2
),
(
u
'a'
,
3
),
(
u
'and'
,
4
),
(
u
'of'
,
5
),
(
u
'to'
,
6
),
(
u
"'"
,
7
),
(
u
'is'
,
8
),
(
u
'in'
,
9
)]
test_word_list
=
[(
','
,
0
),
(
'the'
,
1
),
(
'.'
,
2
),
(
'a'
,
3
),
(
'and'
,
4
),
(
'of'
,
5
),
(
'to'
,
6
),
(
"'"
,
7
),
(
'is'
,
8
),
(
'in'
,
9
)]
for
idx
,
each
in
enumerate
(
word_dict
):
self
.
assertEqual
(
each
,
test_word_list
[
idx
])
self
.
assertTrue
(
"/root/.cache/paddle/dataset"
in
nltk
.
data
.
path
)
...
...
python/paddle/dataset/uci_housing.py
浏览文件 @
559d3632
...
...
@@ -49,9 +49,12 @@ def feature_range(maximums, minimums):
import
matplotlib.pyplot
as
plt
fig
,
ax
=
plt
.
subplots
()
feature_num
=
len
(
maximums
)
ax
.
bar
(
range
(
feature_num
),
maximums
-
minimums
,
color
=
'r'
,
align
=
'center'
)
ax
.
bar
(
list
(
range
(
feature_num
)),
maximums
-
minimums
,
color
=
'r'
,
align
=
'center'
)
ax
.
set_title
(
'feature scale'
)
plt
.
xticks
(
range
(
feature_num
),
feature_names
)
plt
.
xticks
(
list
(
range
(
feature_num
)
),
feature_names
)
plt
.
xlim
([
-
1
,
feature_num
])
fig
.
set_figheight
(
6
)
fig
.
set_figwidth
(
10
)
...
...
@@ -71,7 +74,7 @@ def load_data(filename, feature_num=14, ratio=0.8):
maximums
,
minimums
,
avgs
=
data
.
max
(
axis
=
0
),
data
.
min
(
axis
=
0
),
data
.
sum
(
axis
=
0
)
/
data
.
shape
[
0
]
feature_range
(
maximums
[:
-
1
],
minimums
[:
-
1
])
for
i
in
x
range
(
feature_num
-
1
):
for
i
in
range
(
feature_num
-
1
):
data
[:,
i
]
=
(
data
[:,
i
]
-
avgs
[
i
])
/
(
maximums
[
i
]
-
minimums
[
i
])
offset
=
int
(
data
.
shape
[
0
]
*
ratio
)
UCI_TRAIN_DATA
=
data
[:
offset
]
...
...
python/paddle/dataset/wmt14.py
浏览文件 @
559d3632
...
...
@@ -154,8 +154,8 @@ def get_dict(dict_size, reverse=True):
tar_file
=
paddle
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
)
src_dict
,
trg_dict
=
__read_to_dict
(
tar_file
,
dict_size
)
if
reverse
:
src_dict
=
{
v
:
k
for
k
,
v
in
src_dict
.
items
(
)}
trg_dict
=
{
v
:
k
for
k
,
v
in
trg_dict
.
items
(
)}
src_dict
=
{
v
:
k
for
k
,
v
in
list
(
src_dict
.
items
()
)}
trg_dict
=
{
v
:
k
for
k
,
v
in
list
(
trg_dict
.
items
()
)}
return
src_dict
,
trg_dict
...
...
python/paddle/dataset/wmt16.py
浏览文件 @
559d3632
...
...
@@ -70,7 +70,9 @@ def __build_dict(tar_file, dict_size, save_path, lang):
fout
.
write
(
"%s
\n
%s
\n
%s
\n
"
%
(
START_MARK
,
END_MARK
,
UNK_MARK
))
for
idx
,
word
in
enumerate
(
sorted
(
word_dict
.
iteritems
(),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)):
iter
(
list
(
word_dict
.
items
())),
key
=
lambda
x
:
x
[
1
],
reverse
=
True
)):
if
idx
+
3
==
dict_size
:
break
fout
.
write
(
"%s
\n
"
%
(
word
[
0
]))
...
...
python/paddle/fluid/__init__.py
浏览文件 @
559d3632
...
...
@@ -14,49 +14,49 @@
from
__future__
import
print_function
# import all class inside framework into fluid module
import
framework
from
framework
import
*
from
.
import
framework
from
.
framework
import
*
# import all class inside executor into fluid module
import
executor
from
executor
import
*
import
trainer
from
trainer
import
Trainer
from
trainer
import
BeginEpochEvent
from
trainer
import
EndEpochEvent
from
trainer
import
BeginStepEvent
from
trainer
import
EndStepEvent
from
trainer
import
CheckpointConfig
import
inferencer
from
inferencer
import
Inferencer
import
io
import
evaluator
import
initializer
import
layers
import
contrib
import
nets
import
optimizer
import
backward
import
regularizer
import
average
import
metrics
import
transpiler
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
LoDTensorArray
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
,
Scope
from
transpiler
import
DistributeTranspiler
,
InferenceTranspiler
,
\
from
.
import
executor
from
.
executor
import
*
from
.
import
trainer
from
.
trainer
import
Trainer
from
.
trainer
import
BeginEpochEvent
from
.
trainer
import
EndEpochEvent
from
.
trainer
import
BeginStepEvent
from
.
trainer
import
EndStepEvent
from
.
trainer
import
CheckpointConfig
from
.
import
inferencer
from
.
inferencer
import
Inferencer
from
.
import
io
from
.
import
evaluator
from
.
import
initializer
from
.
import
layers
from
.
import
contrib
from
.
import
nets
from
.
import
optimizer
from
.
import
backward
from
.
import
regularizer
from
.
import
average
from
.
import
metrics
from
.
import
transpiler
from
.
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
.
data_feeder
import
DataFeeder
from
.
core
import
LoDTensor
,
LoDTensorArray
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
,
Scope
from
.
transpiler
import
DistributeTranspiler
,
InferenceTranspiler
,
\
memory_optimize
,
release_memory
,
DistributeTranspilerConfig
from
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
channel_close
,
Select
)
from
lod_tensor
import
create_lod_tensor
,
create_random_int_lodtensor
import
clip
import
profiler
import
unique_name
import
recordio_writer
import
parallel_executor
from
parallel_executor
import
*
from
.
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
channel_close
,
Select
)
from
.
lod_tensor
import
create_lod_tensor
,
create_random_int_lodtensor
from
.
import
clip
from
.
import
profiler
from
.
import
unique_name
from
.
import
recordio_writer
from
.
import
parallel_executor
from
.
parallel_executor
import
*
from
paddle.fluid.layers.math_op_patch
import
monkey_patch_variable
Tensor
=
LoDTensor
...
...
@@ -99,8 +99,8 @@ def __bootstrap__():
None
"""
import
sys
import
core
import
os
from
.
import
core
in_test
=
'unittest'
in
sys
.
modules
...
...
python/paddle/fluid/annotations.py
浏览文件 @
559d3632
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
functools
import
sys
...
...
@@ -28,7 +29,7 @@ def deprecated(since, instead, extra_message=""):
@
functools
.
wraps
(
func
)
def
wrapper
(
*
args
,
**
kwargs
):
print
>>
sys
.
stderr
,
err_msg
print
(
err_msg
,
file
=
sys
.
stderr
)
return
func
(
*
args
,
**
kwargs
)
wrapper
.
__doc__
+=
"
\n
"
...
...
python/paddle/fluid/backward.py
浏览文件 @
559d3632
...
...
@@ -16,7 +16,8 @@ from paddle.fluid import framework as framework
from
.
import
core
import
collections
import
copy
import
unique_name
import
six
from
.
import
unique_name
__all__
=
[
'append_backward'
]
...
...
@@ -44,17 +45,25 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
"""
op_desc
=
core
.
OpDesc
()
op_desc
.
set_type
(
op_type
)
for
para
,
args
in
inputs
.
iteritems
():
op_desc
.
set_input
(
para
,
args
)
for
para
,
args
in
outputs
.
iteritems
():
op_desc
.
set_output
(
para
,
args
)
for
para
,
args
in
list
(
inputs
.
items
()):
op_desc
.
set_input
(
para
,
list
(
map
(
lambda
arg
:
arg
.
decode
()
if
isinstance
(
arg
,
six
.
binary_type
)
else
arg
,
args
)))
for
para
,
args
in
list
(
outputs
.
items
()):
op_desc
.
set_output
(
para
,
list
(
map
(
lambda
arg
:
arg
.
decode
()
if
isinstance
(
arg
,
six
.
binary_type
)
else
arg
,
args
)))
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
if
op_role_attr_name
not
in
attrs
:
attrs
[
op_role_attr_name
]
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
for
name
,
val
in
attrs
.
iteritems
(
):
for
name
,
val
in
list
(
attrs
.
items
()
):
if
isinstance
(
val
,
framework
.
Block
):
op_desc
.
set_block_attr
(
name
,
val
.
desc
)
else
:
...
...
@@ -105,7 +114,9 @@ def _strip_grad_suffix_(name):
e.g. x@GRAD ==> x
y@GRAD@RENAME@1 ==> y
"""
pos
=
name
.
find
(
core
.
grad_var_suffix
())
if
isinstance
(
name
,
six
.
text_type
):
name
=
name
.
encode
()
pos
=
name
.
find
(
six
.
b
(
core
.
grad_var_suffix
()))
return
name
[:
pos
]
if
pos
!=
-
1
else
name
...
...
@@ -114,7 +125,9 @@ def _append_grad_suffix_(name):
Append grad suffix to the given variable name
e.g. x ==> x@GRAD
"""
return
name
+
core
.
grad_var_suffix
()
if
isinstance
(
name
,
six
.
text_type
):
name
=
name
.
encode
()
return
name
+
six
.
b
(
core
.
grad_var_suffix
())
def
_addup_repetitive_outputs_
(
op_descs
):
...
...
@@ -174,7 +187,7 @@ def _addup_repetitive_outputs_(op_descs):
op_desc
.
set_output
(
param_name
,
arg_names
)
renamed_vars
[
var_name
].
append
(
new_name
)
for
var_name
,
inputs
in
renamed_vars
.
iteritems
(
):
for
var_name
,
inputs
in
list
(
renamed_vars
.
items
()
):
if
len
(
inputs
)
>
1
:
pending_sum_ops
.
append
(
(
_create_op_desc_
(
"sum"
,
{
"X"
:
inputs
},
{
"Out"
:
[
var_name
]},
...
...
@@ -198,16 +211,19 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
out_arg_names
=
op_desc
.
output_arg_names
()
if
len
(
out_arg_names
)
==
0
or
_all_in_set_
(
out_arg_names
,
no_grad_set
):
return
True
if
_all_in_set_
(
filter
(
lambda
name
:
name
.
find
(
core
.
grad_var_suffix
())
!=
-
1
,
op_desc
.
input_arg_names
()),
no_grad_set
):
if
_all_in_set_
([
name
for
name
in
op_desc
.
input_arg_names
()
if
name
.
find
(
core
.
grad_var_suffix
())
!=
-
1
],
no_grad_set
):
no_grad_set
.
update
(
out_arg_names
)
return
True
return
False
# Remove ops whose outputs are all in no_grad_dict
op_descs
=
filter
(
lambda
op_desc
:
not
_op_can_be_removed_
(
op_desc
,
no_grad_set
),
op_descs
)
op_descs
=
[
op_desc
for
op_desc
in
op_descs
if
not
_op_can_be_removed_
(
op_desc
,
no_grad_set
)
]
# Insert fill_zeros_like_op
to_insert
=
[]
for
idx
,
op_desc
in
enumerate
(
op_descs
):
...
...
@@ -217,12 +233,12 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
"X"
:
[
_strip_grad_suffix_
(
arg
)]
},
{
"Out"
:
[
arg
]},
{}),
idx
))
map
(
lambda
p
:
op_descs
.
insert
(
p
[
1
],
p
[
0
]),
reversed
(
to_insert
)
)
list
([
op_descs
.
insert
(
p
[
1
],
p
[
0
])
for
p
in
reversed
(
to_insert
)]
)
return
op_descs
import
proto.framework_pb2
as
framework_pb2
from
.proto
import
framework_pb2
def
serialize_op_decs
(
op_desc
):
...
...
@@ -244,8 +260,10 @@ def _callback_lookup_(op):
if
op
.
type
==
'parallel_do'
and
op
.
attr
(
'use_nccl'
):
all_vars
=
op
.
block
.
vars
param_names
=
set
(
op
.
input
(
'parameters'
))
param_names
=
filter
(
lambda
name
:
all_vars
[
name
].
stop_gradient
is
False
,
param_names
)
param_names
=
[
name
for
name
in
param_names
if
all_vars
[
name
].
stop_gradient
is
False
]
param_grad_names
=
[
n
+
"@GRAD"
for
n
in
param_names
]
class
ParallelDoCallBack
(
object
):
...
...
@@ -399,7 +417,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
continue
block
.
desc
.
var
(
grad_var_name
)
new_vars
.
add
(
grad_var_name
)
if
not
grad_to_var
.
has_key
(
grad_var_name
)
:
if
grad_var_name
not
in
grad_to_var
:
continue
grad_info_map
[
grad_to_var
[
grad_var_name
]]
=
(
grad_var_name
,
block
)
# infer_shape and infer_type
...
...
@@ -427,7 +445,7 @@ def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
op_desc
.
rename_output
(
name
,
new_name
)
var_map
[
name
]
=
new_name
for
g
,
ng
in
var_map
.
iteritems
(
):
for
g
,
ng
in
list
(
var_map
.
items
()
):
if
g
in
grad_to_var
:
grad_to_var
[
ng
]
=
grad_to_var
[
g
]
grad_to_var
.
pop
(
g
)
...
...
@@ -439,7 +457,7 @@ def _get_stop_gradients_(program):
for
block
in
program
.
blocks
:
assert
isinstance
(
block
,
framework
.
Block
)
block_no_grad_set
=
set
()
for
var
in
block
.
vars
.
itervalues
(
):
for
var
in
list
(
block
.
vars
.
values
()
):
assert
isinstance
(
var
,
framework
.
Variable
)
if
var
.
stop_gradient
:
block_no_grad_set
.
add
(
_append_grad_suffix_
(
var
.
name
))
...
...
@@ -452,51 +470,51 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
"""
Append backward part to main_program.
A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to
specify its forwrd part. The backward part is generated automatically
A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to
specify its forwrd part. The backward part is generated automatically
according to the forward part by this function.
In most cases, users do not need to invoke this function manually. It
In most cases, users do not need to invoke this function manually. It
will be automatically invoked by the optimizer's `minimize` function.
Args:
loss(Variable): The loss variable of the network.
parameter_list(list[string]|None): Names of parameters that need
to be updated by optimizers.
If it is None, all parameters
parameter_list(list[string]|None): Names of parameters that need
to be updated by optimizers.
If it is None, all parameters
will be updated.
Default: None
no_grad_set(set|None): Variables in the Block 0 whose gradients
should be ignored. All variables with
`step_gradient=True` from all blocks will
no_grad_set(set|None): Variables in the Block 0 whose gradients
should be ignored. All variables with
`step_gradient=True` from all blocks will
be automatically added into this set.
Default: None
callbacks(list[callable object]|None): The callbacks are used for
doing some custom jobs during
backward part building. All
callable objects in it will
be invoked once each time a
new gradient operator is added
into the program. The callable
object must has two input
parameters: 'block' and 'context'.
The 'block' is the block which
the new gradient operator will
be added to. The 'context' is a
map, whose keys are gradient
variable names and values are
callbacks(list[callable object]|None): The callbacks are used for
doing some custom jobs during
backward part building. All
callable objects in it will
be invoked once each time a
new gradient operator is added
into the program. The callable
object must has two input
parameters: 'block' and 'context'.
The 'block' is the block which
the new gradient operator will
be added to. The 'context' is a
map, whose keys are gradient
variable names and values are
corresponding original variables.
In addition to this, the 'context'
has another special key-value pair:
the key is string '__current_op_desc__'
and the value is the op_desc of the
gradient operator who has just
triggered the callable object.
In addition to this, the 'context'
has another special key-value pair:
the key is string '__current_op_desc__'
and the value is the op_desc of the
gradient operator who has just
triggered the callable object.
Returns:
list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the
list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the
value is gradient variable.
Raises:
...
...
@@ -535,7 +553,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
no_grad_set
=
set
()
no_grad_set
=
copy
.
copy
(
no_grad_set
)
no_grad_dict
=
_get_stop_gradients_
(
program
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
no_grad_set
))
no_grad_dict
[
0
].
update
(
list
(
map
(
_append_grad_suffix_
,
no_grad_set
)
))
grad_info_map
=
dict
()
root_block
=
program
.
block
(
0
)
...
...
@@ -558,7 +576,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
op_path
=
_find_op_path_
(
root_block
,
[
loss
],
[],
block_no_grad_set
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
block_no_grad_set
))
no_grad_dict
[
0
].
update
(
list
(
map
(
_append_grad_suffix_
,
block_no_grad_set
)
))
_append_backward_ops_
(
root_block
,
op_path
,
root_block
,
no_grad_dict
,
grad_to_var
,
callbacks
)
...
...
@@ -699,7 +717,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
no_grad_set
=
set
()
no_grad_set
=
copy
.
copy
(
no_grad_set
)
no_grad_dict
=
_get_stop_gradients_
(
prog
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
no_grad_set
))
no_grad_dict
[
0
].
update
(
list
(
map
(
_append_grad_suffix_
,
no_grad_set
)
))
fwd_op_num
=
block
.
desc
.
op_size
()
...
...
@@ -733,7 +751,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
op_path
=
_find_op_path_
(
block
,
targets
,
inputs
,
block_no_grad_set
)
no_grad_dict
[
0
].
update
(
map
(
_append_grad_suffix_
,
block_no_grad_set
))
no_grad_dict
[
0
].
update
(
list
(
map
(
_append_grad_suffix_
,
block_no_grad_set
)
))
grad_to_var
=
dict
()
grad_info_map
=
dict
()
_append_backward_ops_
(
block
,
op_path
,
block
,
no_grad_dict
,
grad_to_var
)
...
...
python/paddle/fluid/clip.py
浏览文件 @
559d3632
...
...
@@ -15,8 +15,8 @@
import
copy
import
functools
import
layers
import
framework
from
.
import
layers
from
.
import
framework
from
.
import
core
__all__
=
[
...
...
@@ -80,8 +80,7 @@ def error_clip_callback(block, context):
# the context is a grad_to_var map
grad_to_var
=
context
op_desc
=
block
.
desc
.
op
(
block
.
desc
.
op_size
()
-
1
)
for
grad_n
in
filter
(
lambda
n
:
grad_to_var
.
has_key
(
n
),
op_desc
.
output_arg_names
()):
for
grad_n
in
[
n
for
n
in
op_desc
.
output_arg_names
()
if
n
in
grad_to_var
]:
fwd_var
=
block
.
_var_recursive
(
grad_to_var
[
grad_n
])
error_clip
=
getattr
(
fwd_var
,
"error_clip"
,
None
)
if
not
(
error_clip
is
None
or
isinstance
(
error_clip
,
...
...
@@ -247,7 +246,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
"""
def
__init__
(
self
,
clip_norm
,
group_name
=
"default_group"
):
if
not
isinstance
(
group_name
,
basestring
):
if
not
isinstance
(
group_name
,
str
):
raise
TypeError
(
"'group_name' must be a basestring."
)
self
.
clip_norm
=
clip_norm
...
...
@@ -284,7 +283,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
x
=
clip_var
,
y
=
layers
.
elementwise_max
(
x
=
clip_var
,
y
=
group_norm_var
))
assert
group_scale_var
.
shape
==
(
1
L
,
)
assert
group_scale_var
.
shape
==
(
1
,
)
self
.
context
[
group_scale_name
]
=
group_scale_var
new_grad
=
layers
.
elementwise_mul
(
...
...
@@ -313,7 +312,7 @@ def set_gradient_clip(clip, param_list=None, program=None):
program
=
framework
.
default_main_program
()
if
param_list
is
None
:
param_list
=
program
.
block
(
0
).
all_parameters
()
if
all
(
isinstance
(
elem
,
basestring
)
for
elem
in
param_list
):
if
all
(
isinstance
(
elem
,
str
)
for
elem
in
param_list
):
param_list
=
[
program
.
block
(
0
).
var
(
elem
)
for
elem
in
param_list
]
if
not
all
(
isinstance
(
elem
,
framework
.
Parameter
)
for
elem
in
param_list
):
raise
TypeError
(
...
...
python/paddle/fluid/concurrency.py
浏览文件 @
559d3632
...
...
@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
layers.control_flow
import
BlockGuard
,
equal
from
.
layers.control_flow
import
BlockGuard
,
equal
from
.framework
import
Operator
from
layer_helper
import
LayerHelper
,
unique_name
from
layers
import
fill_constant
import
core
from
.
layer_helper
import
LayerHelper
,
unique_name
from
.
layers
import
fill_constant
from
.
import
core
__all__
=
[
'Go'
,
'make_channel'
,
'channel_send'
,
'channel_recv'
,
'channel_close'
,
...
...
python/paddle/fluid/data_feeder.py
浏览文件 @
559d3632
...
...
@@ -12,14 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
core
from
.
import
core
import
numpy
import
os
import
six.moves
as
six
import
multiprocessing
from
framework
import
Variable
,
default_main_program
from
.
framework
import
Variable
,
default_main_program
__all__
=
[
'DataFeeder'
]
...
...
@@ -142,7 +141,7 @@ class DataFeeder(object):
if
program
is
None
:
program
=
default_main_program
()
for
each_var
in
feed_list
:
if
isinstance
(
each_var
,
basestring
):
if
isinstance
(
each_var
,
str
):
each_var
=
program
.
block
(
0
).
var
(
each_var
)
if
not
isinstance
(
each_var
,
Variable
):
raise
TypeError
(
"Feed list should contain a list of variable"
)
...
...
python/paddle/fluid/debugger.py
浏览文件 @
559d3632
...
...
@@ -14,8 +14,8 @@
import
sys
import
re
from
graphviz
import
GraphPreviewGenerator
import
proto.framework_pb2
as
framework_pb2
from
.
graphviz
import
GraphPreviewGenerator
from
.proto
import
framework_pb2
from
google.protobuf
import
text_format
_vartype2str_
=
[
...
...
python/paddle/fluid/evaluator.py
浏览文件 @
559d3632
...
...
@@ -15,11 +15,11 @@
import
warnings
import
numpy
as
np
import
layers
from
framework
import
Program
,
Variable
,
program_guard
import
unique_name
from
layer_helper
import
LayerHelper
from
initializer
import
Constant
from
.
import
layers
from
.
framework
import
Program
,
Variable
,
program_guard
from
.
import
unique_name
from
.
layer_helper
import
LayerHelper
from
.
initializer
import
Constant
__all__
=
[
'ChunkEvaluator'
,
...
...
python/paddle/fluid/executor.py
浏览文件 @
559d3632
...
...
@@ -14,7 +14,7 @@
import
numpy
as
np
import
contextlib
from
framework
import
Program
,
default_main_program
,
Variable
from
.
framework
import
Program
,
default_main_program
,
Variable
from
.
import
core
__all__
=
[
...
...
@@ -204,19 +204,19 @@ def fetch_var(name, scope=None, return_numpy=True):
def
_get_program_cache_key
(
feed
,
fetch_list
):
feed_var_names
=
feed
.
keys
(
)
feed_var_names
=
list
(
feed
.
keys
()
)
def
to_name_str
(
var
):
if
isinstance
(
var
,
Variable
):
return
var
.
desc
.
name
()
elif
isinstance
(
var
,
str
):
return
var
elif
isinstance
(
var
,
basestring
):
elif
isinstance
(
var
,
str
):
return
str
(
var
)
else
:
raise
TypeError
(
str
(
var
)
+
" should be Variable or str"
)
fetch_var_names
=
map
(
to_name_str
,
fetch_list
)
fetch_var_names
=
list
(
map
(
to_name_str
,
fetch_list
)
)
return
str
(
feed_var_names
+
fetch_var_names
)
...
...
@@ -345,7 +345,7 @@ class Executor(object):
def
_fetch_data
(
self
,
fetch_list
,
fetch_var_name
,
scope
):
outs
=
[
core
.
get_fetch_variable
(
scope
,
fetch_var_name
,
i
)
for
i
in
x
range
(
len
(
fetch_list
))
for
i
in
range
(
len
(
fetch_list
))
]
return
outs
...
...
python/paddle/fluid/framework.py
浏览文件 @
559d3632
...
...
@@ -15,21 +15,22 @@
import
collections
import
contextlib
import
re
import
six
import
numpy
as
np
import
proto.framework_pb2
as
framework_pb2
from
.proto
import
framework_pb2
try
:
from
.
import
core
except
ImportError
,
e
:
except
ImportError
as
e
:
raise
ImportError
(
"""NOTE: You may need to run
\"
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
\"
if you encounters
\"
libmkldnn.so not found
\"
errors. If you have python
installed in other directory, replace
\"
/usr/local/lib
\"
with your own
directory. The original error is:
\n
"""
+
e
.
message
)
except
Exception
,
e
:
except
Exception
as
e
:
raise
e
import
unique_name
from
.
import
unique_name
__all__
=
[
'Program'
,
...
...
@@ -86,7 +87,7 @@ def convert_np_dtype_to_dtype_(np_dtype):
elif
dtype
==
np
.
uint8
:
return
core
.
VarDesc
.
VarType
.
UINT8
else
:
raise
ValueError
(
"Not supported numpy dtype "
+
s
tr
(
dtype
))
raise
ValueError
(
"Not supported numpy dtype "
+
s
ix
.
binary_type
(
dtype
))
def
dtype_is_floating
(
dtype
):
...
...
@@ -129,15 +130,15 @@ def _debug_string_(proto, throw_on_error=True):
class
Variable
(
object
):
"""
In Fluid, every input and output of an operator is a variable. In most
cases, variables are used for holding different kinds of data or training
labels. A variable belongs to a block. All variable has its own name and
In Fluid, every input and output of an operator is a variable. In most
cases, variables are used for holding different kinds of data or training
labels. A variable belongs to a block. All variable has its own name and
two variables in different blocks could have the same name.
There are many kinds of variables. Each kind of them has its own attributes
and usages. Please reference the framework.proto for details.
There are many kinds of variables. Each kind of them has its own attributes
and usages. Please reference the framework.proto for details.
Most of a Variable's member variables can be setted to be None. It mean
Most of a Variable's member variables can be setted to be None. It mean
it is not available or will be specified later.
Args:
...
...
@@ -197,6 +198,7 @@ class Variable(object):
if
name
is
None
:
name
=
unique_name
.
generate
(
'_generated_var'
)
is_new_var
=
False
name
=
name
if
isinstance
(
name
,
six
.
binary_type
)
else
name
.
encode
()
self
.
desc
=
self
.
block
.
desc
.
find_var
(
name
)
if
self
.
desc
is
None
:
...
...
@@ -290,13 +292,13 @@ class Variable(object):
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
bool
)
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
VarDesc
.
FromString
(
s
tr
(
protostr
))
proto
=
framework_pb2
.
VarDesc
.
FromString
(
s
ix
.
binary_type
(
protostr
))
res_str
=
_debug_string_
(
proto
,
throw_on_error
)
if
with_details
:
additional_attr
=
(
"error_clip"
,
"stop_gradient"
)
for
attr_name
in
additional_attr
:
res_str
+=
"%s: %s
\n
"
%
(
attr_name
,
str
(
getattr
(
self
,
attr_name
)))
res_str
+=
"%s: %s
\n
"
%
(
attr_name
,
six
.
binary_type
(
getattr
(
self
,
attr_name
)))
return
res_str
__repr__
=
__str__
...
...
@@ -369,7 +371,7 @@ def get_all_op_protos():
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
for
pbstr
in
protostrs
:
op_proto
=
framework_pb2
.
OpProto
.
FromString
(
s
tr
(
pbstr
))
op_proto
=
framework_pb2
.
OpProto
.
FromString
(
s
ix
.
binary_type
(
pbstr
))
ret_values
.
append
(
op_proto
)
return
ret_values
...
...
@@ -472,7 +474,6 @@ class Operator(object):
inputs
=
None
,
outputs
=
None
,
attrs
=
None
):
self
.
block
=
block
self
.
desc
=
desc
self
.
attrs
=
attrs
...
...
@@ -523,10 +524,15 @@ class Operator(object):
%
(
in_proto
.
name
,
len
(
in_args
)))
in_arg_names
=
[]
for
arg
in
in_args
:
if
is
instance
(
arg
,
basestring
):
if
is
subclass
(
arg
.
__class__
,
six
.
string_types
):
in_arg_names
.
append
(
arg
)
elif
isinstance
(
arg
,
six
.
binary_type
):
in_arg_names
.
append
(
arg
.
decode
())
else
:
in_arg_names
.
append
(
arg
.
name
)
if
issubclass
(
arg
.
name
.
__class__
,
six
.
string_types
):
in_arg_names
.
append
(
arg
.
name
)
elif
isinstance
(
arg
.
name
,
six
.
binary_type
):
in_arg_names
.
append
(
arg
.
name
.
decode
())
self
.
desc
.
set_input
(
in_proto
.
name
,
in_arg_names
)
else
:
self
.
desc
.
set_input
(
in_proto
.
name
,
[])
...
...
@@ -541,8 +547,9 @@ class Operator(object):
if
not
given
==
need
:
raise
ValueError
((
"Incorrect setting for output(s) of "
"operator
\"
%s
\"
. Need: [%s] Given: [%s]"
)
%
(
type
,
", "
.
join
(
str
(
e
)
for
e
in
need
),
", "
.
join
(
str
(
e
)
for
e
in
given
)))
(
type
,
", "
.
join
(
six
.
binary_type
(
e
)
for
e
in
need
),
", "
.
join
(
six
.
binary_type
(
e
)
for
e
in
given
)))
for
out_proto
in
proto
.
outputs
:
out_args
=
outputs
[
out_proto
.
name
]
...
...
@@ -554,7 +561,12 @@ class Operator(object):
(
out_proto
.
name
,
len
(
out_args
)))
out_arg_names
=
[]
for
arg
in
out_args
:
out_arg_names
.
append
(
arg
.
name
)
if
issubclass
(
arg
.
name
.
__class__
,
six
.
string_types
):
out_arg_names
.
append
(
arg
.
name
)
elif
isinstance
(
arg
.
name
,
six
.
binary_type
):
out_arg_names
.
append
(
arg
.
name
.
decode
())
else
:
out_arg_names
.
append
(
six
.
u
(
arg
.
name
))
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
...
...
@@ -590,7 +602,7 @@ class Operator(object):
"""
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
OpDesc
.
FromString
(
s
tr
(
protostr
))
proto
=
framework_pb2
.
OpDesc
.
FromString
(
s
ix
.
binary_type
(
protostr
))
return
_debug_string_
(
proto
,
throw_on_error
)
def
__str__
(
self
):
...
...
@@ -845,7 +857,7 @@ class Block(object):
re_add_indent
=
re
.
compile
(
r
"\n(.)"
)
res_str
=
"blocks {
\n
idx: %d
\n
parent_idx: %d"
%
(
self
.
idx
,
self
.
parent_idx
)
for
var
in
self
.
vars
.
itervalues
(
):
for
var
in
list
(
self
.
vars
.
values
()
):
res_str
+=
"
\n
vars {
\n
%s }"
%
re_add_indent
.
sub
(
r
"\n \1"
,
var
.
to_string
(
throw_on_error
,
with_details
))
for
op
in
self
.
ops
:
...
...
@@ -854,7 +866,8 @@ class Block(object):
res_str
+=
"
\n
}"
else
:
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
BlockDesc
.
FromString
(
str
(
protostr
))
proto
=
framework_pb2
.
BlockDesc
.
FromString
(
six
.
binary_type
(
protostr
))
res_str
=
_debug_string_
(
proto
,
throw_on_error
)
return
res_str
...
...
@@ -898,10 +911,11 @@ class Block(object):
Returns:
Variable: the Variable with the giving name.
"""
if
not
isinstance
(
name
,
basestring
):
raise
TypeError
(
"var require string as parameter, but get %s instead."
%
(
type
(
name
)))
if
not
issubclass
(
name
.
__class__
,
six
.
string_types
):
if
not
isinstance
(
name
,
six
.
binary_type
):
raise
TypeError
(
"var require string as parameter, but get %s instead."
%
(
type
(
name
)))
v
=
self
.
vars
.
get
(
name
,
None
)
if
v
is
None
:
raise
ValueError
(
"var %s not in this block"
%
name
)
...
...
@@ -949,10 +963,10 @@ class Block(object):
raise
ValueError
(
"Var {0} is not found recursively"
.
format
(
name
))
def
all_parameters
(
self
):
return
list
(
self
.
_
iter_parameters
())
return
list
(
self
.
iter_parameters
())
def
_
iter_parameters
(
self
):
return
(
item
[
1
]
for
item
in
self
.
vars
.
iteritems
(
)
def
iter_parameters
(
self
):
return
(
item
[
1
]
for
item
in
list
(
self
.
vars
.
items
()
)
if
isinstance
(
item
[
1
],
Parameter
))
def
create_var
(
self
,
*
args
,
**
kwargs
):
...
...
@@ -1113,7 +1127,7 @@ class Block(object):
self
.
create_var
(
name
=
var
.
name
(),
desc
=
var
,
type
=
var
.
type
())
# sync variables removed from c++ end
for
var
in
self
.
vars
.
keys
(
):
for
var
in
list
(
self
.
vars
.
keys
()
):
if
not
self
.
desc
.
find_var
(
var
):
self
.
vars
.
pop
(
var
)
...
...
@@ -1185,7 +1199,7 @@ class Block(object):
if
not
isinstance
(
other
,
Block
):
raise
TypeError
(
"_copy_param_info_from should be invoked with Block"
)
for
p
in
other
.
_
iter_parameters
():
for
p
in
other
.
iter_parameters
():
assert
isinstance
(
p
,
Parameter
)
v
=
self
.
vars
.
get
(
p
.
name
,
None
)
if
v
is
None
:
...
...
@@ -1384,7 +1398,8 @@ class Program(object):
res_str
+=
block
.
to_string
(
throw_on_error
,
with_details
)
else
:
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
ProgramDesc
.
FromString
(
str
(
protostr
))
proto
=
framework_pb2
.
ProgramDesc
.
FromString
(
six
.
binary_type
(
protostr
))
res_str
=
_debug_string_
(
proto
,
throw_on_error
)
return
res_str
...
...
@@ -1482,7 +1497,7 @@ class Program(object):
else
:
p
=
Program
()
p
.
desc
=
core
.
ProgramDesc
(
self
.
desc
)
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
x
range
(
self
.
desc
.
num_blocks
())]
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
range
(
self
.
desc
.
num_blocks
())]
p
.
_sync_with_cpp
()
p
.
_copy_param_info_from
(
self
)
...
...
@@ -1534,7 +1549,7 @@ class Program(object):
targets_idx
.
append
([
t
.
block
.
idx
,
t
.
idx
])
res
=
Program
()
res
.
desc
=
core
.
prune
(
self
.
desc
,
targets_idx
)
res
.
blocks
=
[
Block
(
res
,
i
)
for
i
in
x
range
(
res
.
desc
.
num_blocks
())]
res
.
blocks
=
[
Block
(
res
,
i
)
for
i
in
range
(
res
.
desc
.
num_blocks
())]
res
.
_sync_with_cpp
()
return
res
...
...
@@ -1554,13 +1569,13 @@ class Program(object):
# core.inference_optimize being fixed.
res
=
Program
()
res
.
desc
=
core
.
ProgramDesc
(
self
.
desc
)
for
i
in
x
range
(
res
.
desc
.
num_blocks
()):
for
i
in
range
(
res
.
desc
.
num_blocks
()):
block
=
res
.
desc
.
block
(
i
)
for
j
in
x
range
(
block
.
op_size
()):
for
j
in
range
(
block
.
op_size
()):
op
=
block
.
op
(
j
)
if
op
.
has_attr
(
'is_test'
):
op
.
set_attr
(
'is_test'
,
True
)
res
.
blocks
=
[
Block
(
res
,
i
)
for
i
in
x
range
(
res
.
desc
.
num_blocks
())]
res
.
blocks
=
[
Block
(
res
,
i
)
for
i
in
range
(
res
.
desc
.
num_blocks
())]
res
.
_sync_with_cpp
()
return
res
...
...
@@ -1573,14 +1588,14 @@ class Program(object):
and deserialization.
Args:
binary_str(str): The binary prootbuf string.
binary_str
_type
(str): The binary prootbuf string.
Returns:
Program: A deserialized program desc.
"""
p
=
Program
()
p
.
desc
=
core
.
ProgramDesc
(
binary_str
)
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
x
range
(
p
.
desc
.
num_blocks
())]
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
range
(
p
.
desc
.
num_blocks
())]
p
.
_sync_with_cpp
()
return
p
...
...
@@ -1608,7 +1623,7 @@ class Program(object):
self
.
_seed
=
seed
def
__repr__
(
self
):
return
s
tr
(
self
)
return
s
elf
.
__str__
(
)
def
global_block
(
self
):
"""
...
...
@@ -1719,7 +1734,7 @@ class Program(object):
if
len
(
self
.
blocks
)
!=
len
(
other
.
blocks
):
raise
ValueError
(
"_copy_param_info_from should be invoked with two "
"program, with represent the same topology"
)
for
var
in
other
.
global_block
().
vars
.
itervalues
(
):
for
var
in
list
(
other
.
global_block
().
vars
.
values
()
):
if
var
.
is_data
:
self
.
global_block
().
var
(
var
.
name
).
is_data
=
True
...
...
@@ -1731,15 +1746,15 @@ class Program(object):
iterable: The generator will yield every variable in this program.
"""
for
each_block
in
self
.
blocks
:
for
each_var
in
each_block
.
vars
.
itervalues
(
):
for
each_var
in
list
(
each_block
.
vars
.
values
()
):
yield
each_var
class
Parameter
(
Variable
):
"""
Parameter is derived from Variable. A parameter is a persistable
Parameter is derived from Variable. A parameter is a persistable
Variable, and will be updated by optimizers after each iteration.
The training of a neural network is essentially the updating of
The training of a neural network is essentially the updating of
its parameters.
Relative to a general Variable, a Parameter has several its own
...
...
@@ -1805,8 +1820,8 @@ class Parameter(Variable):
additional_attr
=
(
"trainable"
,
"optimize_attr"
,
"regularizer"
,
"gradient_clip_attr"
,
"do_model_average"
)
for
attr_name
in
additional_attr
:
res_str
+=
"%s: %s
\n
"
%
(
attr_name
,
str
(
getattr
(
self
,
attr_name
)))
res_str
+=
"%s: %s
\n
"
%
(
attr_name
,
six
.
binary_type
(
getattr
(
self
,
attr_name
)))
else
:
res_str
=
Variable
.
to_string
(
self
,
throw_on_error
,
False
)
return
res_str
...
...
python/paddle/fluid/graphviz.py
浏览文件 @
559d3632
...
...
@@ -19,7 +19,7 @@ import logging
def
crepr
(
v
):
if
type
(
v
)
is
str
or
type
(
v
)
is
unicode
:
if
type
(
v
)
is
str
or
type
(
v
)
is
str
:
return
'"%s"'
%
v
return
str
(
v
)
...
...
@@ -104,7 +104,7 @@ class Graph(object):
def
_rank_repr
(
self
):
ranks
=
sorted
(
self
.
rank_groups
.
items
(
),
list
(
self
.
rank_groups
.
items
()
),
cmp
=
lambda
a
,
b
:
a
[
1
].
priority
>
b
[
1
].
priority
)
repr
=
[]
for
x
in
ranks
:
...
...
@@ -148,7 +148,7 @@ class Node(object):
name
=
self
.
name
,
label
=
self
.
label
,
extra
=
','
+
','
.
join
(
"%s=%s"
%
(
key
,
crepr
(
value
))
for
key
,
value
in
self
.
attrs
.
items
(
))
for
key
,
value
in
list
(
self
.
attrs
.
items
()
))
if
self
.
attrs
else
""
)
return
reprs
...
...
@@ -172,7 +172,7 @@ class Edge(object):
target
=
self
.
target
.
name
,
extra
=
""
if
not
self
.
attrs
else
"["
+
','
.
join
(
"{}={}"
.
format
(
attr
[
0
],
crepr
(
attr
[
1
]))
for
attr
in
self
.
attrs
.
items
(
))
+
"]"
)
for
attr
in
list
(
self
.
attrs
.
items
()
))
+
"]"
)
return
repr
...
...
python/paddle/fluid/inferencer.py
浏览文件 @
559d3632
...
...
@@ -14,14 +14,14 @@
import
contextlib
import
core
import
executor
import
framework
import
io
import
parallel_executor
import
unique_name
from
trainer
import
check_and_get_place
from
.
import
core
from
.
import
executor
from
.
import
framework
from
.
import
io
from
.
import
parallel_executor
from
.
import
unique_name
from
.
trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
...
...
python/paddle/fluid/initializer.py
浏览文件 @
559d3632
...
...
@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
framework
from
.
import
framework
import
numpy
as
np
import
contextlib
from
framework
import
convert_np_dtype_to_dtype_
from
core
import
VarDesc
from
.
framework
import
convert_np_dtype_to_dtype_
from
.
core
import
VarDesc
__all__
=
[
'Constant'
,
'Uniform'
,
'Normal'
,
'Xavier'
,
'Bilinear'
,
'MSRA'
,
...
...
python/paddle/fluid/io.py
浏览文件 @
559d3632
...
...
@@ -16,6 +16,7 @@ import os
import
errno
import
time
import
shutil
import
six
from
paddle.fluid.evaluator
import
Evaluator
from
paddle.fluid.framework
import
Program
,
Parameter
,
default_main_program
,
default_startup_program
,
Variable
...
...
@@ -92,34 +93,34 @@ def save_vars(executor,
"""
Save variables to the given directory by executor.
There are two ways to specify variables to be saved: The first way, list
variables in a list and assign it to the `vars`. The second way, assign the
`main_program` with an existing program, then all variables in the program
will be saved. The first way has a higher priority. In other words, if `vars`
There are two ways to specify variables to be saved: The first way, list
variables in a list and assign it to the `vars`. The second way, assign the
`main_program` with an existing program, then all variables in the program
will be saved. The first way has a higher priority. In other words, if `vars`
are assigned, the `main_program` and the `predicate` will be ignored.
The `dirname` are used to specify the folder where to save variables.
If you prefer to save variables in separate files in the folder `dirname`,
set `filename` None; if you prefer to save all variables in a single file,
The `dirname` are used to specify the folder where to save variables.
If you prefer to save variables in separate files in the folder `dirname`,
set `filename` None; if you prefer to save all variables in a single file,
use `filename` to specify it.
Args:
executor(Executor): The executor to run for saving variables.
dirname(str): The directory path.
main_program(Program|None): The program whose variables will be saved.
If it is None, the default main program will
main_program(Program|None): The program whose variables will be saved.
If it is None, the default main program will
be used automatically.
Default: None
vars(list[Variable]|None): The list that contains all variables to save.
vars(list[Variable]|None): The list that contains all variables to save.
It has a higher priority than the `main_program`.
Default: None
predicate(function|None): If it is not None, only variables in the
`main_program` that makes predicate(variable)==True
will be saved. It only works when we are using the
`main_program` to specify variables (In other words
predicate(function|None): If it is not None, only variables in the
`main_program` that makes predicate(variable)==True
will be saved. It only works when we are using the
`main_program` to specify variables (In other words
`vars` is None).
Default: None
filename(str|None): The file which to save all variables. If you prefer to save
filename(str|None): The file which to save all variables. If you prefer to save
variables separately, set it to None.
Default: None
...
...
@@ -149,7 +150,7 @@ def save_vars(executor,
# The second usage: using `vars` to specify variables
var_list = [var_a, var_b, var_c]
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# var_a, var_b and var_c will be saved. And they are going to be
# saved in the same file named 'var_file' in the path "./my_paddle_model".
...
...
@@ -163,7 +164,7 @@ def save_vars(executor,
save_vars
(
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
main_program
.
list_vars
(
)),
vars
=
list
(
filter
(
predicate
,
main_program
.
list_vars
()
)),
filename
=
filename
)
else
:
save_program
=
Program
()
...
...
@@ -203,14 +204,14 @@ def save_params(executor, dirname, main_program=None, filename=None):
This function filters out all parameters from the give `main_program`
and then save them to the folder `dirname` or the file `filename`.
Use the `dirname` to specify the saving folder. If you would like to
save parameters in separate files, set `filename` None; if you would
like to save all parameters in a single file, use `filename` to specify
Use the `dirname` to specify the saving folder. If you would like to
save parameters in separate files, set `filename` None; if you would
like to save all parameters in a single file, use `filename` to specify
the file name.
NOTICE: Some variables are not Parameter while they are necessary for
training. So you can NOT save and continue your training just by
`save_params()` and `load_params()`. Please use `save_persistables()`
NOTICE: Some variables are not Parameter while they are necessary for
training. So you can NOT save and continue your training just by
`save_params()` and `load_params()`. Please use `save_persistables()`
and `load_persistables()` instead.
Args:
...
...
@@ -220,8 +221,8 @@ def save_params(executor, dirname, main_program=None, filename=None):
saved. If it is None, the default
main program will be used automatically.
Default: None
filename(str|None): The file to save all parameters. If you prefer
to save parameters in differnet files, set it
filename(str|None): The file to save all parameters. If you prefer
to save parameters in differnet files, set it
to None.
Default: None
...
...
@@ -234,7 +235,7 @@ def save_params(executor, dirname, main_program=None, filename=None):
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.save_params(executor=exe, dirname=param_path,
fluid.io.save_params(executor=exe, dirname=param_path,
main_program=None)
"""
save_vars
(
...
...
@@ -248,23 +249,23 @@ def save_params(executor, dirname, main_program=None, filename=None):
def
save_persistables
(
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
"""
This function filters out all variables with `persistable==True` from the
give `main_program` and then saves these variables to the folder `dirname`
This function filters out all variables with `persistable==True` from the
give `main_program` and then saves these variables to the folder `dirname`
or file `filename`.
The `dirname` is used to specify the folder where persistable variables
are going to be saved. If you would like to save variables in separate
files, set `filename` None; if you would like to save all variables in a
The `dirname` is used to specify the folder where persistable variables
are going to be saved. If you would like to save variables in separate
files, set `filename` None; if you would like to save all variables in a
single file, use `filename` to specify the file name.
Args:
executor(Executor): The executor to run for saving persistable variables.
dirname(str): The directory path.
main_program(Program|None): The program whose persistbale variables will
be saved. If it is None, the default main
main_program(Program|None): The program whose persistbale variables will
be saved. If it is None, the default main
program will be used automatically.
Default: None
filename(str|None): The file to saved all variables. If you prefer to
filename(str|None): The file to saved all variables. If you prefer to
save variables in differnet files, set it to None.
Default: None
...
...
@@ -277,7 +278,7 @@ def save_persistables(executor, dirname, main_program=None, filename=None):
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.save_persistables(executor=exe, dirname=param_path,
fluid.io.save_persistables(executor=exe, dirname=param_path,
main_program=None)
"""
save_vars
(
...
...
@@ -298,34 +299,34 @@ def load_vars(executor,
"""
Load variables from the given directory by executor.
There are two ways to specify variables to be loaded: The first way, list
variables in a list and assign it to the `vars`. The second way, assign the
`main_program` with an existing program, then all variables in the program
will be loaded. The first way has a higher priority. In other words if `vars`
There are two ways to specify variables to be loaded: The first way, list
variables in a list and assign it to the `vars`. The second way, assign the
`main_program` with an existing program, then all variables in the program
will be loaded. The first way has a higher priority. In other words if `vars`
are assigned, the `main_program` and the `predicate` will be ignored.
The `dirname` are used to specify the folder where to load variables.
If variables were saved in separate files in the folder `dirname`,
set `filename` None; if all variables were saved in a single file,
The `dirname` are used to specify the folder where to load variables.
If variables were saved in separate files in the folder `dirname`,
set `filename` None; if all variables were saved in a single file,
use `filename` to specify it.
Args:
executor(Executor): The executor to run for loading variables.
dirname(str): The directory path.
main_program(Program|None): The program whose variables will be loaded.
If it is None, the default main program will
main_program(Program|None): The program whose variables will be loaded.
If it is None, the default main program will
be used automatically.
Default: None
vars(list[Variable]|None): The list that contains all variables to load.
vars(list[Variable]|None): The list that contains all variables to load.
It has a higher priority than the `main_program`.
Default: None
predicate(function|None): If it is not None, only variables in the
`main_program` that makes predicate(variable)==True
will be loaded. It only works when we are using the
`main_program` to specify variables (In other words
predicate(function|None): If it is not None, only variables in the
`main_program` that makes predicate(variable)==True
will be loaded. It only works when we are using the
`main_program` to specify variables (In other words
`vars` is None).
Default: None
filename(str|None): The file which saved all required variables. If variables
filename(str|None): The file which saved all required variables. If variables
were saved in differnet files, set it to None.
Default: None
...
...
@@ -355,9 +356,9 @@ def load_vars(executor,
# The second usage: using `vars` to specify variables
var_list = [var_a, var_b, var_c]
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
filename="vars_file")
# var_a, var_b and var_c will be loaded. And they are supposed to haven
# var_a, var_b and var_c will be loaded. And they are supposed to haven
# been saved in the same file named 'var_file' in the path "./my_paddle_model".
"""
if
vars
is
None
:
...
...
@@ -369,7 +370,7 @@ def load_vars(executor,
load_vars
(
executor
,
dirname
=
dirname
,
vars
=
filter
(
predicate
,
main_program
.
list_vars
(
)),
vars
=
list
(
filter
(
predicate
,
main_program
.
list_vars
()
)),
filename
=
filename
)
else
:
load_prog
=
Program
()
...
...
@@ -410,15 +411,15 @@ def load_params(executor, dirname, main_program=None, filename=None):
and then trys to load these parameters from the folder `dirname` or
the file `filename`.
Use the `dirname` to specify the folder where parameters were saved. If
parameters were saved in separate files in the folder `dirname`, set
`filename` None; if all parameters were saved in a single file, use
Use the `dirname` to specify the folder where parameters were saved. If
parameters were saved in separate files in the folder `dirname`, set
`filename` None; if all parameters were saved in a single file, use
`filename` to specify the file name.
NOTICE: Some variables are not Parameter while they are necessary for
training. So you can NOT save and continue your training just by
`save_params()` and `load_params()`. Please use `save_persistables()`
and `load_persistables()` instead.
NOTICE: Some variables are not Parameter while they are necessary for
training. So you can NOT save and continue your training just by
`save_params()` and `load_params()`. Please use `save_persistables()`
and `load_persistables()` instead.
Args:
executor(Executor): The executor to run for loading parameters.
...
...
@@ -427,7 +428,7 @@ def load_params(executor, dirname, main_program=None, filename=None):
loaded. If it is None, the default
main program will be used automatically.
Default: None
filename(str|None): The file which saved all parameters. If parameters
filename(str|None): The file which saved all parameters. If parameters
were saved in differnet files, set it to None.
Default: None
...
...
@@ -440,7 +441,7 @@ def load_params(executor, dirname, main_program=None, filename=None):
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_params(executor=exe, dirname=param_path,
fluid.io.load_params(executor=exe, dirname=param_path,
main_program=None)
"""
load_vars
(
...
...
@@ -453,23 +454,23 @@ def load_params(executor, dirname, main_program=None, filename=None):
def
load_persistables
(
executor
,
dirname
,
main_program
=
None
,
filename
=
None
):
"""
This function filters out all variables with `persistable==True` from the
give `main_program` and then trys to load these variables from the folder
This function filters out all variables with `persistable==True` from the
give `main_program` and then trys to load these variables from the folder
`dirname` or the file `filename`.
Use the `dirname` to specify the folder where persistable variables were
saved. If variables were saved in separate files, set `filename` None;
if all variables were saved in a single file, use `filename` to specify
Use the `dirname` to specify the folder where persistable variables were
saved. If variables were saved in separate files, set `filename` None;
if all variables were saved in a single file, use `filename` to specify
the file name.
Args:
executor(Executor): The executor to run for loading persistable variables.
dirname(str): The directory path.
main_program(Program|None): The program whose persistbale variables will
be loaded. If it is None, the default main
main_program(Program|None): The program whose persistbale variables will
be loaded. If it is None, the default main
program will be used automatically.
Default: None
filename(str|None): The file which saved all variables. If variables were
filename(str|None): The file which saved all variables. If variables were
saved in differnet files, set it to None.
Default: None
...
...
@@ -482,7 +483,7 @@ def load_persistables(executor, dirname, main_program=None, filename=None):
exe = fluid.Executor(fluid.CPUPlace())
param_path = "./my_paddle_model"
prog = fluid.default_main_program()
fluid.io.load_persistables(executor=exe, dirname=param_path,
fluid.io.load_persistables(executor=exe, dirname=param_path,
main_program=None)
"""
load_vars
(
...
...
@@ -561,20 +562,20 @@ def save_inference_model(dirname,
Args:
dirname(str): The directory path to save the inference model.
feeded_var_names(list[str]): Names of variables that need to be feeded data
feeded_var_names(list[str]): Names of variables that need to be feeded data
during inference.
target_vars(list[Variable]): Variables from which we can get inference
target_vars(list[Variable]): Variables from which we can get inference
results.
executor(Executor): The executor that saves the inference model.
main_program(Program|None): The original program, which will be pruned to
build the inference model. If is setted None,
main_program(Program|None): The original program, which will be pruned to
build the inference model. If is setted None,
the default main program will be used.
Default: None.
model_filename(str|None): The name of file to save the inference program
itself. If is setted None, a default filename
model_filename(str|None): The name of file to save the inference program
itself. If is setted None, a default filename
`__model__` will be used.
params_filename(str|None): The name of file to save all related parameters.
If it is setted None, parameters will be saved
params_filename(str|None): The name of file to save all related parameters.
If it is setted None, parameters will be saved
in separate files .
Returns:
...
...
@@ -592,20 +593,34 @@ def save_inference_model(dirname,
fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
target_vars=[predict_var], executor=exe)
# In this exsample, the function will prune the default main program
# to make it suitable for infering the `predict_var`. The pruned
# inference program is going to be saved in the "./infer_model/__model__"
# In this exsample, the function will prune the default main program
# to make it suitable for infering the `predict_var`. The pruned
# inference program is going to be saved in the "./infer_model/__model__"
# and parameters are going to be saved in separate files under folder
# "./infer_model".
# "./infer_model".
"""
if
isinstance
(
feeded_var_names
,
basestring
):
if
isinstance
(
feeded_var_names
,
six
.
binary_type
):
feeded_var_names
=
[
feeded_var_names
]
elif
isinstance
(
feeded_var_names
,
six
.
text_type
):
feeded_var_names
=
[
feeded_var_names
.
encode
()]
else
:
if
len
(
feeded_var_names
)
>
0
:
if
not
(
bool
(
feeded_var_names
)
and
all
(
isinstance
(
name
,
basestring
)
for
name
in
feeded_var_names
)):
raise
ValueError
(
"'feed_var_names' should be a list of str."
)
isinstance
(
name
,
six
.
binary_type
)
for
name
in
feeded_var_names
)):
if
not
(
all
(
isinstance
(
name
,
six
.
text_type
)
for
name
in
feeded_var_names
)):
import
sys
print
([
type
(
name
)
for
name
in
feeded_var_names
])
sys
.
stdout
.
flush
()
raise
ValueError
(
"'feed_var_names' should be a list of str."
)
else
:
feeded_var_names
=
[
name
.
encode
()
for
name
in
feeded_var_names
]
if
isinstance
(
target_vars
,
Variable
):
target_vars
=
[
target_vars
]
...
...
@@ -662,22 +677,22 @@ def load_inference_model(dirname,
dirname(str): The directory path
executor(Executor): The executor to run for loading inference model.
model_filename(str|None): The name of file to load inference program.
If it is None, the default filename
If it is None, the default filename
'__model__' will be used.
Default: None
params_filename(str|None): The name of file to load all parameters.
It is only used for the case that all
parameters were saved in a single binary
file. If parameters were saved in separate
It is only used for the case that all
parameters were saved in a single binary
file. If parameters were saved in separate
files, set it as 'None'.
Returns:
tuple: The return of this function is a tuple with three elements:
(program, feed_target_names, fetch_targets). The `program` is a
Program, it's the program for inference. The `feed_target_names` is
a list of str, it contains Names of variables that need to feed
data in the inference program. The `fetch_targets` is a list of
Variable. It contains variables from which we can get inference
(program, feed_target_names, fetch_targets). The `program` is a
Program, it's the program for inference. The `feed_target_names` is
a list of str, it contains Names of variables that need to feed
data in the inference program. The `fetch_targets` is a list of
Variable. It contains variables from which we can get inference
results.
Raises:
...
...
@@ -688,17 +703,17 @@ def load_inference_model(dirname,
exe = fluid.Executor(fluid.CPUPlace())
path = "./infer_model"
[inference_program, feed_target_names, fetch_targets] =
[inference_program, feed_target_names, fetch_targets] =
fluid.io.load_inference_model(dirname=path, executor=exe)
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
# In this exsample, the inference program was saved in the
# "./infer_model/__model__" and parameters were saved in
# separate files in ""./infer_model".
# After getting inference program, feed target names and
# fetch targets, we can use an Executor to run the inference
# In this exsample, the inference program was saved in the
# "./infer_model/__model__" and parameters were saved in
# separate files in ""./infer_model".
# After getting inference program, feed target names and
# fetch targets, we can use an Executor to run the inference
# program to get the inference result.
"""
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
559d3632
...
...
@@ -15,11 +15,11 @@
import
copy
import
itertools
from
framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
dtype_is_floating
import
unique_name
from
.
framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
dtype_is_floating
from
.
import
unique_name
from
paddle.fluid.initializer
import
Constant
,
Xavier
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
import
core
from
.
param_attr
import
ParamAttr
,
WeightNormParamAttr
from
.
import
core
class
LayerHelper
(
object
):
...
...
@@ -83,7 +83,7 @@ class LayerHelper(object):
raise
ValueError
(
"parameter number mismatch"
)
elif
len
(
param_attr
)
==
1
and
length
!=
1
:
tmp
=
[
None
]
*
length
for
i
in
x
range
(
length
):
for
i
in
range
(
length
):
tmp
[
i
]
=
copy
.
deepcopy
(
param_attr
[
0
])
param_attr
=
tmp
return
param_attr
...
...
@@ -91,7 +91,7 @@ class LayerHelper(object):
def
iter_inputs_and_params
(
self
,
input_param_name
=
'input'
):
inputs
=
self
.
multiple_input
(
input_param_name
)
param_attrs
=
self
.
multiple_param_attr
(
len
(
inputs
))
for
ipt
,
param_attr
in
itertools
.
i
zip
(
inputs
,
param_attrs
):
for
ipt
,
param_attr
in
zip
(
inputs
,
param_attrs
):
yield
ipt
,
param_attr
def
input_dtype
(
self
,
input_param_name
=
'input'
):
...
...
@@ -218,7 +218,7 @@ class LayerHelper(object):
norm
=
__norm_op
(
reshape
,
dim
=
0
,
block
=
block
)
__reshape_op
(
norm
,
out
=
out
,
shape
=
out_shape
,
block
=
block
)
else
:
perm
=
range
(
len
(
x
.
shape
))
perm
=
list
(
range
(
len
(
x
.
shape
)
))
perm
[
0
],
perm
[
dim
]
=
dim
,
0
transpose
=
__transpose_op
(
x
,
perm
,
block
=
block
)
norm
=
__norm_op
(
transpose
,
dim
=
0
,
block
=
block
)
...
...
@@ -397,7 +397,7 @@ class LayerHelper(object):
act
=
self
.
kwargs
.
get
(
'act'
,
None
)
if
act
is
None
:
return
input_var
if
isinstance
(
act
,
basestring
):
if
isinstance
(
act
,
str
):
act
=
{
'type'
:
act
}
if
'use_cudnn'
in
self
.
kwargs
and
self
.
kwargs
.
get
(
'use_cudnn'
):
...
...
python/paddle/fluid/layers/__init__.py
浏览文件 @
559d3632
...
...
@@ -12,25 +12,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
ops
from
ops
import
*
import
nn
from
nn
import
*
import
io
from
io
import
*
import
tensor
from
tensor
import
*
import
control_flow
from
control_flow
import
*
import
device
from
device
import
*
import
math_op_patch
from
math_op_patch
import
*
import
detection
from
detection
import
*
import
metric_op
from
metric_op
import
*
from
learning_rate_scheduler
import
*
from
.
import
ops
from
.
ops
import
*
from
.
import
nn
from
.
nn
import
*
from
.
import
io
from
.
io
import
*
from
.
import
tensor
from
.
tensor
import
*
from
.
import
control_flow
from
.
control_flow
import
*
from
.
import
device
from
.
device
import
*
from
.
import
math_op_patch
from
.
math_op_patch
import
*
from
.
import
detection
from
.
detection
import
*
from
.
import
metric_op
from
.
metric_op
import
*
from
.
learning_rate_scheduler
import
*
__all__
=
[]
__all__
+=
nn
.
__all__
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
559d3632
...
...
@@ -13,14 +13,15 @@
# limitations under the License.
import
contextlib
from
layer_function_generator
import
autodoc
,
templatedoc
from
tensor
import
assign
,
fill_constant
from
.
layer_function_generator
import
autodoc
,
templatedoc
from
.
tensor
import
assign
,
fill_constant
from
..
import
core
from
..framework
import
Program
,
Variable
,
Operator
from
..layer_helper
import
LayerHelper
,
unique_name
from
..initializer
import
force_init_on_cpu
from
ops
import
logical_and
,
logical_not
,
logical_or
from
.
ops
import
logical_and
,
logical_not
,
logical_or
import
numpy
from
functools
import
reduce
__all__
=
[
'While'
,
...
...
@@ -597,7 +598,7 @@ class StaticRNN(object):
boot_memories
=
[]
pre_memories
=
[]
memories
=
[]
for
_
,
mem
in
self
.
memories
.
iteritems
(
):
for
_
,
mem
in
list
(
self
.
memories
.
items
()
):
boot_memories
.
append
(
mem
.
init
)
pre_memories
.
append
(
mem
.
pre_mem
.
name
)
mem_var
=
rnn_block
.
var
(
mem
.
mem
.
name
)
...
...
@@ -1508,7 +1509,7 @@ class IfElse(object):
def
__call__
(
self
):
if
self
.
status
!=
self
.
OUT_IF_ELSE_BLOCKS
:
raise
ValueError
(
"IfElse::__call__ must be out of sub-block"
)
false_len
,
true_len
=
map
(
len
,
self
.
output_table
)
false_len
,
true_len
=
list
(
map
(
len
,
self
.
output_table
)
)
if
false_len
==
0
and
true_len
==
0
:
raise
ValueError
(
"Must invoke true_block/false_block before "
"__call__"
)
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
559d3632
...
...
@@ -15,12 +15,13 @@
All layers just related to the detection neural network.
"""
from
layer_function_generator
import
generate_layer_fn
from
layer_function_generator
import
autodoc
,
templatedoc
from
.
layer_function_generator
import
generate_layer_fn
from
.
layer_function_generator
import
autodoc
,
templatedoc
from
..layer_helper
import
LayerHelper
import
tensor
import
nn
from
.
import
tensor
from
.
import
nn
import
math
from
functools
import
reduce
__all__
=
[
'prior_box'
,
...
...
@@ -1031,7 +1032,7 @@ def multi_box_head(inputs,
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
x
range
(
min_ratio
,
max_ratio
+
1
,
step
):
for
ratio
in
range
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
...
...
python/paddle/fluid/layers/device.py
浏览文件 @
559d3632
...
...
@@ -15,7 +15,7 @@
All util layers.
"""
from
layer_function_generator
import
autodoc
from
.
layer_function_generator
import
autodoc
from
..framework
import
unique_name
from
..layer_helper
import
LayerHelper
from
..annotations
import
deprecated
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
559d3632
...
...
@@ -16,8 +16,8 @@ import multiprocessing
import
threading
from
..data_feeder
import
DataFeeder
from
control_flow
import
BlockGuard
from
layer_function_generator
import
templatedoc
from
.
control_flow
import
BlockGuard
from
.
layer_function_generator
import
templatedoc
from
..
import
core
from
..executor
import
global_scope
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
\
...
...
@@ -69,7 +69,7 @@ def data(name,
"""
helper
=
LayerHelper
(
'data'
,
**
locals
())
shape
=
list
(
shape
)
for
i
in
x
range
(
len
(
shape
)):
for
i
in
range
(
len
(
shape
)):
if
shape
[
i
]
is
None
:
shape
[
i
]
=
-
1
append_batch_size
=
False
...
...
@@ -387,9 +387,9 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
Create a uniform random data generator
This layer returns a Reader Variable.
Instead of opening a file and reading data from it, this
Reader Variable generates float uniform random data by itself.
It can be used as a dummy reader to test a network without
Instead of opening a file and reading data from it, this
Reader Variable generates float uniform random data by itself.
It can be used as a dummy reader to test a network without
opening a real file.
Args:
...
...
@@ -710,9 +710,9 @@ def open_files(filenames,
"""
Open files
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
Args:
filenames(list): The list of file names.
...
...
@@ -828,9 +828,9 @@ def shuffle(reader, buffer_size):
def
batch
(
reader
,
batch_size
):
"""
This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized
This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized
to the form of batches.
Args:
...
...
@@ -855,11 +855,11 @@ def batch(reader, batch_size):
# If we read data with the raw_reader:
# data = fluid.layers.read_file(raw_reader)
# We can only get data instance by instance.
#
#
# However, if we read data with the batch_reader:
# data = fluid.layers.read_file(batch_reader)
# Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead
# Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead
# of an instance.
"""
return
__create_unshared_decorated_reader__
(
...
...
@@ -906,8 +906,8 @@ def read_file(reader):
"""
Execute the given reader and get data via it.
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on.
Args:
...
...
@@ -1008,7 +1008,7 @@ class Preprocessor(object):
source_lod_levels
=
self
.
underlying_reader
.
desc
.
lod_levels
()
self
.
source_var_names
=
[
unique_name
(
"preprocessor_source"
)
for
_
in
x
range
(
len
(
source_shapes
))
for
_
in
range
(
len
(
source_shapes
))
]
source_vars
=
[]
for
var_name
,
shape
,
dtype
,
lod_level
in
zip
(
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
559d3632
...
...
@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
re
import
cStringIO
import
functools
import
warnings
import
string
from
six.moves
import
cStringIO
from
..proto
import
framework_pb2
from
..framework
import
OpProtoHolder
,
Variable
from
..layer_helper
import
LayerHelper
...
...
@@ -70,7 +70,7 @@ def _generate_doc_string_(op_proto):
if
not
isinstance
(
op_proto
,
framework_pb2
.
OpProto
):
raise
TypeError
(
"OpProto should be `framework_pb2.OpProto`"
)
buf
=
cStringIO
.
StringIO
()
buf
=
cStringIO
()
buf
.
write
(
escape_math
(
op_proto
.
comment
))
buf
.
write
(
'
\n
Args:
\n
'
)
for
each_input
in
op_proto
.
inputs
:
...
...
@@ -119,9 +119,9 @@ def generate_layer_fn(op_type):
"""
op_proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
)
not_intermediate_outputs
=
\
filter
(
lambda
output
:
not
output
.
intermediate
,
op_proto
.
outputs
)
[
output
for
output
in
op_proto
.
outputs
if
not
output
.
intermediate
]
intermediate_outputs
=
\
filter
(
lambda
output
:
output
.
intermediate
,
op_proto
.
outputs
)
[
output
for
output
in
op_proto
.
outputs
if
output
.
intermediate
]
if
len
(
not_intermediate_outputs
)
!=
1
:
raise
ValueError
(
"Only one non intermediate output operator can be"
,
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
559d3632
...
...
@@ -20,10 +20,10 @@ User can also implement their own learning_rate_decay
strategy according to this module.
"""
import
control_flow
import
nn
import
ops
import
tensor
from
.
import
control_flow
from
.
import
nn
from
.
import
ops
from
.
import
tensor
from
..initializer
import
init_on_cpu
from
..framework
import
default_main_program
,
Parameter
...
...
python/paddle/fluid/layers/math_op_patch.py
浏览文件 @
559d3632
...
...
@@ -13,7 +13,7 @@
# limitations under the License.
from
..framework
import
Variable
,
unique_name
from
layer_function_generator
import
OpProtoHolder
from
.
layer_function_generator
import
OpProtoHolder
from
..initializer
import
force_init_on_cpu
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
559d3632
...
...
@@ -20,7 +20,7 @@ from ..layer_helper import LayerHelper
from
..initializer
import
Normal
,
Constant
from
..framework
import
Variable
from
..param_attr
import
ParamAttr
import
nn
from
.
import
nn
__all__
=
[
'accuracy'
,
'auc'
]
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
559d3632
...
...
@@ -33,11 +33,12 @@ from ..layer_helper import LayerHelper
from
..initializer
import
Normal
,
Constant
from
..framework
import
Variable
from
..param_attr
import
ParamAttr
from
layer_function_generator
import
autodoc
,
templatedoc
from
tensor
import
concat
import
utils
from
.
layer_function_generator
import
autodoc
,
templatedoc
from
.
tensor
import
concat
from
.
import
utils
import
random
from
..
import
unique_name
from
functools
import
reduce
__all__
=
[
'fc'
,
...
...
@@ -4843,7 +4844,7 @@ def dice_loss(input, label, epsilon=0.00001):
loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
"""
label
=
one_hot
(
label
,
depth
=
input
.
shape
[
-
1
])
reduce_dim
=
range
(
1
,
len
(
input
.
shape
))
reduce_dim
=
list
(
range
(
1
,
len
(
input
.
shape
)
))
inse
=
reduce_sum
(
input
*
label
,
dim
=
reduce_dim
)
dice_denominator
=
reduce_sum
(
input
,
dim
=
reduce_dim
)
+
reduce_sum
(
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
559d3632
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
layer_function_generator
import
generate_layer_fn
from
.
layer_function_generator
import
generate_layer_fn
__activations__
=
[
'sigmoid'
,
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
559d3632
...
...
@@ -18,7 +18,7 @@ from ..framework import convert_np_dtype_to_dtype_
from
..framework
import
Variable
from
..initializer
import
Constant
,
force_init_on_cpu
from
..core
import
VarDesc
from
layer_function_generator
import
templatedoc
from
.
layer_function_generator
import
templatedoc
import
numpy
__all__
=
[
...
...
python/paddle/fluid/lod_tensor.py
浏览文件 @
559d3632
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
core
from
.
import
core
import
numpy
as
np
__all__
=
[
'create_lod_tensor'
,
'create_random_int_lodtensor'
]
...
...
@@ -24,7 +24,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
Create a lod tensor by doing the following:
1. Check that the length-based level of detail (LoD) also known as
1. Check that the length-based level of detail (LoD) also known as
recursive_sequence_lengths of the input is valid.
2. Convert recursive_sequence_lengths to a offset-based LoD.
...
...
@@ -33,7 +33,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
CPU or GPU device (based on input place).
4. Set the level of detail (LoD) using the offset-based LoD.
Examples:
Suppose we want LoDTensor to hold data for sequences of word, where each
...
...
@@ -51,7 +51,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
Args:
data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a
list holding the data to be copied.
recursive_seq_lens(list): a list of lists indicating the length-based level of detail
recursive_seq_lens(list): a list of lists indicating the length-based level of detail
info specified by the user.
place(Place): CPU or GPU place indicating where the data in the new
LoDTensor will be stored.
...
...
@@ -62,10 +62,10 @@ def create_lod_tensor(data, recursive_seq_lens, place):
if
isinstance
(
data
,
core
.
LoDTensor
):
return
create_lod_tensor
(
np
.
array
(
data
),
recursive_seq_lens
,
place
)
elif
isinstance
(
data
,
list
):
# When input data is a list, it only deal with the case where the base element
# is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
# LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
# of words or other indexes in the sequence.
# When input data is a list, it only deal with the case where the base element
# is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
# LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
# of words or other indexes in the sequence.
new_recursive_seq_lens
=
[]
for
seq
in
data
:
new_recursive_seq_lens
.
append
(
len
(
seq
))
...
...
@@ -109,12 +109,12 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
Suppose we want LoDTensor to hold data for sequences of word, where each
word is represented by an integer. If we want to create a LoDTensor to
represent two sentences, one of 2 words, and one of 3 words. Then
'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
for two sentences.
Args:
recursive_seq_lens(list): a list of lists indicating the length-based
recursive_seq_lens(list): a list of lists indicating the length-based
level of detail info specified by the user.
base_shape(list): the shape of the basic element to be held by the
LoDTensor.
...
...
@@ -124,11 +124,11 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
high(int): the upper bound of the random integers.
Returns:
A fluid LoDTensor object with tensor data and recursive_seq_lens info.
A fluid LoDTensor object with tensor data and recursive_seq_lens info.
"""
assert
isinstance
(
base_shape
,
list
),
"base_shape should be a list"
# append the total number of basic elements to the front of its shape
overall_shape
=
[
sum
(
recursive_seq_lens
[
-
1
])]
+
base_shape
# the range of integer data elements is [low, high]
# the range of integer data elements is [low, high]
data
=
np
.
random
.
random_integers
(
low
,
high
,
overall_shape
).
astype
(
"int64"
)
return
create_lod_tensor
(
data
,
recursive_seq_lens
,
place
)
python/paddle/fluid/metrics.py
浏览文件 @
559d3632
...
...
@@ -79,10 +79,10 @@ class MetricBase(object):
"""
states
=
{
attr
:
value
for
attr
,
value
in
self
.
__dict__
.
iteritems
(
)
for
attr
,
value
in
list
(
self
.
__dict__
.
items
()
)
if
not
attr
.
startswith
(
"_"
)
}
for
attr
,
value
in
states
.
iteritems
(
):
for
attr
,
value
in
list
(
states
.
items
()
):
if
isinstance
(
value
,
int
):
setattr
(
self
,
attr
,
0
)
elif
isinstance
(
value
,
float
):
...
...
@@ -105,7 +105,7 @@ class MetricBase(object):
"""
states
=
{
attr
:
value
for
attr
,
value
in
self
.
__dict__
.
iteritems
(
)
for
attr
,
value
in
list
(
self
.
__dict__
.
items
()
)
if
not
attr
.
startswith
(
"_"
)
}
config
=
{}
...
...
python/paddle/fluid/net_drawer.py
浏览文件 @
559d3632
...
...
@@ -24,7 +24,7 @@ logger = logging.getLogger(__name__)
logger
.
setLevel
(
logging
.
INFO
)
try
:
from
graphviz
import
Digraph
from
.
graphviz
import
Digraph
except
ImportError
:
logger
.
info
(
'Cannot import graphviz, which is required for drawing a network. This '
...
...
@@ -77,7 +77,7 @@ def parse_graph(program, graph, var_dict, **kwargs):
# fill the known variables
for
block
in
program
.
blocks
:
for
var
in
block
.
vars
:
if
not
var_dict
.
has_key
(
var
)
:
if
var
not
in
var_dict
:
var_dict
[
var
]
=
"Feed"
temp_id
=
0
...
...
@@ -93,17 +93,17 @@ def parse_graph(program, graph, var_dict, **kwargs):
var_dict
[
arg
]
=
op
.
type
for
e
in
op
.
inputs
:
for
arg
in
e
.
arguments
:
if
var_dict
.
has_key
(
arg
)
:
if
arg
in
var_dict
:
graph
.
edge
(
**
draw_edge
(
var_dict
,
op
,
e
,
arg
))
break
# only plot the first block
def
draw_graph
(
startup_program
,
main_program
,
**
kwargs
):
if
kwargs
.
has_key
(
"graph_attr"
)
:
if
"graph_attr"
in
kwargs
:
GRAPH_STYLE
.
update
(
kwargs
[
graph_attr
])
if
kwargs
.
has_key
(
"node_attr"
)
:
if
"node_attr"
in
kwargs
:
OP_STYLE
.
update
(
kwargs
[
node_attr
])
if
kwargs
.
has_key
(
"edge_attr"
)
:
if
"edge_attr"
in
kwargs
:
VAR_STYLE
.
update
(
kwargs
[
edge_attr
])
graph_id
=
unique_id
()
...
...
python/paddle/fluid/nets.py
浏览文件 @
559d3632
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
layers
from
.
import
layers
__all__
=
[
"simple_img_conv_pool"
,
...
...
@@ -210,7 +210,7 @@ def img_conv_group(input,
conv_with_batchnorm
=
__extend_list__
(
conv_with_batchnorm
)
conv_batchnorm_drop_rate
=
__extend_list__
(
conv_batchnorm_drop_rate
)
for
i
in
x
range
(
len
(
conv_num_filter
)):
for
i
in
range
(
len
(
conv_num_filter
)):
local_conv_act
=
conv_act
if
conv_with_batchnorm
[
i
]:
local_conv_act
=
None
...
...
@@ -488,10 +488,11 @@ def scaled_dot_product_attention(queries,
trans_x
=
layers
.
transpose
(
x
,
perm
=
[
0
,
2
,
1
,
3
])
return
layers
.
reshape
(
x
=
trans_x
,
shape
=
map
(
int
,
[
trans_x
.
shape
[
0
],
trans_x
.
shape
[
1
],
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]
]))
shape
=
list
(
map
(
int
,
[
trans_x
.
shape
[
0
],
trans_x
.
shape
[
1
],
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]
])))
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
num_heads
)
...
...
python/paddle/fluid/op.py
浏览文件 @
559d3632
...
...
@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
six
import
paddle.fluid.core
as
core
import
paddle.fluid.proto.framework_pb2
as
framework_pb2
...
...
@@ -24,13 +26,13 @@ def get_all_op_protos():
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
for
pbstr
in
protostrs
:
op_proto
=
framework_pb2
.
OpProto
.
FromString
(
s
tr
(
pbstr
))
op_proto
=
framework_pb2
.
OpProto
.
FromString
(
s
ix
.
binary_type
(
pbstr
))
ret_values
.
append
(
op_proto
)
return
ret_values
def
is_str
(
s
):
return
isinstance
(
s
,
str
)
or
isinstance
(
s
,
unicode
)
return
isinstance
(
s
,
str
)
or
isinstance
(
s
,
str
)
class
OpDescCreationMethod
(
object
):
...
...
@@ -189,7 +191,7 @@ class OperatorFactory(object):
return
self
.
get_op_info
(
t
).
method
(
**
kwargs
)
def
types
(
self
):
return
self
.
op_methods
.
keys
(
)
return
list
(
self
.
op_methods
.
keys
()
)
def
get_op_info
(
self
,
t
):
if
t
not
in
self
.
op_methods
:
...
...
@@ -197,13 +199,13 @@ class OperatorFactory(object):
return
self
.
op_methods
.
get
(
t
)
def
get_op_input_names
(
self
,
type
):
return
map
(
lambda
x
:
x
[
0
],
self
.
get_op_info
(
type
).
inputs
)
return
[
x
[
0
]
for
x
in
self
.
get_op_info
(
type
).
inputs
]
def
get_op_inputs
(
self
,
type
):
return
self
.
get_op_info
(
type
).
inputs
def
get_op_output_names
(
self
,
type
):
return
map
(
lambda
x
:
x
[
0
],
self
.
get_op_info
(
type
).
outputs
)
return
[
x
[
0
]
for
x
in
self
.
get_op_info
(
type
).
outputs
]
def
get_op_outputs
(
self
,
type
):
return
self
.
get_op_info
(
type
).
outputs
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
559d3632
...
...
@@ -14,15 +14,15 @@
import
re
from
collections
import
defaultdict
from
paddle.fluid.framework
import
Program
,
Variable
import
framework
import
layers
from
backward
import
append_backward
from
framework
import
program_guard
import
unique_name
from
initializer
import
Constant
from
layer_helper
import
LayerHelper
from
regularizer
import
append_regularization_ops
from
clip
import
append_gradient_clip_ops
,
error_clip_callback
from
.
import
framework
from
.
import
layers
from
.
backward
import
append_backward
from
.
framework
import
program_guard
from
.
import
unique_name
from
.
initializer
import
Constant
from
.
layer_helper
import
LayerHelper
from
.
regularizer
import
append_regularization_ops
from
.
clip
import
append_gradient_clip_ops
,
error_clip_callback
from
contextlib
import
contextmanager
__all__
=
[
...
...
@@ -106,7 +106,7 @@ class Optimizer(object):
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
if
type
(
param_lr
)
==
Variable
:
# param learning rate has been updated (LARS)
print
(
"returns updated param lr "
,
param_lr
)
print
(
(
"returns updated param lr "
,
param_lr
)
)
return
param_lr
else
:
if
param_lr
==
1.0
:
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
559d3632
...
...
@@ -12,10 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
core
from
__future__
import
print_function
import
multiprocessing
import
framework
import
executor
from
.
import
core
from
.
import
framework
from
.
import
executor
import
warnings
import
sys
import
os
...
...
@@ -94,7 +95,7 @@ class ParallelExecutor(object):
self
.
_places
=
[]
self
.
_act_places
=
[]
if
use_cuda
:
for
i
in
x
range
(
core
.
get_cuda_device_count
()):
for
i
in
range
(
core
.
get_cuda_device_count
()):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CUDAPlace
(
i
))
p
.
set_place
(
self
.
_act_places
[
-
1
])
...
...
@@ -102,7 +103,7 @@ class ParallelExecutor(object):
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
for
i
in
x
range
(
cpu_num
):
for
i
in
range
(
cpu_num
):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CPUPlace
())
p
.
set_place
(
self
.
_act_places
[
-
1
])
...
...
@@ -143,16 +144,16 @@ class ParallelExecutor(object):
)
if
share_vars_from
else
[]
self
.
persistable_vars
=
[
v
.
name
for
v
in
filter
(
lambda
var
:
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
,
main
.
list_vars
())
v
.
name
for
v
in
[
var
for
var
in
main
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
]
self
.
executor
=
core
.
ParallelExecutor
(
self
.
_places
,
set
([
p
.
name
for
p
in
main
.
global_block
().
_
iter_parameters
()
p
.
name
for
p
in
main
.
global_block
().
iter_parameters
()
if
not
p
.
stop_gradient
]),
set
(
self
.
persistable_vars
),
main
.
desc
,
loss_name
...
...
@@ -227,7 +228,9 @@ class ParallelExecutor(object):
"""
if
feed
is
None
and
feed_dict
is
not
None
:
feed
=
feed_dict
print
>>
sys
.
stderr
,
"`feed_dict` is deprecated. Please use `feed=`"
print
(
"`feed_dict` is deprecated. Please use `feed=`"
,
file
=
sys
.
stderr
)
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
...
...
python/paddle/fluid/param_attr.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
initializer
import
Initializer
,
Xavier
,
Constant
from
regularizer
import
WeightDecayRegularizer
from
.
initializer
import
Initializer
,
Xavier
,
Constant
from
.
regularizer
import
WeightDecayRegularizer
__all__
=
[
'ParamAttr'
,
...
...
@@ -134,7 +134,7 @@ class ParamAttr(object):
return
[
ParamAttr
.
_to_attr
(
a
)
for
a
in
arg
]
elif
isinstance
(
arg
,
ParamAttr
):
return
arg
elif
isinstance
(
arg
,
str
)
or
isinstance
(
arg
,
unicode
):
elif
isinstance
(
arg
,
str
)
or
isinstance
(
arg
,
str
):
return
ParamAttr
(
name
=
arg
)
elif
isinstance
(
arg
,
Initializer
):
return
ParamAttr
(
initializer
=
arg
)
...
...
python/paddle/fluid/profiler.py
浏览文件 @
559d3632
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
core
from
.
import
core
from
contextlib
import
contextmanager
import
os
...
...
@@ -224,7 +224,7 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
If the state == 'All', a profile proto file will be written to
`profile_path`. This file records timeline information during the execution.
Then users can visualize this file to see the timeline, please refer
Then users can visualize this file to see the timeline, please refer
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/timeline.md
Args:
...
...
python/paddle/fluid/recordio_writer.py
浏览文件 @
559d3632
...
...
@@ -13,8 +13,8 @@
# limitations under the License.
import
os
import
core
import
contextlib
from
.
import
core
__all__
=
[
'convert_reader_to_recordio_file'
,
'convert_reader_to_recordio_files'
]
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
559d3632
...
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
framework
from
.
import
framework
from
.
import
core
__all__
=
[
'L1Decay'
,
'L2Decay'
,
'L1DecayRegularizer'
,
'L2DecayRegularizer'
]
...
...
python/paddle/fluid/tests/book/high-level-api/fit_a_line/test_fit_a_line.py
浏览文件 @
559d3632
...
...
@@ -63,7 +63,7 @@ def train(use_cuda, train_program, params_dirname):
if
event
.
step
==
10
:
test_metrics
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'x'
,
'y'
])
print
test_metrics
print
(
test_metrics
)
'''
...
['25.768919467926025']
...
...
@@ -94,7 +94,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_x
=
numpy
.
random
.
uniform
(
0
,
10
,
[
batch_size
,
13
]).
astype
(
"float32"
)
results
=
inferencer
.
infer
({
'x'
:
tensor_x
})
print
(
"infer results: "
,
results
[
0
]
)
print
(
(
"infer results: "
,
results
[
0
])
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/cifar10_small_test_set.py
浏览文件 @
559d3632
...
...
@@ -28,7 +28,7 @@ images per class.
"""
import
cP
ickle
import
p
ickle
import
itertools
import
numpy
import
paddle.v2.dataset.common
...
...
@@ -46,7 +46,7 @@ def reader_creator(filename, sub_name, batch_size=None):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
i
zip
(
data
,
labels
):
for
sample
,
label
in
zip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
def
reader
():
...
...
@@ -56,7 +56,7 @@ def reader_creator(filename, sub_name, batch_size=None):
batch_count
=
0
for
name
in
names
:
batch
=
cP
ickle
.
load
(
f
.
extractfile
(
name
))
batch
=
p
ickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
read_batch
(
batch
):
if
isinstance
(
batch_size
,
int
)
and
batch_count
>
batch_size
:
break
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
numpy
...
...
@@ -107,7 +105,7 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
])
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
print
(
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
)
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
if
params_dirname
is
not
None
:
...
...
@@ -136,7 +134,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_img
=
numpy
.
random
.
rand
(
1
,
3
,
32
,
32
).
astype
(
"float32"
)
results
=
inferencer
.
infer
({
'pixel'
:
tensor_img
})
print
(
"infer results: "
,
results
)
print
(
(
"infer results: "
,
results
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
numpy
...
...
@@ -84,7 +82,7 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
accuracy
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'pixel'
,
'label'
])
print
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
))
print
(
(
'Loss {0:2.2}, Acc {1:2.2}'
.
format
(
avg_cost
,
accuracy
)
))
if
accuracy
>
0.01
:
# Low threshold for speeding up CI
if
params_dirname
is
not
None
:
...
...
@@ -113,7 +111,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_img
=
numpy
.
random
.
rand
(
1
,
3
,
32
,
32
).
astype
(
"float32"
)
results
=
inferencer
.
infer
({
'pixel'
:
tensor_img
})
print
(
"infer results: "
,
results
)
print
(
(
"infer results: "
,
results
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
...
...
@@ -173,19 +171,20 @@ def train(use_cuda, train_program, params_dirname):
# get avg cost
avg_cost
=
np
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
if
float
(
avg_cost
)
<
100.0
:
# Large value to increase CI speed
trainer
.
save_params
(
params_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
)))
print
(
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
))))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
print
(
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
))
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
...
...
@@ -249,7 +248,7 @@ def infer(use_cuda, inference_program, params_dirname):
},
return_numpy
=
False
)
print
(
"infer results: "
,
np
.
array
(
results
[
0
]).
shape
)
print
(
(
"infer results: "
,
np
.
array
(
results
[
0
]).
shape
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/machine_translation/test_machine_translation.py
浏览文件 @
559d3632
...
...
@@ -197,7 +197,7 @@ def train(use_cuda, is_sparse, is_local=True):
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
'pass_id='
+
str
(
event
.
epoch
)
+
' batch='
+
str
(
event
.
step
))
print
(
(
'pass_id='
+
str
(
event
.
epoch
)
+
' batch='
+
str
(
event
.
step
)
))
if
event
.
step
==
10
:
trainer
.
stop
()
...
...
@@ -250,7 +250,7 @@ def decode_main(use_cuda, is_sparse):
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
for
data
in
train_data
():
feed_dict
=
feeder
.
feed
(
map
(
lambda
x
:
[
x
[
0
]],
data
)
)
feed_dict
=
feeder
.
feed
(
[[
x
[
0
]]
for
x
in
data
]
)
feed_dict
[
'init_ids'
]
=
init_ids
feed_dict
[
'init_scores'
]
=
init_scores
...
...
@@ -259,7 +259,7 @@ def decode_main(use_cuda, is_sparse):
feed
=
feed_dict
,
fetch_list
=
[
translation_ids
,
translation_scores
],
return_numpy
=
False
)
print
result_ids
.
recursive_sequence_lengths
(
)
print
((
result_ids
.
recursive_sequence_lengths
())
)
break
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
559d3632
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
argparse
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
...
...
@@ -78,19 +78,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
print
(
(
"acc : %s"
%
acc
)
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
params_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
print
(
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
)
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
numpy
.
array
,
event
.
metrics
)))
print
(
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
list
(
map
(
numpy
.
array
,
event
.
metrics
)))))
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
...
...
@@ -116,7 +118,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
results
=
inferencer
.
infer
({
'img'
:
tensor_img
})
print
(
"infer results: "
,
results
[
0
]
)
print
(
(
"infer results: "
,
results
[
0
])
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
559d3632
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
argparse
import
paddle.fluid
as
fluid
import
paddle
...
...
@@ -61,14 +61,14 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
print
(
(
"acc : %s"
%
acc
)
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
params_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
print
(
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
)
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
...
...
@@ -96,7 +96,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
results
=
inferencer
.
infer
({
'img'
:
tensor_img
})
print
(
"infer results: "
,
results
[
0
]
)
print
(
(
"infer results: "
,
results
[
0
])
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/recommender_system/test_recommender_system_newapi.py
浏览文件 @
559d3632
...
...
@@ -180,14 +180,15 @@ def train(use_cuda, train_program, params_dirname):
# get avg cost
avg_cost
=
np
.
array
(
avg_cost_set
).
mean
()
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
if
float
(
avg_cost
)
<
4
:
# Smaller value to increase CI speed
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
)))
print
(
(
'BatchID {0}, Test Loss {1:0.2}'
.
format
(
event
.
epoch
+
1
,
float
(
avg_cost
))))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
...
...
@@ -239,7 +240,7 @@ def infer(use_cuda, inference_program, params_dirname):
},
return_numpy
=
False
)
print
(
"infer results: "
,
np
.
array
(
results
[
0
]
))
print
(
(
"infer results: "
,
np
.
array
(
results
[
0
])
))
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_conv.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
functools
import
partial
...
...
@@ -84,21 +82,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'words'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
print
(
(
"acc : %s"
%
acc
)
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
print
(
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
)
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
print
(
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
))
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
...
...
@@ -140,7 +138,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_words
=
fluid
.
create_random_int_lodtensor
(
recursive_seq_lens
,
base_shape
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
print
(
(
"infer results: "
,
results
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_dynamic_rnn.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
functools
import
partial
...
...
@@ -99,21 +97,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'words'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
print
(
(
"acc : %s"
%
acc
)
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
print
(
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
)
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
print
(
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
))
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
...
...
@@ -155,7 +153,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_words
=
fluid
.
create_random_int_lodtensor
(
recursive_seq_lens
,
base_shape
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
print
(
(
"infer results: "
,
results
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/understand_sentiment/test_understand_sentiment_stacked_lstm.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
functools
import
partial
...
...
@@ -93,21 +91,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'words'
,
'label'
])
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
print
(
(
"avg_cost: %s"
%
avg_cost
)
)
print
(
(
"acc : %s"
%
acc
)
)
if
acc
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
print
(
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
epoch
+
1
,
avg_cost
,
acc
))
)
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
elif
isinstance
(
event
,
fluid
.
EndStepEvent
):
print
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
map
(
np
.
array
,
event
.
metrics
)))
print
(
(
"Step {0}, Epoch {1} Metrics {2}"
.
format
(
event
.
step
,
event
.
epoch
,
list
(
map
(
np
.
array
,
event
.
metrics
))
)))
if
event
.
step
==
1
:
# Run 2 iterations to speed CI
trainer
.
save_params
(
params_dirname
)
trainer
.
stop
()
...
...
@@ -150,7 +148,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_words
=
fluid
.
create_random_int_lodtensor
(
recursive_seq_lens
,
base_shape
,
place
,
low
=
0
,
high
=
len
(
word_dict
)
-
1
)
results
=
inferencer
.
infer
({
'words'
:
tensor_words
})
print
(
"infer results: "
,
results
)
print
(
(
"infer results: "
,
results
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/high-level-api/word2vec/test_word2vec_new_api.py
浏览文件 @
559d3632
...
...
@@ -98,7 +98,7 @@ def train(use_cuda, train_program, params_dirname):
reader
=
test_reader
,
feed_order
=
[
'firstw'
,
'secondw'
,
'thirdw'
,
'forthw'
,
'nextw'
])
avg_cost
=
outs
[
0
]
print
(
"loss= "
,
avg_cost
)
print
(
(
"loss= "
,
avg_cost
)
)
if
avg_cost
<
10.0
:
trainer
.
save_params
(
params_dirname
)
...
...
@@ -149,7 +149,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
'forthw'
:
fourth_word
},
return_numpy
=
False
)
print
(
np
.
array
(
result
[
0
]
))
print
(
(
np
.
array
(
result
[
0
])
))
def
main
(
use_cuda
,
is_sparse
):
...
...
python/paddle/fluid/tests/book/notest_understand_sentiment.py
浏览文件 @
559d3632
...
...
@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddle.fluid.layers.device
import
get_places
import
unittest
import
paddle.fluid
as
fluid
...
...
@@ -175,12 +175,12 @@ def train(word_dict,
def
train_loop
(
main_program
):
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
x
range
(
PASS_NUM
):
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_data
():
cost_val
,
acc_val
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc_out
])
print
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
))
print
(
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
)
))
if
cost_val
<
0.4
and
acc_val
>
0.8
:
if
save_dirname
is
not
None
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"words"
],
...
...
@@ -261,10 +261,10 @@ def infer(word_dict, use_cuda, save_dirname=None):
feed
=
{
feed_target_names
[
0
]:
tensor_words
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
recursive_sequence_lengths
(
))
print
(
(
results
[
0
].
recursive_sequence_lengths
()
))
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
print
(
(
"Inference Shape: "
,
np_data
.
shape
)
)
print
(
(
"Inference results: "
,
np_data
)
)
def
main
(
word_dict
,
net_method
,
use_cuda
,
parallel
=
False
,
save_dirname
=
None
):
...
...
python/paddle/fluid/tests/book/test_fit_a_line.py
浏览文件 @
559d3632
...
...
@@ -114,7 +114,7 @@ def infer(use_cuda, save_dirname=None):
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
uci_housing
.
test
(),
batch_size
=
batch_size
)
test_data
=
test_reader
().
next
(
)
test_data
=
next
(
test_reader
()
)
test_feat
=
numpy
.
array
(
[
data
[
0
]
for
data
in
test_data
]).
astype
(
"float32"
)
test_label
=
numpy
.
array
(
...
...
@@ -124,9 +124,9 @@ def infer(use_cuda, save_dirname=None):
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
numpy
.
array
(
test_feat
)},
fetch_list
=
fetch_targets
)
print
(
"infer shape: "
,
results
[
0
].
shape
)
print
(
"infer results: "
,
results
[
0
]
)
print
(
"ground truth: "
,
test_label
)
print
(
(
"infer shape: "
,
results
[
0
].
shape
)
)
print
(
(
"infer results: "
,
results
[
0
])
)
print
(
(
"ground truth: "
,
test_label
)
)
def
main
(
use_cuda
,
is_local
=
True
):
...
...
python/paddle/fluid/tests/book/test_image_classification.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
import
contextlib
...
...
@@ -165,10 +163,10 @@ def train(net_type, use_cuda, save_dirname, is_local):
acc_value
=
numpy
.
array
(
acc_list
).
mean
()
avg_loss_value
=
numpy
.
array
(
avg_loss_list
).
mean
()
print
(
print
(
(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
.
format
(
pass_id
,
batch_id
+
1
,
float
(
avg_loss_value
),
float
(
acc_value
)))
float
(
avg_loss_value
),
float
(
acc_value
)))
)
if
acc_value
>
0.01
:
# Low threshold for speeding up CI
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
"pixel"
],
...
...
@@ -241,7 +239,7 @@ def infer(use_cuda, save_dirname=None):
np
.
testing
.
assert_almost_equal
(
results
[
0
][
i
],
transpiler_results
[
0
][
i
],
decimal
=
5
)
print
(
"infer results: "
,
results
[
0
]
)
print
(
(
"infer results: "
,
results
[
0
])
)
fluid
.
io
.
save_inference_model
(
save_dirname
,
feed_target_names
,
fetch_targets
,
exe
,
...
...
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
559d3632
...
...
@@ -181,7 +181,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time
=
time
.
time
()
batch_id
=
0
for
pass_id
in
x
range
(
PASS_NUM
):
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_data
():
cost
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
...
...
@@ -189,10 +189,10 @@ def train(use_cuda, save_dirname=None, is_local=True):
cost
=
cost
[
0
]
if
batch_id
%
10
==
0
:
print
(
"avg_cost:"
+
str
(
cost
))
print
(
(
"avg_cost:"
+
str
(
cost
)
))
if
batch_id
!=
0
:
print
(
"second per batch: "
+
str
((
time
.
time
(
)
-
start_time
)
/
batch_id
))
print
(
(
"second per batch: "
+
str
(
(
time
.
time
()
-
start_time
)
/
batch_id
)
))
# Set the threshold low to speed up the CI test
if
float
(
cost
)
<
60.0
:
if
save_dirname
is
not
None
:
...
...
@@ -333,9 +333,9 @@ def infer(use_cuda, save_dirname=None):
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
recursive_sequence_lengths
(
))
print
(
(
results
[
0
].
recursive_sequence_lengths
()
))
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
(
"Inference Shape: "
,
np_data
.
shape
)
)
def
main
(
use_cuda
,
is_local
=
True
):
...
...
python/paddle/fluid/tests/book/test_machine_translation.py
浏览文件 @
559d3632
...
...
@@ -199,14 +199,14 @@ def train_main(use_cuda, is_sparse, is_local=True):
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
batch_id
=
0
for
pass_id
in
x
range
(
1
):
for
pass_id
in
range
(
1
):
for
data
in
train_data
():
outs
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
print
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
))
print
(
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
)
))
if
batch_id
>
3
:
break
batch_id
+=
1
...
...
@@ -273,7 +273,7 @@ def decode_main(use_cuda, is_sparse):
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
for
data
in
train_data
():
feed_dict
=
feeder
.
feed
(
map
(
lambda
x
:
[
x
[
0
]],
data
)
)
feed_dict
=
feeder
.
feed
(
[[
x
[
0
]]
for
x
in
data
]
)
feed_dict
[
'init_ids'
]
=
init_ids
feed_dict
[
'init_scores'
]
=
init_scores
...
...
@@ -282,7 +282,7 @@ def decode_main(use_cuda, is_sparse):
feed
=
feed_dict
,
fetch_list
=
[
translation_ids
,
translation_scores
],
return_numpy
=
False
)
print
result_ids
.
recursive_sequence_lengths
(
)
print
((
result_ids
.
recursive_sequence_lengths
())
)
break
...
...
python/paddle/fluid/tests/book/test_recognize_digits.py
浏览文件 @
559d3632
...
...
@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.fluid.core
as
core
import
math
...
...
@@ -143,10 +142,10 @@ def train(nn_type,
params_filename
=
params_filename
)
return
else
:
print
(
print
(
(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
.
format
(
pass_id
,
batch_id
+
1
,
float
(
avg_loss_val
),
float
(
acc_val
)))
float
(
avg_loss_val
),
float
(
acc_val
)))
)
if
math
.
isnan
(
float
(
avg_loss_val
)):
sys
.
exit
(
"got NaN loss, training failed."
)
raise
AssertionError
(
"Loss of recognize digits is too large"
)
...
...
@@ -207,7 +206,7 @@ def infer(use_cuda,
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
tensor_img
},
fetch_list
=
fetch_targets
)
print
(
"infer results: "
,
results
[
0
]
)
print
(
(
"infer results: "
,
results
[
0
])
)
def
main
(
use_cuda
,
parallel
,
nn_type
,
combine
):
...
...
python/paddle/fluid/tests/book/test_recommender_system.py
浏览文件 @
559d3632
...
...
@@ -304,7 +304,7 @@ def infer(use_cuda, save_dirname=None):
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
"inferred score: "
,
np
.
array
(
results
[
0
]
))
print
(
(
"inferred score: "
,
np
.
array
(
results
[
0
])
))
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py
浏览文件 @
559d3632
...
...
@@ -175,15 +175,15 @@ def train(use_cuda, save_dirname=None):
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
batch_id
=
0
for
pass_id
in
x
range
(
2
):
for
pass_id
in
range
(
2
):
for
data
in
train_data
():
outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
print
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
))
print
(
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
)
))
if
math
.
isnan
(
float
(
avg_cost_val
[
0
])):
sys
.
exit
(
"got NaN loss, training failed."
)
if
batch_id
>
3
:
...
...
@@ -241,10 +241,10 @@ def infer(use_cuda, save_dirname=None):
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
recursive_sequence_lengths
(
))
print
(
(
results
[
0
].
recursive_sequence_lengths
()
))
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
print
(
(
"Inference shape: "
,
np_data
.
shape
)
)
print
(
(
"Inference results: "
,
np_data
)
)
def
main
(
use_cuda
):
...
...
python/paddle/fluid/tests/book/test_word2vec.py
浏览文件 @
559d3632
...
...
@@ -85,9 +85,11 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
avg_cost
,
predict_word
=
__network__
(
map
(
pd
.
read_input
,
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
]))
list
(
map
(
pd
.
read_input
,
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])))
pd
.
write_output
(
avg_cost
)
avg_cost
=
fluid
.
layers
.
mean
(
pd
())
...
...
@@ -202,9 +204,9 @@ def infer(use_cuda, save_dirname=None):
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
recursive_sequence_lengths
(
))
print
(
(
results
[
0
].
recursive_sequence_lengths
()
))
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
(
"Inference Shape: "
,
np_data
.
shape
)
)
def
main
(
use_cuda
,
is_sparse
,
is_parallel
):
...
...
python/paddle/fluid/tests/book_memory_optimization/test_memopt_fit_a_line.py
浏览文件 @
559d3632
...
...
@@ -78,7 +78,7 @@ for pass_id in range(PASS_NUM):
if
avg_loss_value
[
0
]
<
10.0
:
exit
(
0
)
# if avg cost less than 10.0, we think our code is good.
print
avg_loss_value
[
0
]
print
((
avg_loss_value
[
0
]))
if
math
.
isnan
(
float
(
avg_loss_value
)):
sys
.
exit
(
"got NaN loss, training failed."
)
exit
(
1
)
python/paddle/fluid/tests/book_memory_optimization/test_memopt_image_classification_train.py
浏览文件 @
559d3632
...
...
@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
import
paddle
...
...
@@ -157,8 +155,8 @@ for pass_id in range(PASS_NUM):
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
])
accuracy
.
add
(
value
=
acc
,
weight
=
weight
)
pass_acc
=
accuracy
.
eval
()
print
(
"loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
pass_acc
))
print
(
(
"loss:"
+
str
(
loss
)
+
" acc:"
+
str
(
acc
)
+
" pass_acc:"
+
str
(
pass_acc
)
))
# this model is slow, so if we can train two mini batch, we think it works properly.
if
i
>
0
:
exit
(
0
)
...
...
python/paddle/fluid/tests/book_memory_optimization/test_memopt_machine_translation.py
浏览文件 @
559d3632
...
...
@@ -118,14 +118,14 @@ def main():
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
batch_id
=
0
for
pass_id
in
x
range
(
10
):
for
pass_id
in
range
(
10
):
for
data
in
train_data
():
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
print
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
))
print
(
(
'pass_id='
+
str
(
pass_id
)
+
' batch='
+
str
(
batch_id
)
+
" avg_cost="
+
str
(
avg_cost_val
)
))
if
batch_id
>
2
:
exit
(
0
)
if
math
.
isnan
(
float
(
avg_cost_val
)):
...
...
python/paddle/fluid/tests/demo/fc_gan.py
浏览文件 @
559d3632
...
...
@@ -137,7 +137,7 @@ def main():
generated_img
=
exe
.
run
(
g_program
,
feed
=
{
'noise'
:
n
},
fetch_list
=
{
g_img
})[
0
]
real_data
=
numpy
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)
).
astype
(
'float32'
)
real_data
=
numpy
.
array
(
[
x
[
0
]
for
x
in
data
]
).
astype
(
'float32'
)
real_data
=
real_data
.
reshape
(
num_true
,
784
)
total_data
=
numpy
.
concatenate
([
real_data
,
generated_img
])
total_label
=
numpy
.
concatenate
([
...
...
@@ -150,7 +150,7 @@ def main():
feed
=
{
'img'
:
total_data
,
'label'
:
total_label
},
fetch_list
=
{
d_loss
})[
0
]
for
_
in
x
range
(
NUM_TRAIN_TIMES_OF_DG
):
for
_
in
range
(
NUM_TRAIN_TIMES_OF_DG
):
n
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
[
2
*
num_true
*
NOISE_SIZE
]).
astype
(
'float32'
).
reshape
(
...
...
@@ -158,8 +158,8 @@ def main():
dg_loss_np
=
exe
.
run
(
dg_program
,
feed
=
{
'noise'
:
n
},
fetch_list
=
{
dg_loss
})[
0
]
print
(
"Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}"
.
format
(
pass_id
,
batch_id
,
d_loss_np
,
dg_loss_np
))
print
(
(
"Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}"
.
format
(
pass_id
,
batch_id
,
d_loss_np
,
dg_loss_np
))
)
# generate image each batch
fig
=
plot
(
generated_img
)
plt
.
savefig
(
...
...
python/paddle/fluid/tests/demo/file_reader/convert_data_to_recordio.py
浏览文件 @
559d3632
...
...
@@ -36,7 +36,7 @@ if len(sys.argv) == 1:
else
:
word_dict
=
load_vocab
(
sys
.
argv
[
1
])
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
print
"Dict dim = "
,
len
(
word_dict
)
print
(
"Dict dim = "
,
len
(
word_dict
)
)
# input text data
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
...
...
python/paddle/fluid/tests/no_test_concurrency.py
浏览文件 @
559d3632
...
...
@@ -194,7 +194,7 @@ class TestRoutineOp(unittest.TestCase):
quit_ch
=
fluid
.
make_channel
(
dtype
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
with
fluid
.
Go
():
for
i
in
x
range
(
10
):
for
i
in
range
(
10
):
fluid
.
channel_recv
(
ch1
,
result
)
Print
(
result
)
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
559d3632
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
from
paddle.fluid.framework
import
Program
,
program_guard
...
...
@@ -47,7 +46,7 @@ class TestDetection(unittest.TestCase):
scores
=
scores
,
loc
=
loc
,
prior_box
=
pb
,
prior_box_var
=
pbv
)
self
.
assertIsNotNone
(
out
)
self
.
assertEqual
(
out
.
shape
[
-
1
],
6
)
print
(
str
(
program
))
print
(
(
str
(
program
)
))
def
test_detection_api
(
self
):
program
=
Program
()
...
...
@@ -82,7 +81,7 @@ class TestDetection(unittest.TestCase):
self
.
assertIsNotNone
(
trg
)
self
.
assertIsNotNone
(
trg_weight
)
print
(
str
(
program
))
print
(
(
str
(
program
)
))
def
test_ssd_loss
(
self
):
program
=
Program
()
...
...
@@ -106,7 +105,7 @@ class TestDetection(unittest.TestCase):
loss
=
layers
.
ssd_loss
(
loc
,
scores
,
gt_box
,
gt_label
,
pb
,
pbv
)
self
.
assertIsNotNone
(
loss
)
self
.
assertEqual
(
loss
.
shape
[
-
1
],
1
)
print
(
str
(
program
))
print
(
(
str
(
program
)
))
class
TestPriorBox
(
unittest
.
TestCase
):
...
...
@@ -197,7 +196,7 @@ class TestDetectionMAP(unittest.TestCase):
map_out
=
layers
.
detection_map
(
detect_res
,
label
,
21
)
self
.
assertIsNotNone
(
map_out
)
self
.
assertEqual
(
map_out
.
shape
,
(
1
,
))
print
(
str
(
program
))
print
(
(
str
(
program
)
))
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/test_error_clip.py
浏览文件 @
559d3632
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
...
...
python/paddle/fluid/tests/test_if_else_op.py
浏览文件 @
559d3632
...
...
@@ -76,15 +76,15 @@ class TestMNISTIfElseOp(unittest.TestCase):
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
x_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)
).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)
).
astype
(
"int64"
)
x_data
=
np
.
array
(
[
x
[
0
]
for
x
in
data
]
).
astype
(
"float32"
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]
).
astype
(
"int64"
)
y_data
=
np
.
expand_dims
(
y_data
,
axis
=
1
)
outs
=
exe
.
run
(
prog
,
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
avg_loss
])
print
outs
[
0
]
print
((
outs
[
0
]))
if
outs
[
0
]
<
1.0
:
return
self
.
assertFalse
(
True
)
...
...
@@ -131,15 +131,15 @@ class TestMNISTIfElseOp(unittest.TestCase):
PASS_NUM
=
100
for
pass_id
in
range
(
PASS_NUM
):
for
data
in
train_reader
():
x_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
],
data
)
).
astype
(
"float32"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)
).
astype
(
"int64"
)
x_data
=
np
.
array
(
[
x
[
0
]
for
x
in
data
]
).
astype
(
"float32"
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]
).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
((
y_data
.
shape
[
0
],
1
))
outs
=
exe
.
run
(
prog
,
feed
=
{
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
avg_loss
])
print
outs
[
0
]
print
((
outs
[
0
]))
if
outs
[
0
]
<
1.0
:
return
self
.
assertFalse
(
True
)
...
...
python/paddle/fluid/tests/unittests/benchmark.py
浏览文件 @
559d3632
...
...
@@ -20,7 +20,7 @@ import itertools
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
op_test
import
OpTest
from
.
op_test
import
OpTest
class
BenchmarkSuite
(
OpTest
):
...
...
@@ -40,8 +40,7 @@ class BenchmarkSuite(OpTest):
expect_t
=
np
.
array
(
item_cpu_out
)
actual
=
item_gpu_out
actual_t
=
np
.
array
(
item_gpu_out
)
var_name
=
variable
if
isinstance
(
variable
,
basestring
)
else
variable
.
name
var_name
=
variable
if
isinstance
(
variable
,
str
)
else
variable
.
name
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
),
...
...
@@ -53,7 +52,7 @@ class BenchmarkSuite(OpTest):
def
_get_input_names
(
self
):
inputs
=
[]
for
name
,
value
in
self
.
inputs
.
iteritems
(
):
for
name
,
value
in
list
(
self
.
inputs
.
items
()
):
if
isinstance
(
value
,
list
):
inputs
.
extend
([
sub_name
for
sub_name
,
_
in
value
])
inputs
.
append
(
name
)
...
...
@@ -61,7 +60,7 @@ class BenchmarkSuite(OpTest):
def
_get_output_names
(
self
):
outputs
=
[]
for
var_name
,
var
in
self
.
outputs
.
iteritems
(
):
for
var_name
,
var
in
list
(
self
.
outputs
.
items
()
):
if
isinstance
(
var
,
list
):
for
sub_var_name
,
sub_var
in
var
:
outputs
.
append
(
sub_var_name
)
...
...
@@ -89,8 +88,8 @@ class BenchmarkSuite(OpTest):
for
place
in
places
:
elapses
.
append
(
self
.
timeit_output_with_place
(
place
,
iters
))
for
place
,
elapse
in
zip
(
places
,
elapses
):
print
(
"One pass of ({2}_op) at {0} cost {1}"
.
format
(
str
(
place
),
elapse
,
self
.
op_type
))
print
(
(
"One pass of ({2}_op) at {0} cost {1}"
.
format
(
str
(
place
),
elapse
,
self
.
op_type
))
)
def
timeit_grad_with_place
(
self
,
place
,
iters
=
100
):
inputs_to_check
=
self
.
_get_input_names
()
...
...
@@ -109,5 +108,5 @@ class BenchmarkSuite(OpTest):
for
place
in
places
:
elapses
.
append
(
self
.
timeit_grad_with_place
(
place
,
iters
))
for
place
,
elapse
in
zip
(
places
,
elapses
):
print
(
"One pass of ({2}_grad_op) at {0} cost {1}"
.
format
(
str
(
place
),
elapse
,
self
.
op_type
))
print
(
(
"One pass of ({2}_grad_op) at {0} cost {1}"
.
format
(
str
(
place
),
elapse
,
self
.
op_type
))
)
python/paddle/fluid/tests/unittests/benchmark_sum_op.py
浏览文件 @
559d3632
...
...
@@ -16,8 +16,8 @@ import unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
benchmark
import
BenchmarkSuite
from
op_test
import
OpTest
from
.
benchmark
import
BenchmarkSuite
from
.
op_test
import
OpTest
# This is a demo op test case for operator benchmarking and high resolution number stability alignment.
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
559d3632
...
...
@@ -91,7 +91,7 @@ class TestParallelExecutorBase(unittest.TestCase):
first_loss
,
=
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
for
i
in
x
range
(
iter
):
for
i
in
range
(
iter
):
run_executor
(
exe
=
exe
,
feed
=
feed_dict
,
fetch_list
=
[])
last_loss
,
=
run_executor
(
...
...
@@ -99,8 +99,8 @@ class TestParallelExecutorBase(unittest.TestCase):
end
=
time
.
time
()
if
batch_size
is
not
None
:
print
"%.4f Instance per second"
%
(
(
batch_size
*
iter
+
2
)
/
(
end
-
begin
))
print
((
"%.4f Instance per second"
%
(
(
batch_size
*
iter
+
2
)
/
(
end
-
begin
))
))
avg_last_loss_val
=
np
.
array
(
last_loss
).
mean
()
avg_first_loss_val
=
np
.
array
(
first_loss
).
mean
()
...
...
@@ -108,6 +108,6 @@ class TestParallelExecutorBase(unittest.TestCase):
float
(
avg_first_loss_val
)):
sys
.
exit
(
"got NaN loss, training failed."
)
print
first_loss
,
last_loss
print
((
first_loss
,
last_loss
))
# self.assertGreater(first_loss[0], last_loss[0])
return
first_loss
,
last_loss
python/paddle/fluid/tests/unittests/testsuite.py
浏览文件 @
559d3632
...
...
@@ -142,7 +142,7 @@ def append_input_output(block, op_proto, np_list, is_input, dtype):
def
append_loss_ops
(
block
,
output_names
):
mean_inputs
=
map
(
block
.
var
,
output_names
)
mean_inputs
=
list
(
map
(
block
.
var
,
output_names
)
)
# for item in mean_inputs:
# print(item)
# print("Item", item.dtype)
...
...
python/paddle/fluid/tests/unittests/transformer_model.py
浏览文件 @
559d3632
...
...
@@ -118,8 +118,9 @@ def multi_head_attention(queries,
# FIXME(guosheng): Decouple the program desc with batch_size.
return
layers
.
reshape
(
x
=
trans_x
,
shape
=
map
(
int
,
[
batch_size
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
shape
=
list
(
map
(
int
,
[
batch_size
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]
])))
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_model
,
dropout_rate
):
"""
...
...
python/paddle/fluid/trainer.py
浏览文件 @
559d3632
...
...
@@ -18,16 +18,15 @@ import errno
import
shutil
import
time
import
core
import
data_feeder
import
executor
import
framework
import
io
from
.
import
core
from
.
import
data_feeder
from
.
import
executor
from
.
import
framework
from
.
import
io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import
optimizer
as
opt_module
import
parallel_executor
from
transpiler
import
distribute_transpiler
from
.
import
optimizer
as
opt_module
from
.
import
parallel_executor
from
.
transpiler
import
distribute_transpiler
__all__
=
[
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
...
...
@@ -73,7 +72,7 @@ class BeginStepEvent(object):
self
.
step
=
step_id
self
.
fetch_metrics
=
True
"""
If fetch_metrics is true, the metrics will be fetched at the
If fetch_metrics is true, the metrics will be fetched at the
EndStepEvent. Default is True.
"""
...
...
@@ -614,11 +613,12 @@ def build_feed_var_list(program, feed_order):
if
not
isinstance
(
feed_order
,
dict
):
raise
TypeError
(
"The 'feed_order' should be either None, list or dict."
)
if
not
sorted
(
feed_order
.
values
())
==
range
(
len
(
feed_order
)):
if
not
sorted
(
feed_order
.
values
())
==
list
(
range
(
len
(
feed_order
)
)):
raise
ValueError
(
"The values of 'feed_order' should be a permutation of [0, len(feed_order))"
)
sorted_pair_list
=
sorted
(
feed_order
.
items
(),
key
=
lambda
item
:
item
[
1
])
sorted_pair_list
=
sorted
(
list
(
feed_order
.
items
()),
key
=
lambda
item
:
item
[
1
])
feed_var_list
=
[
program
.
global_block
().
var
(
pair
[
0
])
for
pair
in
sorted_pair_list
]
...
...
@@ -644,14 +644,14 @@ def save_checkpoint(executor,
pserver_endpoints
=
None
):
"""
This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir`
main_program and then saves these variables to the `checkpoint_dir`
directory.
In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets
...
...
@@ -663,21 +663,21 @@ def save_checkpoint(executor,
Args:
executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'.
Defaut: None
main_program(Program): The program whose checkpoint variables will
be saved.
max_num_checkpoints(int): The max number of total number of existing
max_num_checkpoints(int): The max number of total number of existing
checkpoints.
Default: 3
lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
table_name
pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
distribute arguments.
Returns:
...
...
@@ -747,8 +747,8 @@ def load_checkpoint(executor,
`checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to
load.
...
...
@@ -819,9 +819,9 @@ def load_checkpoint(executor,
def
clean_checkpoint
(
checkpoint_dir
,
delete_dir
=
False
):
"""
clean the checkpoint dir, when the train exits normally,
clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir
: param delete_dir
...
...
@@ -889,7 +889,7 @@ def _load_persist_vars_without_grad(executor,
def
_load_lookup_table_vars
(
executor
,
dirname
,
program
,
pserver_id
,
table_name
):
"""
The parameter server will load lookup table's local file in
The parameter server will load lookup table's local file in
selectedrows variable.
Args:
...
...
@@ -940,7 +940,7 @@ def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
def
_save_persist_vars_without_grad
(
executor
,
dirname
,
program
):
"""
This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of
program and then save these variables to a sub-folder '__model__' of
the given directory.
A variable is a checkpoint variable if it meets all following
...
...
@@ -969,7 +969,7 @@ def _save_persist_vars_without_grad(executor, dirname, program):
# In this example, `_save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder
# main program, and then saves these variables to the folder
# "./my_paddle_model/__model__".
"""
cur_dir
=
_get_model_dir
(
dirname
)
...
...
@@ -988,7 +988,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
The checkpoint notify message contains lookup table name,
The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table.
Args:
...
...
@@ -996,13 +996,13 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments.
Return:
None
Examples:
.. code-block:: python
...
...
@@ -1013,7 +1013,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name,
dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints)
"""
cur_dir
=
_get_lookuptable_dir
(
dirname
)
...
...
@@ -1036,7 +1036,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args):
cur_dir
=
_get_trainer_dir
(
dirname
,
trainer_id
)
for
name
,
value
in
trainer_args
.
iteritems
(
):
for
name
,
value
in
list
(
trainer_args
.
items
()
):
args_file
=
os
.
path
.
join
(
cur_dir
,
name
)
with
open
(
args_file
,
'w'
)
as
f
:
f
.
write
(
str
(
value
))
...
...
@@ -1045,7 +1045,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args):
def
_load_trainer_args
(
checkpoint_dir
,
serial
,
trainer_id
,
trainer_args
):
"""
trainer will load some args from it's independent directory,
trainer will load some args from it's independent directory,
such as epoch_id and step_id.
Args:
...
...
@@ -1168,10 +1168,10 @@ def _scroll_delete(dirname, max_num_checkpoints=3):
serial_num
=
_get_dir_serial
(
serial
)
serial_map
[
serial_num
]
=
serial
if
len
(
serial_map
.
keys
(
))
<=
max_num_checkpoints
:
if
len
(
list
(
serial_map
.
keys
()
))
<=
max_num_checkpoints
:
return
serials
=
serial_map
.
keys
(
)
serials
=
list
(
serial_map
.
keys
()
)
serials
.
sort
(
reverse
=
True
)
serials
=
serials
[
max_num_checkpoints
:]
for
serial
in
serials
:
...
...
python/paddle/fluid/transpiler/__init__.py
浏览文件 @
559d3632
...
...
@@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
distribute_transpiler
import
DistributeTranspiler
,
DistributeTranspilerConfig
from
inference_transpiler
import
InferenceTranspiler
from
memory_optimization_transpiler
import
memory_optimize
,
release_memory
from
ps_dispatcher
import
HashName
,
RoundRobin
from
.
distribute_transpiler
import
DistributeTranspiler
,
DistributeTranspilerConfig
from
.
inference_transpiler
import
InferenceTranspiler
from
.
memory_optimization_transpiler
import
memory_optimize
,
release_memory
from
.
ps_dispatcher
import
HashName
,
RoundRobin
__all__
=
[
"DistributeTranspiler"
,
"InferenceTranspiler"
,
"memory_optimize"
,
...
...
python/paddle/fluid/transpiler/details/__init__.py
浏览文件 @
559d3632
...
...
@@ -12,5 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
program_utils
import
*
from
ufind
import
*
from
.
program_utils
import
*
from
.
ufind
import
*
python/paddle/fluid/transpiler/details/program_utils.py
浏览文件 @
559d3632
...
...
@@ -17,8 +17,8 @@ def delete_ops(block, ops):
try
:
start
=
list
(
block
.
ops
).
index
(
ops
[
0
])
end
=
list
(
block
.
ops
).
index
(
ops
[
-
1
])
[
block
.
_remove_op
(
start
)
for
_
in
x
range
(
end
-
start
+
1
)]
except
Exception
,
e
:
[
block
.
_remove_op
(
start
)
for
_
in
range
(
end
-
start
+
1
)]
except
Exception
as
e
:
raise
e
block
.
program
.
_sync_with_cpp
()
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
559d3632
...
...
@@ -28,18 +28,17 @@ Steps to transpile pserver:
5. add listen_and_serv op
"""
from
__future__
import
print_function
import
math
import
random
import
numpy
as
np
from
ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
.
ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
..
import
core
,
framework
from
..framework
import
Program
,
default_main_program
,
\
default_startup_program
,
Block
,
\
Parameter
,
grad_var_name
from
details
import
*
from
.details
import
*
from
functools
import
reduce
LOOKUP_TABLE_TYPE
=
"lookup_table"
LOOKUP_TABLE_GRAD_TYPE
=
"lookup_table_grad"
...
...
@@ -102,7 +101,7 @@ def slice_variable(var_list, slice_count, min_block_size):
block_size
+=
dim1
-
remains
# update split_count after aligning
split_count
=
int
(
math
.
ceil
(
var_numel
/
float
(
block_size
)))
for
block_id
in
x
range
(
split_count
):
for
block_id
in
range
(
split_count
):
curr_block_size
=
min
(
block_size
,
var_numel
-
(
(
block_id
)
*
block_size
))
block
=
VarBlock
(
var
.
name
,
block_id
,
curr_block_size
)
...
...
@@ -117,7 +116,7 @@ class DistributeTranspilerConfig(object):
try to choose the best method to balance loads for pservers.
min_block_size (int): Minimum splitted element number in block.
According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
We can use bandwidth effiently when data size is larger than 2MB.If you
We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you see the slice_variable function.
"""
...
...
@@ -218,7 +217,7 @@ class DistributeTranspiler(object):
# fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
# fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
# shuffle the map will avoid the uneven distribution above
grad_var_mapping_items
=
self
.
grad_var_mapping
.
items
(
)
grad_var_mapping_items
=
list
(
self
.
grad_var_mapping
.
items
()
)
if
not
self
.
config
.
slice_var_up
:
random
.
seed
(
self
.
trainer_num
)
random
.
shuffle
(
grad_var_mapping_items
)
...
...
@@ -278,7 +277,7 @@ class DistributeTranspiler(object):
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
send_vars
[
i
])
# step4: Concat the parameters splits together after recv.
for
varname
,
splited_var
in
self
.
param_var_mapping
.
iteritems
(
):
for
varname
,
splited_var
in
list
(
self
.
param_var_mapping
.
items
()
):
eps
=
[]
for
var
in
splited_var
:
index
=
[
v
.
name
for
v
in
recv_vars
].
index
(
var
.
name
)
...
...
@@ -302,7 +301,7 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
for
varname
,
splited_var
in
self
.
param_var_mapping
.
iteritems
(
):
for
varname
,
splited_var
in
list
(
self
.
param_var_mapping
.
items
()
):
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
program
.
global_block
().
vars
[
varname
]
...
...
@@ -371,7 +370,7 @@ class DistributeTranspiler(object):
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
if
self
.
sync_mode
and
self
.
trainer_num
>
1
:
for
trainer_id
in
x
range
(
self
.
trainer_num
):
for
trainer_id
in
range
(
self
.
trainer_num
):
var
=
pserver_program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d"
%
(
orig_var_name
,
trainer_id
),
persistable
=
False
,
...
...
@@ -461,7 +460,7 @@ class DistributeTranspiler(object):
per_opt_block
=
pserver_program
.
create_block
(
pre_block_idx
)
optimize_blocks
.
append
(
per_opt_block
)
# append grad merging ops before clip and weight decay
# cases may like:
# cases may like:
# L2Decay op -> clip op -> optimize
for
_
,
op
in
enumerate
(
self
.
optimize_ops
):
# find the origin @GRAD var before clipping
...
...
@@ -556,7 +555,7 @@ class DistributeTranspiler(object):
# 1. create vars in pserver program to startup program
pserver_vars
=
pserver_program
.
global_block
().
vars
created_var_map
=
dict
()
for
_
,
var
in
pserver_vars
.
iteritems
(
):
for
_
,
var
in
list
(
pserver_vars
.
items
()
):
tmpvar
=
s_prog
.
global_block
().
_clone_variable
(
var
)
created_var_map
[
var
.
name
]
=
tmpvar
...
...
@@ -989,11 +988,11 @@ class DistributeTranspiler(object):
var_mapping
=
dict
()
for
block_str
in
block_list
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
if
not
block_map
.
has_key
(
varname
)
:
if
varname
not
in
block_map
:
block_map
[
varname
]
=
[]
block_map
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
block_map
[
varname
].
append
((
int
(
offset
),
int
(
size
)))
for
varname
,
splited
in
block_map
.
iteritems
(
):
for
varname
,
splited
in
list
(
block_map
.
items
()
):
orig_var
=
program
.
global_block
().
var
(
varname
)
if
len
(
splited
)
==
1
:
if
self
.
sync_mode
and
add_trainer_suffix
:
...
...
@@ -1156,7 +1155,7 @@ class DistributeTranspiler(object):
grad_to_block_id
.
append
(
merged_var
.
name
+
":"
+
str
(
optimize_block
.
idx
))
if
self
.
sync_mode
and
self
.
trainer_num
>
1
:
vars2merge
=
[]
for
i
in
x
range
(
self
.
trainer_num
):
for
i
in
range
(
self
.
trainer_num
):
per_trainer_name
=
"%s.trainer_%d"
%
\
(
merged_var_name
,
i
)
vars2merge
.
append
(
pserver_block
.
vars
[
per_trainer_name
])
...
...
@@ -1204,7 +1203,7 @@ class DistributeTranspiler(object):
# learning rate variable has already be created by non-optimize op,
# don't create it once again.
lr_varname
=
opt_op
.
input
(
key
)[
0
]
if
pserver_block
.
vars
.
has_key
(
lr_varname
)
:
if
lr_varname
in
pserver_block
.
vars
:
new_inputs
[
key
]
=
pserver_block
.
vars
[
opt_op
.
input
(
key
)[
0
]]
else
:
origin_var
=
origin_program
.
global_block
().
vars
[
lr_varname
]
...
...
@@ -1244,7 +1243,7 @@ class DistributeTranspiler(object):
def
_is_splited_grad_var
(
self
,
var
,
var_dict
):
grad_block
=
None
for
_
,
g
in
var_dict
.
iteritems
(
):
for
_
,
g
in
list
(
var_dict
.
items
()
):
if
self
.
_orig_varname
(
g
.
name
)
==
self
.
_orig_varname
(
var
.
name
):
if
g
.
name
.
find
(
".trainer_"
)
==
-
1
:
grad_block
=
g
...
...
@@ -1254,7 +1253,7 @@ class DistributeTranspiler(object):
def
_clone_lr_op
(
self
,
program
,
block
,
op
):
inputs
=
self
.
_get_input_map_from_op
(
self
.
origin_program
.
global_block
().
vars
,
op
)
for
key
,
varlist
in
inputs
.
iteritems
(
):
for
key
,
varlist
in
list
(
inputs
.
items
()
):
if
not
isinstance
(
varlist
,
list
):
varlist
=
[
varlist
]
for
var
in
varlist
:
...
...
@@ -1263,7 +1262,7 @@ class DistributeTranspiler(object):
outputs
=
self
.
_get_output_map_from_op
(
self
.
origin_program
.
global_block
().
vars
,
op
)
for
key
,
varlist
in
outputs
.
iteritems
(
):
for
key
,
varlist
in
list
(
outputs
.
items
()
):
if
not
isinstance
(
varlist
,
list
):
varlist
=
[
varlist
]
for
var
in
varlist
:
...
...
@@ -1278,7 +1277,7 @@ class DistributeTranspiler(object):
# Append the ops for parameters that do not need to be optimized/updated
inputs
=
self
.
_get_input_map_from_op
(
self
.
origin_program
.
global_block
().
vars
,
opt_op
)
for
key
,
varlist
in
inputs
.
iteritems
(
):
for
key
,
varlist
in
list
(
inputs
.
items
()
):
if
not
isinstance
(
varlist
,
list
):
varlist
=
[
varlist
]
for
var
in
varlist
:
...
...
@@ -1288,7 +1287,7 @@ class DistributeTranspiler(object):
var
,
program
.
global_block
().
vars
)
if
grad_block
:
inputs
[
key
]
=
grad_block
elif
not
program
.
global_block
().
vars
.
has_key
(
var
.
name
)
:
elif
var
.
name
not
in
program
.
global_block
().
vars
:
program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
...
...
@@ -1297,7 +1296,7 @@ class DistributeTranspiler(object):
outputs
=
self
.
_get_output_map_from_op
(
self
.
origin_program
.
global_block
().
vars
,
opt_op
)
for
key
,
varlist
in
outputs
.
iteritems
(
):
for
key
,
varlist
in
list
(
outputs
.
items
()
):
if
not
isinstance
(
varlist
,
list
):
varlist
=
[
varlist
]
for
var
in
varlist
:
...
...
@@ -1305,7 +1304,7 @@ class DistributeTranspiler(object):
var
,
program
.
global_block
().
vars
)
if
grad_block
:
outputs
[
key
]
=
grad_block
elif
not
program
.
global_block
().
vars
.
has_key
(
var
.
name
)
:
elif
var
.
name
not
in
program
.
global_block
().
vars
:
program
.
global_block
().
_clone_variable
(
var
)
return
optimize_block
.
append_op
(
...
...
@@ -1326,8 +1325,8 @@ class DistributeTranspiler(object):
def
_create_ufind
(
self
,
optimize_ops
):
# Create a unit find data struct by optimize ops
ufind
=
UnionFind
(
optimize_ops
)
for
i
in
x
range
(
len
(
optimize_ops
)):
for
j
in
x
range
(
i
,
len
(
optimize_ops
)):
for
i
in
range
(
len
(
optimize_ops
)):
for
j
in
range
(
i
,
len
(
optimize_ops
)):
op1
=
optimize_ops
[
i
]
op2
=
optimize_ops
[
j
]
if
self
.
_is_op_connected
(
op1
,
op2
):
...
...
python/paddle/fluid/transpiler/inference_transpiler.py
浏览文件 @
559d3632
...
...
@@ -305,6 +305,6 @@ class InferenceTranspiler(object):
args
+=
current_op
.
output_arg_names
args
=
list
(
set
(
args
))
# unique the input and output arguments
for
var
in
self
.
block
.
vars
.
keys
(
):
for
var
in
list
(
self
.
block
.
vars
.
keys
()
):
if
var
not
in
args
:
self
.
block
.
_remove_var
(
var
)
python/paddle/fluid/transpiler/memory_optimization_transpiler.py
浏览文件 @
559d3632
...
...
@@ -16,6 +16,7 @@ from collections import defaultdict
from
..
import
core
from
..framework
import
Program
,
default_main_program
,
Parameter
from
..backward
import
_rename_arg_
from
functools
import
reduce
dtype_to_size
=
{
core
.
VarDesc
.
VarType
.
FP16
:
2
,
...
...
@@ -107,7 +108,7 @@ class ControlFlowGraph(object):
# Repeatedly apply liveness updates until the algorithm stablize
# on a complete set live input vars and live output vars.
while
True
:
for
i
in
reversed
(
range
(
self
.
op_size
)):
for
i
in
reversed
(
list
(
range
(
self
.
op_size
)
)):
live_in
[
i
]
=
set
(
self
.
_live_in
[
i
])
live_out
[
i
]
=
set
(
self
.
_live_out
[
i
])
for
s
in
self
.
_successors
[
i
]:
...
...
@@ -172,9 +173,10 @@ class ControlFlowGraph(object):
is_forward
=
i
<
self
.
_forward_num
in_diff
,
out_diff
=
self
.
_get_diff
(
self
.
_live_in
[
i
],
self
.
_live_out
[
i
])
can_optimize
=
filter
(
lambda
x
:
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
),
in_diff
)
can_optimize
=
[
x
for
x
in
in_diff
if
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
)
]
if
can_optimize
:
index
=
i
+
fwd_id
+
1
if
is_forward
else
i
-
self
.
_forward_num
+
bwd_id
+
1
delete_op
=
block_desc
.
_insert_op
(
index
)
...
...
@@ -213,9 +215,10 @@ class ControlFlowGraph(object):
block_desc
=
op
.
block
()
is_forward
=
i
<
self
.
_forward_num
if
self
.
pool
:
defs_can_optimize
=
filter
(
lambda
x
:
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
),
self
.
_defs
[
i
])
defs_can_optimize
=
[
x
for
x
in
self
.
_defs
[
i
]
if
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
)
]
out_pair
=
[
(
x
,
self
.
_find_var
(
block_desc
,
x
,
is_forward
).
shape
())
for
x
in
defs_can_optimize
...
...
@@ -243,11 +246,11 @@ class ControlFlowGraph(object):
continue
if
PRINT_LOG
:
print
((
"Hit Cache !!!! cache pool index "
"is %d, var name is %s, "
"cached var name is %s, "
"var shape is %s "
)
%
(
index
,
x
,
cache_var
,
str
(
cache_shape
)))
print
((
(
"Hit Cache !!!! cache pool index "
"is %d, var name is %s, "
"cached var name is %s, "
"var shape is %s "
)
%
(
index
,
x
,
cache_var
,
str
(
cache_shape
)
)))
self
.
pool
.
pop
(
index
)
if
x
==
cache_var
:
break
...
...
@@ -261,9 +264,10 @@ class ControlFlowGraph(object):
break
in_diff
,
_
=
self
.
_get_diff
(
self
.
_live_in
[
i
],
self
.
_live_out
[
i
])
can_optimize
=
filter
(
lambda
x
:
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
),
in_diff
)
can_optimize
=
[
x
for
x
in
in_diff
if
self
.
_check_var_validity
(
block_desc
,
x
,
is_forward
)
]
if
can_optimize
:
for
var_name
in
can_optimize
:
self
.
pool
.
append
((
var_name
,
self
.
_find_var
(
...
...
python/paddle/fluid/unique_name.py
浏览文件 @
559d3632
...
...
@@ -67,7 +67,7 @@ def switch(new_generator=None):
@
contextlib
.
contextmanager
def
guard
(
new_generator
=
None
):
if
isinstance
(
new_generator
,
basestring
):
if
isinstance
(
new_generator
,
str
):
new_generator
=
UniqueNameGenerator
(
new_generator
)
old
=
switch
(
new_generator
)
yield
...
...
python/paddle/reader/creator.py
浏览文件 @
559d3632
...
...
@@ -67,10 +67,10 @@ def recordio(paths, buf_size=100):
import
recordio
as
rec
import
paddle.reader.decorator
as
dec
import
cP
ickle
as
pickle
import
p
ickle
as
pickle
def
reader
():
if
isinstance
(
paths
,
basestring
):
if
isinstance
(
paths
,
str
):
path
=
paths
else
:
path
=
","
.
join
(
paths
)
...
...
python/paddle/reader/decorator.py
浏览文件 @
559d3632
...
...
@@ -21,6 +21,7 @@ from threading import Thread
import
subprocess
from
six.moves.queue
import
Queue
from
six.moves
import
zip_longest
import
itertools
import
random
import
zlib
...
...
@@ -42,7 +43,7 @@ def map_readers(func, *readers):
rs
=
[]
for
r
in
readers
:
rs
.
append
(
r
())
for
e
in
itertools
.
i
map
(
func
,
*
rs
):
for
e
in
map
(
func
,
*
rs
):
yield
e
return
reader
...
...
@@ -148,16 +149,16 @@ def compose(*readers, **kwargs):
for
r
in
readers
:
rs
.
append
(
r
())
if
not
check_alignment
:
for
outputs
in
itertools
.
i
zip
(
*
rs
):
yield
sum
(
map
(
make_tuple
,
outputs
),
())
for
outputs
in
zip
(
*
rs
):
yield
sum
(
list
(
map
(
make_tuple
,
outputs
)
),
())
else
:
for
outputs
in
itertools
.
i
zip_longest
(
*
rs
):
for
outputs
in
zip_longest
(
*
rs
):
for
o
in
outputs
:
if
o
is
None
:
# None will be not be present if compose is aligned
raise
ComposeNotAligned
(
"outputs of readers are not aligned."
)
yield
sum
(
map
(
make_tuple
,
outputs
),
())
yield
sum
(
list
(
map
(
make_tuple
,
outputs
)
),
())
return
reader
...
...
@@ -306,7 +307,7 @@ def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
args
=
(
in_queue
,
out_queue
,
mapper
,
out_order
)
if
order
else
(
in_queue
,
out_queue
,
mapper
)
workers
=
[]
for
i
in
x
range
(
process_num
):
for
i
in
range
(
process_num
):
worker
=
Thread
(
target
=
target
,
args
=
args
)
worker
.
daemon
=
True
workers
.
append
(
worker
)
...
...
python/paddle/reader/tests/decorator_test.py
浏览文件 @
559d3632
...
...
@@ -136,7 +136,7 @@ class TestXmap(unittest.TestCase):
reader
=
paddle
.
reader
.
xmap_readers
(
mapper
,
reader_creator_10
(
0
),
tNum
,
size
,
order
)
for
n
in
x
range
(
3
):
for
n
in
range
(
3
):
result
=
[]
for
i
in
reader
():
result
.
append
(
i
)
...
...
@@ -156,7 +156,7 @@ class TestPipeReader(unittest.TestCase):
import
tempfile
records
=
[
str
(
i
)
for
i
in
x
range
(
5
)]
records
=
[
str
(
i
)
for
i
in
range
(
5
)]
temp
=
tempfile
.
NamedTemporaryFile
()
try
:
with
open
(
temp
.
name
,
'w'
)
as
f
:
...
...
tools/test_runner.py
浏览文件 @
559d3632
...
...
@@ -12,19 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
os
import
sys
import
paddle.fluid
as
fluid
import
importlib
import
cStringIO
from
six.moves
import
cStringIO
def
main
():
sys
.
path
.
append
(
os
.
getcwd
())
some_test_failed
=
False
for
module_name
in
sys
.
argv
[
1
:]:
buffer
=
cStringIO
.
StringIO
()
buffer
=
cStringIO
()
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
...
...
@@ -37,8 +38,11 @@ def main():
res
=
unittest
.
TextTestRunner
(
stream
=
buffer
).
run
(
tests
)
if
not
res
.
wasSuccessful
():
some_test_failed
=
True
print
>>
sys
.
stderr
,
module_name
,
'failed
\n
'
,
buffer
.
getvalue
(
)
print
(
module_name
,
'failed
\n
'
,
buffer
.
getvalue
(),
file
=
sys
.
stderr
)
if
some_test_failed
:
exit
(
1
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录