Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
54fcafb5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
54fcafb5
编写于
12月 07, 2018
作者:
T
Tao Luo
提交者:
GitHub
12月 07, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14707 from yihuaxu/develop_
4f71a6ee
_conv3d_mkldnn_opt
Implement conv3d with mkldnn library
上级
b82a44ea
155328a4
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
207 addition
and
76 deletion
+207
-76
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+94
-29
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+19
-3
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+12
-0
python/paddle/fluid/tests/unittests/test_conv3d_mkldnn_op.py
python/paddle/fluid/tests/unittests/test_conv3d_mkldnn_op.py
+59
-0
python/paddle/fluid/tests/unittests/test_conv3d_op.py
python/paddle/fluid/tests/unittests/test_conv3d_op.py
+23
-44
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
54fcafb5
...
@@ -28,6 +28,46 @@ using mkldnn::stream;
...
@@ -28,6 +28,46 @@ using mkldnn::stream;
using
platform
::
to_void_cast
;
using
platform
::
to_void_cast
;
using
platform
::
GetMKLDNNFormat
;
using
platform
::
GetMKLDNNFormat
;
inline
void
GetWeightsTz
(
std
::
vector
<
int
>&
weights_tz
,
int
groups
,
// NOLINT
bool
is_conv3d
)
{
if
(
groups
>
1
)
{
if
(
is_conv3d
)
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
dimension
=
weights_tz
[
2
];
int
height
=
weights_tz
[
3
];
int
width
=
weights_tz
[
4
];
weights_tz
.
resize
(
6
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
dimension
;
weights_tz
[
4
]
=
height
;
weights_tz
[
5
]
=
width
;
}
else
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
height
=
weights_tz
[
2
];
int
width
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
height
;
weights_tz
[
4
]
=
width
;
}
}
}
inline
mkldnn
::
memory
::
format
GetWeightsFormat
(
mkldnn
::
memory
::
format
format
,
int
groups
,
bool
is_conv3d
)
{
if
(
is_conv3d
)
{
return
(
groups
==
1
)
?
format
:
mkldnn
::
memory
::
format
::
goidhw
;
}
else
{
return
(
groups
==
1
)
?
format
:
mkldnn
::
memory
::
format
::
goihw
;
}
}
template
<
typename
T
>
template
<
typename
T
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -52,10 +92,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -52,10 +92,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
memory
::
format
::
format_undef
,
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
,
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
||
input
->
dims
().
size
()
==
5
,
"Input must be with 4
dimensions, i.e. NC
HW"
);
"Input must be with 4
or 5 dimensions, i.e. NCHW or NCD
HW"
);
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
,
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
||
filter
->
dims
().
size
()
==
5
,
"Filter must be with 4
dimensions, i.e. OI
HW"
);
"Filter must be with 4
or 5 dimensions, i.e. OIHW or OID
HW"
);
if
(
bias
)
{
if
(
bias
)
{
PADDLE_ENFORCE
(
bias
->
layout
()
==
DataLayout
::
kMKLDNN
&&
PADDLE_ENFORCE
(
bias
->
layout
()
==
DataLayout
::
kMKLDNN
&&
bias
->
format
()
!=
memory
::
format
::
format_undef
,
bias
->
format
()
!=
memory
::
format
::
format_undef
,
...
@@ -71,9 +111,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -71,9 +111,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
bool
is_conv3d
=
strides
.
size
()
==
3U
;
// TODO(tpatejko): add support for dilation
// TODO(tpatejko): add support for dilation
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
is_conv3d
?
dilations
.
size
()
==
3
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
&&
dilations
[
2
]
==
1
:
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
"dilation in convolution is not implemented yet"
);
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
...
@@ -83,18 +127,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -83,18 +127,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
weights_tz
=
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
int
g
=
std
::
max
(
groups
,
1
);
if
(
g
>
1
)
{
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
h
=
weights_tz
[
2
];
int
w
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
}
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
// Get unique name for storing MKLDNN primitives
...
@@ -105,11 +138,14 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -105,11 +138,14 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
auto
src_format
=
input
->
format
();
mkldnn
::
memory
::
format
weights_format
=
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
()
);
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
src_format
);
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
weights_format
);
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* ('any') which lets a primitive (convolution in this case) choose
...
@@ -119,10 +155,16 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -119,10 +155,16 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
chosen_memory_format
=
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
platform
::
data_format_to_memory_format
(
data_format
);
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
}
weights_format
=
GetWeightsFormat
(
chosen_memory_format
,
g
,
is_conv3d
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory
_format
);
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
weights
_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
// Currently used whenever bias is != nullptr.
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
...
@@ -263,8 +305,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -263,8 +305,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_residual_conn
,
const
bool
fuse_residual_conn
,
mkldnn
::
prop_kind
fwd_prop_kind
)
const
{
mkldnn
::
prop_kind
fwd_prop_kind
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]}
;
memory
::
dims
stride_dims
=
strides
;
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]}
;
memory
::
dims
padding_dims
=
paddings
;
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
fwd_prop_kind
,
mkldnn
::
convolution_direct
,
src
,
weights
,
dst
,
fwd_prop_kind
,
mkldnn
::
convolution_direct
,
src
,
weights
,
dst
,
...
@@ -288,8 +330,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -288,8 +330,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
mkldnn
::
engine
&
engine
,
const
bool
fuse_relu
,
const
bool
fuse_residual_conn
,
const
bool
fuse_residual_conn
,
mkldnn
::
prop_kind
fwd_prop_kind
)
const
{
mkldnn
::
prop_kind
fwd_prop_kind
)
const
{
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]}
;
memory
::
dims
stride_dims
=
strides
;
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]}
;
memory
::
dims
padding_dims
=
paddings
;
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
fwd_prop_kind
,
mkldnn
::
convolution_direct
,
src
,
weights
,
bias
,
dst
,
fwd_prop_kind
,
mkldnn
::
convolution_direct
,
src
,
weights
,
bias
,
dst
,
...
@@ -349,6 +391,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -349,6 +391,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
bool
is_conv3d
=
strides
.
size
()
==
3U
;
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
...
@@ -358,8 +401,14 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -358,8 +401,14 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
src_format
=
input
->
format
();
mkldnn
::
memory
::
format
weights_format
=
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
// Get an unique name from "argument" name of "Output" variable
// Get an unique name from "argument" name of "Output" variable
// as well as attributes of primitive to be created
// as well as attributes of primitive to be created
// This name will be used as key when saving info into device context
// This name will be used as key when saving info into device context
...
@@ -372,9 +421,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -372,9 +421,9 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
// Create user memory descriptors
// Create user memory descriptors
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
()
);
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
src_format
);
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
filter
->
format
()
);
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
weights_format
);
auto
user_diff_dst_md
=
platform
::
MKLDNNMemDesc
(
auto
user_diff_dst_md
=
platform
::
MKLDNNMemDesc
(
{
dst_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
output_grad
->
format
());
{
dst_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
output_grad
->
format
());
...
@@ -386,14 +435,20 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -386,14 +435,20 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
chosen_memory_format
=
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
platform
::
data_format_to_memory_format
(
data_format
);
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
}
weights_format
=
GetWeightsFormat
(
chosen_memory_format
,
g
,
is_conv3d
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
diff_src_md
=
platform
::
MKLDNNMemDesc
(
auto
diff_src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory
_format
);
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
weights
_format
);
auto
diff_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
diff_weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory
_format
);
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
weights
_format
);
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
...
@@ -500,3 +555,13 @@ REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
...
@@ -500,3 +555,13 @@ REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
);
ops
::
ConvMKLDNNGradOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv3d
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
conv3d_grad
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FP32
,
ops
::
kConvMKLDNNFP32
,
ops
::
ConvMKLDNNGradOpKernel
<
float
>
);
paddle/fluid/operators/conv_op.cc
浏览文件 @
54fcafb5
...
@@ -134,14 +134,14 @@ void Conv2DOpMaker::Make() {
...
@@ -134,14 +134,14 @@ void Conv2DOpMaker::Make() {
"The format of output tensor is X (one-dimensional) of size equal"
"The format of output tensor is X (one-dimensional) of size equal"
"to the number of output channels. Only used with MKL-DNN."
)
"to the number of output channels. Only used with MKL-DNN."
)
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW."
);
AddInput
(
"ResidualData"
,
AddInput
(
"ResidualData"
,
"(Tensor) Tensor with residual data "
"(Tensor) Tensor with residual data "
"to which convolution output will be added."
"to which convolution output will be added."
"Used with fuse_residual_connection fusion."
)
"Used with fuse_residual_connection fusion."
)
.
AsDispensable
();
.
AsDispensable
();
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int> default:{1, 1}), the "
"(vector<int> default:{1, 1}), the "
"strides(h_stride, w_stride) of "
"strides(h_stride, w_stride) of "
...
@@ -232,6 +232,10 @@ $$
...
@@ -232,6 +232,10 @@ $$
}
}
void
Conv3DOpMaker
::
Make
()
{
void
Conv3DOpMaker
::
Make
()
{
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddInput
(
AddInput
(
"Input"
,
"Input"
,
"(Tensor) The input tensor of convolution operator. "
"(Tensor) The input tensor of convolution operator. "
...
@@ -247,6 +251,11 @@ void Conv3DOpMaker::Make() {
...
@@ -247,6 +251,11 @@ void Conv3DOpMaker::Make() {
"is the width of the filter."
"is the width of the filter."
"If the groups attribute is greater than 1, C equals the number of "
"If the groups attribute is greater than 1, C equals the number of "
"input image channels divided by the groups."
);
"input image channels divided by the groups."
);
AddInput
(
"ResidualData"
,
"(Tensor) Tensor with residual data "
"to which convolution output will be added."
"Used with fuse_residual_connection fusion."
)
.
AsDispensable
();
AddOutput
(
"Output"
,
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator."
"(Tensor) The output tensor of convolution operator."
"The format of output tensor is also NCDHW."
);
"The format of output tensor is also NCDHW."
);
...
@@ -280,6 +289,13 @@ void Conv3DOpMaker::Make() {
...
@@ -280,6 +289,13 @@ void Conv3DOpMaker::Make() {
AddAttr
<
bool
>
(
"use_mkldnn"
,
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_relu"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fuse_residual_connection"
,
"(bool, default false) Only used in mkldnn kernel. Used "
"whenever convolution output is as an input to residual "
"connection."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
AddAttr
<
std
::
string
>
(
"data_format"
,
"data_format"
,
"(string, default NCHW) Only used in "
"(string, default NCHW) Only used in "
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
54fcafb5
...
@@ -113,6 +113,18 @@ inline mkldnn::memory::format MKLDNNFormatForSize(
...
@@ -113,6 +113,18 @@ inline mkldnn::memory::format MKLDNNFormatForSize(
return
mkldnn
::
memory
::
format
::
x
;
return
mkldnn
::
memory
::
format
::
x
;
}
else
if
(
dims_size
==
2
)
{
}
else
if
(
dims_size
==
2
)
{
return
mkldnn
::
memory
::
format
::
nc
;
return
mkldnn
::
memory
::
format
::
nc
;
}
else
if
(
dims_size
==
3
)
{
if
(
data_format
==
mkldnn
::
memory
::
format
::
nchw
)
{
return
mkldnn
::
memory
::
format
::
ncw
;
}
else
if
(
data_format
==
mkldnn
::
memory
::
format
::
nhwc
)
{
return
mkldnn
::
memory
::
format
::
nwc
;
}
}
else
if
(
dims_size
==
5
)
{
if
(
data_format
==
mkldnn
::
memory
::
format
::
nchw
)
{
return
mkldnn
::
memory
::
format
::
ncdhw
;
}
else
if
(
data_format
==
mkldnn
::
memory
::
format
::
nhwc
)
{
return
mkldnn
::
memory
::
format
::
ndhwc
;
}
}
}
return
data_format
;
return
data_format
;
}
}
...
...
python/paddle/fluid/tests/unittests/test_conv3d_mkldnn_op.py
0 → 100644
浏览文件 @
54fcafb5
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_conv3d_op
import
TestConv3dOp
,
TestCase1
,
TestWithGroup1
,
TestWithGroup2
,
TestWith1x1
,
TestWithInput1x1Filter1x1
class
TestMKLDNN
(
TestConv3dOp
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
class
TestMKLDNNCase1
(
TestCase1
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
class
TestMKLDNNGroup1
(
TestWithGroup1
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
class
TestMKLDNNGroup2
(
TestWithGroup2
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
class
TestMKLDNNWith1x1
(
TestWith1x1
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
class
TestMKLDNNWithInput1x1Filter1x1
(
TestWithInput1x1Filter1x1
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_format
=
"NCHW"
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_conv3d_op.py
浏览文件 @
54fcafb5
...
@@ -74,6 +74,8 @@ class TestConv3dOp(OpTest):
...
@@ -74,6 +74,8 @@ class TestConv3dOp(OpTest):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"conv3d"
self
.
op_type
=
"conv3d"
self
.
use_cudnn
=
False
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
self
.
data_format
=
"AnyLayout"
self
.
dtype
=
np
.
float32
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
init_kernel_type
()
self
.
init_group
()
self
.
init_group
()
...
@@ -83,8 +85,7 @@ class TestConv3dOp(OpTest):
...
@@ -83,8 +85,7 @@ class TestConv3dOp(OpTest):
conv3d_param
=
{
conv3d_param
=
{
'stride'
:
self
.
stride
,
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'pad'
:
self
.
pad
,
'dilations'
:
self
.
dilations
,
'dilations'
:
self
.
dilations
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
}
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
...
@@ -101,7 +102,9 @@ class TestConv3dOp(OpTest):
...
@@ -101,7 +102,9 @@ class TestConv3dOp(OpTest):
'paddings'
:
self
.
pad
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'dilations'
:
self
.
dilations
,
'use_cudnn'
:
self
.
use_cudnn
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'data_format'
:
self
.
data_format
}
}
self
.
outputs
=
{
'Output'
:
output
}
self
.
outputs
=
{
'Output'
:
output
}
...
@@ -109,56 +112,32 @@ class TestConv3dOp(OpTest):
...
@@ -109,56 +112,32 @@ class TestConv3dOp(OpTest):
return
core
.
is_compiled_with_cuda
()
and
self
.
use_cudnn
return
core
.
is_compiled_with_cuda
()
and
self
.
use_cudnn
def
test_check_output
(
self
):
def
test_check_output
(
self
):
if
self
.
testcudnn
():
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcudnn
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
else
:
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
if
self
.
dtype
==
np
.
float16
:
return
return
if
self
.
testcudnn
():
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcudnn
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
place
,
place
,
{
'Input'
,
'Filter'
},
'Output'
,
max_relative_error
=
0.03
)
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.03
)
else
:
self
.
check_grad
(
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.03
)
def
test_check_grad_no_filter
(
self
):
def
test_check_grad_no_filter
(
self
):
if
self
.
dtype
==
np
.
float16
:
if
self
.
dtype
==
np
.
float16
:
return
return
if
self
.
testcudnn
():
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcudnn
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
place
,
[
'Input'
],
place
,
[
'Input'
],
'Output'
,
'Output'
,
max_relative_error
=
0.03
,
max_relative_error
=
0.03
,
no_grad_set
=
set
([
'Filter'
]))
no_grad_set
=
set
([
'Filter'
]))
else
:
self
.
check_grad
(
[
'Input'
],
'Output'
,
max_relative_error
=
0.03
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad_no_input
(
self
):
def
test_check_grad_no_input
(
self
):
if
self
.
dtype
==
np
.
float16
:
if
self
.
dtype
==
np
.
float16
:
return
return
if
self
.
testcudnn
():
place
=
core
.
CUDAPlace
(
0
)
if
self
.
testcudnn
()
else
core
.
CPUPlace
()
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
place
,
[
'Input'
],
'Output'
,
max_relative_error
=
0.03
,
no_grad_set
=
set
([
'Input'
]))
else
:
self
.
check_grad
(
[
'Filter'
],
'Output'
,
'Output'
,
max_relative_error
=
0.03
,
max_relative_error
=
0.03
,
no_grad_set
=
set
([
'Input'
]))
no_grad_set
=
set
([
'Input'
]))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录