diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 0a0c3663f3c2f5fd7a638d7e5b1ee130d20e234b..f435a79871ece81fa744df2c3b894f4fc997c900 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -24,6 +24,7 @@ paddle.fluid.Variable.clear_gradient (ArgSpec(args=['self'], varargs=None, keywo paddle.fluid.Variable.detach (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '0730b2d310b014d9b0a903b2034757d7')) paddle.fluid.Variable.gradient (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '86b246bfaf20f3058e91927abbcf9fb9')) paddle.fluid.Variable.numpy (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '7536e8feb56d827875943e7f01d406fc')) +paddle.fluid.Variable.set_value (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', 'c424b9e763ff51c38a6917f98026fe7d')) paddle.fluid.Variable.to_string (ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)), ('document', '31f359a2c074f26dc0ffff296fc3983f')) paddle.fluid.Executor ('paddle.fluid.executor.Executor', ('document', '34e8c1769313fbeff7817212dda6259e')) paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) @@ -575,7 +576,7 @@ paddle.fluid.dygraph.Layer.clear_gradients (ArgSpec(args=['self'], varargs=None, paddle.fluid.dygraph.Layer.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6')) paddle.fluid.dygraph.Layer.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8')) paddle.fluid.dygraph.Layer.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.Layer.forward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) +paddle.fluid.dygraph.Layer.forward (ArgSpec(args=['self'], varargs='inputs', keywords='kwargs', defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Layer.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2')) paddle.fluid.dygraph.Layer.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Layer.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5')) @@ -585,7 +586,7 @@ paddle.fluid.dygraph.Layer.train (ArgSpec(args=['self'], varargs=None, keywords= paddle.fluid.dygraph.__impl__ (ArgSpec(args=['func'], varargs=None, keywords=None, defaults=()), ('document', '75d1d3afccc8b39cdebf05cb1f5969f9')) paddle.fluid.dygraph.guard (ArgSpec(args=['place'], varargs=None, keywords=None, defaults=(None,)), ('document', '7071320ffe2eec9aacdae574951278c6')) paddle.fluid.dygraph.to_variable (ArgSpec(args=['value', 'block', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '0e69fa3666f15dd01b6e3e270b9371cd')) -paddle.fluid.dygraph.Conv2D ('paddle.fluid.dygraph.nn.Conv2D', ('document', 'baafe7ae0d3a61ae79cf4c7443e2c37c')) +paddle.fluid.dygraph.Conv2D ('paddle.fluid.dygraph.nn.Conv2D', ('document', '0b6acb9cc7fbb4f5b129e1f6dd985581')) paddle.fluid.dygraph.Conv2D.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'dtype'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv2D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.Conv2D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -601,7 +602,7 @@ paddle.fluid.dygraph.Conv2D.parameters (ArgSpec(args=['self', 'include_sublayers paddle.fluid.dygraph.Conv2D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv2D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Conv2D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.Conv3D ('paddle.fluid.dygraph.nn.Conv3D', ('document', '8b756aaca65af9594cc574d9a5d2b055')) +paddle.fluid.dygraph.Conv3D ('paddle.fluid.dygraph.nn.Conv3D', ('document', '50412bd3fbf3557a8ef48e25c6517025')) paddle.fluid.dygraph.Conv3D.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv3D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.Conv3D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -617,7 +618,7 @@ paddle.fluid.dygraph.Conv3D.parameters (ArgSpec(args=['self', 'include_sublayers paddle.fluid.dygraph.Conv3D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv3D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Conv3D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.Pool2D ('paddle.fluid.dygraph.nn.Pool2D', ('document', 'e9331666e47a38586c8809a23cbaf7de')) +paddle.fluid.dygraph.Pool2D ('paddle.fluid.dygraph.nn.Pool2D', ('document', '50e6fd200e42859daf2924ecb0561ada')) paddle.fluid.dygraph.Pool2D.__init__ (ArgSpec(args=['self', 'name_scope', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'exclusive', 'dtype'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, True, VarType.FP32)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Pool2D.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.Pool2D.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -633,7 +634,7 @@ paddle.fluid.dygraph.Pool2D.parameters (ArgSpec(args=['self', 'include_sublayers paddle.fluid.dygraph.Pool2D.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Pool2D.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Pool2D.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.FC ('paddle.fluid.dygraph.nn.FC', ('document', '1d64242f03f2aca2307e94590b552430')) +paddle.fluid.dygraph.FC ('paddle.fluid.dygraph.nn.FC', ('document', '2f73ae00e57c67454c6aa7e911d9bfd6')) paddle.fluid.dygraph.FC.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'dtype'], varargs=None, keywords=None, defaults=(1, None, None, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.FC.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.FC.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -649,7 +650,7 @@ paddle.fluid.dygraph.FC.parameters (ArgSpec(args=['self', 'include_sublayers'], paddle.fluid.dygraph.FC.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.FC.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.FC.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.BatchNorm ('paddle.fluid.dygraph.nn.BatchNorm', ('document', '0b609e10e4d417c91d346f887d16771c')) +paddle.fluid.dygraph.BatchNorm ('paddle.fluid.dygraph.nn.BatchNorm', ('document', '390fb9b986423ec6680731ffc7cf24ab')) paddle.fluid.dygraph.BatchNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'num_channels', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'dtype', 'data_layout', 'in_place', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats', 'trainable_statistics'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'float32', 'NCHW', False, None, None, False, False, False, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.BatchNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.BatchNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -665,7 +666,7 @@ paddle.fluid.dygraph.BatchNorm.parameters (ArgSpec(args=['self', 'include_sublay paddle.fluid.dygraph.BatchNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.BatchNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.BatchNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.Embedding ('paddle.fluid.dygraph.nn.Embedding', ('document', 'ecf8dc4149f005cd30eddc0dd343454f')) +paddle.fluid.dygraph.Embedding ('paddle.fluid.dygraph.nn.Embedding', ('document', 'b1b1ed9dc2125c3e16ee08113605fcb4')) paddle.fluid.dygraph.Embedding.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Embedding.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.Embedding.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -681,7 +682,7 @@ paddle.fluid.dygraph.Embedding.parameters (ArgSpec(args=['self', 'include_sublay paddle.fluid.dygraph.Embedding.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Embedding.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Embedding.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.GRUUnit ('paddle.fluid.dygraph.nn.GRUUnit', ('document', '5308e42b6a6db4681ce5ee9e94983986')) +paddle.fluid.dygraph.GRUUnit ('paddle.fluid.dygraph.nn.GRUUnit', ('document', '389e860e455b67aab1f4d472ac9d7e49')) paddle.fluid.dygraph.GRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation', 'origin_mode', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.GRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.GRUUnit.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -697,7 +698,7 @@ paddle.fluid.dygraph.GRUUnit.parameters (ArgSpec(args=['self', 'include_sublayer paddle.fluid.dygraph.GRUUnit.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.GRUUnit.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.GRUUnit.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.LayerNorm ('paddle.fluid.dygraph.nn.LayerNorm', ('document', 'b44f5d3d10386c460094e21f24ff272b')) +paddle.fluid.dygraph.LayerNorm ('paddle.fluid.dygraph.nn.LayerNorm', ('document', '8bc39f59fe2d3713bc143fdf1222a63b')) paddle.fluid.dygraph.LayerNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.LayerNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.LayerNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -713,7 +714,7 @@ paddle.fluid.dygraph.LayerNorm.parameters (ArgSpec(args=['self', 'include_sublay paddle.fluid.dygraph.LayerNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.LayerNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.LayerNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.NCE ('paddle.fluid.dygraph.nn.NCE', ('document', '2d579e8d9ce31bb29e079e5f6108fc73')) +paddle.fluid.dygraph.NCE ('paddle.fluid.dygraph.nn.NCE', ('document', '993aeea9be436e9c709a758795cb23e9')) paddle.fluid.dygraph.NCE.__init__ (ArgSpec(args=['self', 'name_scope', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, 'uniform', None, 0, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.NCE.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.NCE.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -729,7 +730,7 @@ paddle.fluid.dygraph.NCE.parameters (ArgSpec(args=['self', 'include_sublayers'], paddle.fluid.dygraph.NCE.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.NCE.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.NCE.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.PRelu ('paddle.fluid.dygraph.nn.PRelu', ('document', 'd395ed163b4cf86e7207968f27bc1c11')) +paddle.fluid.dygraph.PRelu ('paddle.fluid.dygraph.nn.PRelu', ('document', 'da956af1676b08bf15553751a3643b55')) paddle.fluid.dygraph.PRelu.__init__ (ArgSpec(args=['self', 'name_scope', 'mode', 'param_attr'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.PRelu.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.PRelu.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -745,7 +746,7 @@ paddle.fluid.dygraph.PRelu.parameters (ArgSpec(args=['self', 'include_sublayers' paddle.fluid.dygraph.PRelu.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.PRelu.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.PRelu.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.BilinearTensorProduct ('paddle.fluid.dygraph.nn.BilinearTensorProduct', ('document', '310140d784933928a27db9a7af4761e8')) +paddle.fluid.dygraph.BilinearTensorProduct ('paddle.fluid.dygraph.nn.BilinearTensorProduct', ('document', 'be70d0f6d43729d9cb80c9a34ed5f26b')) paddle.fluid.dygraph.BilinearTensorProduct.__init__ (ArgSpec(args=['self', 'name_scope', 'size', 'name', 'act', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.BilinearTensorProduct.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.BilinearTensorProduct.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -761,7 +762,7 @@ paddle.fluid.dygraph.BilinearTensorProduct.parameters (ArgSpec(args=['self', 'in paddle.fluid.dygraph.BilinearTensorProduct.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.BilinearTensorProduct.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.BilinearTensorProduct.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.Conv2DTranspose ('paddle.fluid.dygraph.nn.Conv2DTranspose', ('document', '918fa8ad8a62ff424c842fb8a840bf7a')) +paddle.fluid.dygraph.Conv2DTranspose ('paddle.fluid.dygraph.nn.Conv2DTranspose', ('document', 'cf23c905abc00b07603dfa71a432d6f7')) paddle.fluid.dygraph.Conv2DTranspose.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv2DTranspose.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.Conv2DTranspose.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -777,7 +778,7 @@ paddle.fluid.dygraph.Conv2DTranspose.parameters (ArgSpec(args=['self', 'include_ paddle.fluid.dygraph.Conv2DTranspose.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv2DTranspose.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Conv2DTranspose.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.Conv3DTranspose ('paddle.fluid.dygraph.nn.Conv3DTranspose', ('document', 'cd99906d0813609ddea3fb6a2ac900dc')) +paddle.fluid.dygraph.Conv3DTranspose ('paddle.fluid.dygraph.nn.Conv3DTranspose', ('document', '91ba132bc690eaf76eabdbde8f87e4a0')) paddle.fluid.dygraph.Conv3DTranspose.__init__ (ArgSpec(args=['self', 'name_scope', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv3DTranspose.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.Conv3DTranspose.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -793,7 +794,7 @@ paddle.fluid.dygraph.Conv3DTranspose.parameters (ArgSpec(args=['self', 'include_ paddle.fluid.dygraph.Conv3DTranspose.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.Conv3DTranspose.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.Conv3DTranspose.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.GroupNorm ('paddle.fluid.dygraph.nn.GroupNorm', ('document', '4d65fc6b00970e3b5c5dd0abeacd47cb')) +paddle.fluid.dygraph.GroupNorm ('paddle.fluid.dygraph.nn.GroupNorm', ('document', '72c125b07bdd1e612607dc77039b2722')) paddle.fluid.dygraph.GroupNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.GroupNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.GroupNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -809,7 +810,7 @@ paddle.fluid.dygraph.GroupNorm.parameters (ArgSpec(args=['self', 'include_sublay paddle.fluid.dygraph.GroupNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.GroupNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.GroupNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.SpectralNorm ('paddle.fluid.dygraph.nn.SpectralNorm', ('document', 'f400a29393aa95fff829b4a6111e2952')) +paddle.fluid.dygraph.SpectralNorm ('paddle.fluid.dygraph.nn.SpectralNorm', ('document', '8f5cfbc431a8b4b44b605cde8b0381ef')) paddle.fluid.dygraph.SpectralNorm.__init__ (ArgSpec(args=['self', 'name_scope', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.SpectralNorm.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.SpectralNorm.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) @@ -825,7 +826,7 @@ paddle.fluid.dygraph.SpectralNorm.parameters (ArgSpec(args=['self', 'include_sub paddle.fluid.dygraph.SpectralNorm.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.SpectralNorm.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62')) paddle.fluid.dygraph.SpectralNorm.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) -paddle.fluid.dygraph.TreeConv ('paddle.fluid.dygraph.nn.TreeConv', ('document', '1e3104dea2482f6b79cf7a7ac9a343ab')) +paddle.fluid.dygraph.TreeConv ('paddle.fluid.dygraph.nn.TreeConv', ('document', '6e175a7bf2a43ae6c0f3a8a54bd69afe')) paddle.fluid.dygraph.TreeConv.__init__ (ArgSpec(args=['self', 'name_scope', 'output_size', 'num_filters', 'max_depth', 'act', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1, 2, 'tanh', None, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.dygraph.TreeConv.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.dygraph.TreeConv.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995')) diff --git a/python/paddle/fluid/dygraph/layers.py b/python/paddle/fluid/dygraph/layers.py index afb18ed505bd6f31c4aa2a0ad4feafdaa1da28f1..e53f0dd2b669ccb095ba2b25e18354c53935fe1d 100644 --- a/python/paddle/fluid/dygraph/layers.py +++ b/python/paddle/fluid/dygraph/layers.py @@ -150,20 +150,20 @@ class Layer(core.Layer): if p.trainable: p.clear_gradient() - def _build_once(self, *args): + def _build_once(self, *args, **kwargs): pass - def __call__(self, *inputs): + def __call__(self, *inputs, **kwargs): if not self._built: - self._build_once(*inputs) + self._build_once(*inputs, **kwargs) if parallel_helper._is_data_parallel_mode(): parallel_helper._broadcast_parameters(self._parameters.values()) - outputs = self.forward(*inputs) + outputs = self.forward(*inputs, **kwargs) self._built = True return outputs - def forward(self, *inputs): + def forward(self, *inputs, **kwargs): raise NotImplementedError def backward(self, *inputs): @@ -216,6 +216,8 @@ class Layer(core.Layer): return object.__getattribute__(self, name) def __setattr__(self, name, value): + if isinstance(getattr(type(self), name, None), property): + object.__setattr__(self, name, value) if isinstance(value, framework.Parameter): params = self.__dict__.get('_parameters', None) if params is None: @@ -226,6 +228,11 @@ class Layer(core.Layer): tensor = var.get_tensor() tensor.set(self._loaddict_holder[value.name].numpy(), framework._current_expected_place()) + if name in params: + # remove unused param in tracer + if framework._dygraph_tracer_ is not None: + framework._dygraph_tracer_._vars.pop(params[name].name, + None) params[name] = value elif isinstance(value, core.Layer): layers = self.__dict__.get('_sub_layers', None) diff --git a/python/paddle/fluid/dygraph/nn.py b/python/paddle/fluid/dygraph/nn.py index 27aeda45d80657de2a0d43c55bb23083c264f1fc..7802dd3cb2f7101d6f6a435406346dcafe182f4d 100644 --- a/python/paddle/fluid/dygraph/nn.py +++ b/python/paddle/fluid/dygraph/nn.py @@ -83,7 +83,7 @@ class Conv2D(layers.Layer): H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 - Args: + Parameters: name_scope(str) : The name for this class. num_filters(int): The number of filter. It is as same as the output image channel. @@ -119,6 +119,10 @@ class Conv2D(layers.Layer): act (str): Activation type, if it is set to None, activation is not appended. Default: None + Attributes: + weight (Parameter): the learnable weights of filter of this layer. + bias (Parameter|None): the learnable bias of this layer. + Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. @@ -205,6 +209,22 @@ class Conv2D(layers.Layer): dtype=self._dtype, is_bias=True) + @property + def weight(self): + return self._filter_param + + @weight.setter + def weight(self, value): + self._filter_param = value + + @property + def bias(self): + return self._bias_param + + @bias.setter + def bias(self, value): + self._bias_param = value + def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) @@ -288,7 +308,7 @@ class Conv3D(layers.Layer): H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 - Args: + Parameters: name_scope(str) : The name for this class. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple|None): The filter size. If filter_size is a tuple, @@ -323,6 +343,10 @@ class Conv3D(layers.Layer): act (str): Activation type, if it is set to None, activation is not appended. Default: None. + Attributes: + weight (Parameter): the learnable weights of filters of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: Variable: The tensor variable storing the convolution and \ non-linearity activation result. @@ -405,6 +429,22 @@ class Conv3D(layers.Layer): dtype=self._dtype, is_bias=True) + @property + def weight(self): + return self._filter_param + + @weight.setter + def weight(self, value): + self._filter_param = value + + @property + def bias(self): + return self._bias_param + + @bias.setter + def bias(self, value): + self._bias_param = value + def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) @@ -425,15 +465,17 @@ class Conv3D(layers.Layer): 'use_mkldnn': False }) - pre_act = self._helper.create_variable_for_type_inference( - dtype=self._dtype) - - self._helper.append_op( - type='elementwise_add', - inputs={'X': [pre_bias], - 'Y': [self._bias_param]}, - outputs={'Out': [pre_act]}, - attrs={'axis': 1}) + if self._bias_param is not None: + pre_act = self._helper.create_variable_for_type_inference( + dtype=self._dtype) + self._helper.append_op( + type='elementwise_add', + inputs={'X': [pre_bias], + 'Y': [self._bias_param]}, + outputs={'Out': [pre_act]}, + attrs={'axis': 1}) + else: + pre_act = pre_bias return self._helper.append_activation(pre_act, act=self._act) @@ -489,7 +531,7 @@ class Conv3DTranspose(layers.Layer): H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 - Args: + Parameters: name_scope(str) : The name for this class. num_filters(int): The number of the filter. It is as same as the output image channel. @@ -531,6 +573,10 @@ class Conv3DTranspose(layers.Layer): name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. + Attributes: + weight (Parameter): the learnable weights of filters of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: Variable: The tensor variable storing the convolution transpose result. @@ -627,6 +673,22 @@ class Conv3DTranspose(layers.Layer): dtype=self._dtype, is_bias=True) + @property + def weight(self): + return self._img_filter + + @weight.setter + def weight(self, value): + self._img_filter = value + + @property + def bias(self): + return self._bias_param + + @bias.setter + def bias(self, value): + self._bias_param = value + def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) @@ -667,7 +729,7 @@ class Pool2D(layers.Layer): Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively. The input(X) size and output(Out) size may be different. - Args: + Parameters: name_scope(str) : The name of this class. pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two integers, (pool_size_Height, pool_size_Width). @@ -824,7 +886,7 @@ class FC(layers.Layer): out.data = [[0.18669507, 0.1893476]] out.shape = (1, 2) - Args: + Parameters: name_scope(str): The name of this class. size(int): The number of output units in this layer. num_flatten_dims (int): The fc layer can accept an input tensor with more than @@ -845,6 +907,10 @@ class FC(layers.Layer): is_test(bool): A flag indicating whether execution is in test phase. Default: False dtype(str): Dtype used for weight + Attributes: + weight (list of Parameter): the learnable weights of this layer. + bias (Parameter|None): the learnable bias of this layer. + Raises: ValueError: If rank of the input tensor is less than 2. @@ -883,15 +949,6 @@ class FC(layers.Layer): self._act = act self.__w = list() - @property - def _w(self, i=0): - return self.__w[i] - - @_w.setter - def _w(self, value, i=0): - assert isinstance(value, Parameter) - self.__w[i] = value - def _build_once(self, input): i = 0 for inp, param in self._helper.iter_inputs_and_params(input, @@ -916,6 +973,36 @@ class FC(layers.Layer): self._b = self.create_parameter( attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True) + # TODO(songyouwei): We should remove _w property + @property + def _w(self, i=0): + return self.__w[i] + + @_w.setter + def _w(self, value, i=0): + assert isinstance(self.__w[i], Variable) + self.__w[i].set_value(value) + + @property + def weight(self): + if len(self.__w) > 1: + return self.__w + else: + return self.__w[0] + + @weight.setter + def weight(self, value): + if len(self.__w) == 1: + self.__w[0] = value + + @property + def bias(self): + return self._b + + @bias.setter + def bias(self, value): + self._b = value + def forward(self, input): mul_results = list() i = 0 @@ -1000,7 +1087,7 @@ class BatchNorm(layers.Layer): \\sigma_{\\beta}^{2} + \\epsilon}} \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta - Args: + Parameters: name_scope(str): The name of this class. act(str|None): Activation type, linear|relu|prelu|... is_test (bool): A flag indicating whether it is in @@ -1184,7 +1271,7 @@ class Embedding(layers.Layer): :attr:`input`. All the input variables are passed in as local variables to the LayerHelper constructor - Args: + Parameters: name_scope(str): The name of this class. size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size of the dictionary of embeddings and the size of each embedding vector respectively. @@ -1196,6 +1283,9 @@ class Embedding(layers.Layer): param_attr(ParamAttr): Parameters for this layer. Default: None. dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc. Default: 'float32'. + Attributes: + weight (Parameter): the learnable weights of this layer. + Returns: Variable: The tensor variable storing the embeddings of the \ supplied inputs. @@ -1246,6 +1336,14 @@ class Embedding(layers.Layer): dtype=self._dtype, is_bias=False) + @property + def weight(self): + return self._w + + @weight.setter + def weight(self, value): + self._w = value + def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( @@ -1291,7 +1389,7 @@ class LayerNorm(layers.Layer): * :math:`b`: the trainable bias parameter. - Args: + Parameters: name_scope(str): The name of this class. scale(bool): Whether to learn the adaptive gain :math:`g` after normalization. Default: True. @@ -1451,7 +1549,7 @@ class GRUUnit(layers.Layer): This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. - Args: + Parameters: name_scope(str): The name of this class. size (int): The input dimension value. param_attr(ParamAttr|None): The parameter attribute for the learnable @@ -1481,6 +1579,10 @@ class GRUUnit(layers.Layer): Default: 'sigmoid' dtype(str): The dtype of the layers. Default: 'float32' + Attributes: + weight (Parameter): the learnable weights of this layer. + bias (Parameter): the learnable bias of this layer. + Returns: tuple: The hidden value, reset-hidden value and gate values. @@ -1515,6 +1617,7 @@ class GRUUnit(layers.Layer): origin_mode=False, dtype='float32'): super(GRUUnit, self).__init__(name_scope, dtype) + self._bias_attr = bias_attr activation_dict = dict( identity=0, @@ -1532,9 +1635,26 @@ class GRUUnit(layers.Layer): # create bias bias_size = [1, 3 * size] + self._bias_size = bias_size self._bias = self.create_parameter( attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + @property + def weight(self): + return self._weight + + @weight.setter + def weight(self, value): + self._weight = value + + @property + def bias(self): + return self._bias + + @bias.setter + def bias(self, value): + self._bias = value + def forward(self, input, hidden): inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight} if self._bias: @@ -1567,7 +1687,7 @@ class NCE(layers.Layer): `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models `_ . By default this operator uses a uniform distribution for sampling. - Args: + Parameters: name_scope(str): The name of this class. num_total_classes (int): Total number of classes in all samples param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights @@ -1590,6 +1710,10 @@ class NCE(layers.Layer): seed (int): The seed used in sampler. Default: 0. is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False. + Attributes: + weight (Parameter): the learnable weights of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: Variable: The output nce loss. @@ -1763,6 +1887,22 @@ class NCE(layers.Layer): self._inputs['Bias'] = self._b self._inputs['Weight'] = self._w + @property + def weight(self): + return self._w + + @weight.setter + def weight(self, value): + self._w = value + + @property + def bias(self): + return self._b + + @bias.setter + def bias(self, value): + self._b = value + def forward(self, input, label, sample_weight=None): assert isinstance(input, Variable) assert isinstance(label, Variable) @@ -1797,7 +1937,7 @@ class PRelu(layers.Layer): .. math:: y = \max(0, x) + \\alpha * \min(0, x) - Args: + Parameters: name_scope(str): The name of this class. mode (str): The mode for weight sharing. It supports all, channel and element. all: all elements share same weight @@ -1806,6 +1946,9 @@ class PRelu(layers.Layer): param_attr(ParamAttr|None): The parameter attribute for the learnable weight (alpha). + Attributes: + weight (Parameter): the learnable weights of this layer. + Returns: Variable: The output tensor with the same shape as input. @@ -1849,6 +1992,14 @@ class PRelu(layers.Layer): is_bias=False, default_initializer=Constant(1.0)) + @property + def weight(self): + return self._alpha + + @weight.setter + def weight(self, value): + self._alpha = value + def forward(self, input): out = self._helper.create_variable_for_type_inference(self._dtype) @@ -1878,7 +2029,7 @@ class BilinearTensorProduct(layers.Layer): - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size]. - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`. - Args: + Parameters: name_scope(str): The name of this class. size (int): The dimension of this layer. act (str): Activation to be applied to the output of this layer. Default: None. @@ -1889,6 +2040,10 @@ class BilinearTensorProduct(layers.Layer): of this layer. If it is set to False, no bias will be added to the output units. If it is set to None, the bias is initialized zero. Default: None. + Attributes: + weight (Parameter): the learnable weights of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: Variable: A 2-D Tensor of shape [batch_size, size]. @@ -1940,6 +2095,22 @@ class BilinearTensorProduct(layers.Layer): dtype=self._dtype, is_bias=True) + @property + def weight(self): + return self._w + + @weight.setter + def weight(self, value): + self._w = value + + @property + def bias(self): + return self._bias_param + + @bias.setter + def bias(self, value): + self._bias_param = value + def forward(self, x, y): self._inputs = {"X": x, "Y": y, "Weight": self._w} if self._bias_param: @@ -2013,7 +2184,7 @@ class Conv2DTranspose(layers.Layer): H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ) - Args: + Parameters: name_scope(str): The name of this class. num_filters(int): The number of the filter. It is as same as the output image channel. @@ -2055,6 +2226,10 @@ class Conv2DTranspose(layers.Layer): act (str): Activation type, if it is set to None, activation is not appended. Default: None. + Attributes: + weight (Parameter): the learnable weights of filters of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: Variable: The tensor variable storing the convolution transpose result. @@ -2163,6 +2338,22 @@ class Conv2DTranspose(layers.Layer): dtype=self._dtype, is_bias=True) + @property + def weight(self): + return self._img_filter + + @weight.setter + def weight(self, value): + self._img_filter = value + + @property + def bias(self): + return self._bias_param + + @bias.setter + def bias(self, value): + self._bias_param = value + def forward(self, input): pre_bias = self._helper.create_variable_for_type_inference( dtype=input.dtype) @@ -2202,7 +2393,7 @@ class SequenceConv(layers.Layer): other convolutional configurations for the filters and stride as given in the input parameters to the function. - Args: + Parameters: name_scope(str): The name of this class. num_filters (int): number of filters. filter_size (int): the filter size (H and W). Default: 3. @@ -2220,6 +2411,10 @@ class SequenceConv(layers.Layer): act (str): Activation type, if it is set to None, activation is not appended. Default: None. + Attributes: + weight (Parameter): the learnable weights of filters of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: Variable: output of sequence_conv """ @@ -2305,7 +2500,7 @@ class RowConv(layers.Layer): More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 . - Args: + Parameters: name_scope(str): The name of this class. future_context_size (int): Future context size. Please note, the shape of convolution kernel is [future_context_size + 1, D]. @@ -2313,6 +2508,9 @@ class RowConv(layers.Layer): name, initializer etc. Default: None. act (str): Non-linear activation to be applied to output variable. Default: None. + Attributes: + weight (Parameter): the learnable weights of this layer. + Returns: the output(Out) is a LodTensor, which supports variable time-length input sequences. The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X. @@ -2368,7 +2566,7 @@ class GroupNorm(layers.Layer): Refer to `Group Normalization `_ . - Args: + Parameters: name_scope(str): The name of this class. groups(int): The number of groups that divided from channels. epsilon(float): The small value added to the variance to prevent @@ -2496,7 +2694,7 @@ class SpectralNorm(layers.Layer): Refer to `Spectral Normalization `_ . - Args: + Parameters: name_scope(str): The name of this class. dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0. power_iters(int): The number of power iterations to calculate spectral norm. Default: 1. @@ -2573,7 +2771,7 @@ class TreeConv(layers.Layer): The paper of Tree-Based Convolution Operator is here: https://arxiv.org/abs/1409.5718v1 - Args: + Parameters: name_scope(str): The name of this class. output_size(int): output feature width num_filters(int): number of filters, Default: 1. @@ -2583,6 +2781,10 @@ class TreeConv(layers.Layer): bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default: None. name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default: None. + Attributes: + weight (Parameter): the learnable weights of filters of this layer. + bias (Parameter|None): the learnable bias of this layer. + Returns: out(Variable): (Tensor) The feature vector of subtrees. The shape of the output tensor is [max_tree_node_size, output_size, num_filters]. The output tensor could be a new feature vector for next tree convolution layers @@ -2639,6 +2841,22 @@ class TreeConv(layers.Layer): dtype=self._dtype, is_bias=False) + @property + def weight(self): + return self.W + + @weight.setter + def weight(self, value): + self.W = value + + @property + def bias(self): + return self._bias_param + + @bias.setter + def bias(self, value): + self._bias_param = value + def forward(self, nodes_vector, edge_set): if self._name: diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 3b171ed5c68cbd73ed0d1fe6a6549f892c9bd995..e82103772213ccba70600749fab8b5eddc7eb2dd 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -638,6 +638,45 @@ class Variable(object): new_ivar = self._ivar._copy_to(core.CPUPlace(), True) return np.array(new_ivar.value().get_tensor()) + @dygraph_only + def set_value(self, value): + """ + Set a new value for this Variable. + + Args: + value (Variable|np.ndarray): the new value. + + Returns: + None. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + from paddle.fluid.dygraph.base import to_variable + from paddle.fluid.dygraph import FC + import numpy as np + + data = np.ones([3, 32, 32], dtype='float32') + with fluid.dygraph.guard(): + fc = fluid.dygraph.FC("fc", 4) + t = to_variable(data) + fc(t) # call with default weight + custom_weight = np.random.randn(1024, 4).astype("float32") + fc.weight.set_value(custom_weight) # change existing weight + out = fc(t) # call with different weight + + """ + assert isinstance(value, (Variable, np.ndarray)) + if list(value.shape) != list(self.shape): + raise ValueError( + "The shape of the new value must be the same as that of the original Variable." + ) + self_tensor = self._ivar.value().get_tensor() + if isinstance(value, Variable): + value = value._ivar.value().get_tensor().__array__() + self_tensor.set(value, _current_expected_place()) + @dygraph_only def backward(self, backward_strategy=None): """ @@ -1042,7 +1081,7 @@ class Variable(object): if self.shape[axis] < 0: return self._cloneVar(True) index = int(item) - if (index > 0 and index >= self.shape[axis])\ + if (index > 0 and index >= self.shape[axis]) \ or (index < 0 and (index + self.shape[axis]) < 0): raise IndexError("invalid index") return self._sliceVar([axis], [index], [index + 1]) @@ -2662,10 +2701,10 @@ class IrOpNode(IrNode): if isinstance(val, Block): desc.set_block_attr(name, val.desc) elif isinstance(val, list) and val and \ - all(isinstance(v, Block) for v in val): + all(isinstance(v, Block) for v in val): desc.set_blocks_attr(name, [v.desc for v in val]) elif isinstance(val, core.BlockDesc) or \ - isinstance(val, core.ProgramDesc): + isinstance(val, core.ProgramDesc): desc.set_serialized_attr(name, val.serialize_to_string()) else: desc._set_attr(name, val) @@ -2888,8 +2927,8 @@ class IrGraph(object): op_node(IrOpNode): the operator node that is needed to update input's link. """ assert old_input_node.node in self.graph.nodes() and new_input_node.node in \ - self.graph.nodes() and op_node.node in self.graph.nodes(), \ - 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.' + self.graph.nodes() and op_node.node in self.graph.nodes(), \ + 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.' old_input_node.remove_output(op_node) op_node.remove_input(old_input_node) new_input_node.append_output(op_node) @@ -3024,7 +3063,7 @@ class IrGraph(object): def _convert_to_pdf(dot_file_path): pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf' exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \ - + ' -o ' + pdf_save_path, shell=True) + + ' -o ' + pdf_save_path, shell=True) if exited_code != 0: print('The dot command is needed for creating pdf files.') print('The {} is saved as the dot filetype.'.format( diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index 838314115a7c804b61746cf947ceb31fcc83acba..920a212c6f7c1fb237ea83dd11f89ad717c61208 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -82,6 +82,34 @@ class LayerTest(unittest.TestCase): class TestLayer(LayerTest): + def test_custom_layer_with_kwargs(self): + class CustomLayer(fluid.Layer): + def __init__(self, name_scope, fc1_size=4): + super(CustomLayer, self).__init__(name_scope) + self.fc1 = nn.FC('fc1', + size=fc1_size, + bias_attr=False, + num_flatten_dims=1) + self.fc2 = nn.FC('fc2', + size=1, + bias_attr=False, + num_flatten_dims=1) + + def forward(self, x, do_fc2=False): + ret = self.fc1(x) + if do_fc2: + ret = self.fc2(ret) + return ret + + with self.dynamic_graph(): + inp = np.ones([3, 3], dtype='float32') + x = base.to_variable(inp) + custom = CustomLayer('custom', fc1_size=2) + ret = custom(x, do_fc2=False) + self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2])) + ret = custom(x, do_fc2=True) + self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1])) + def test_fc(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): @@ -117,6 +145,62 @@ class TestLayer(LayerTest): self.assertTrue(np.array_equal(static_ret, static_ret2)) self.assertTrue(np.array_equal(static_ret, dy_ret_value)) + with self.dynamic_graph(): + custom_weight = np.random.randn(1024, 4).astype("float32") + weight_attr1 = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + fc1 = fluid.dygraph.FC("fc1", + 4, + num_flatten_dims=1, + param_attr=weight_attr1) + out1 = fc1(base.to_variable(inp)) + loss1 = fluid.layers.reduce_mean(out1) + + fc1_weight_init = fc1.weight.detach() + fc1_bias_init = fc1.bias.detach() + + loss1.backward() + optimizer1 = fluid.optimizer.SGD(learning_rate=0.1) + optimizer1.minimize(loss1) + + fc1_weight_updated = fc1.weight.detach() + + with self.dynamic_graph(): + weight_attr2 = fluid.ParamAttr( + initializer=fluid.initializer.Uniform()) + fc2 = fluid.dygraph.FC("fc2", + 4, + num_flatten_dims=1, + param_attr=weight_attr2) + out2 = fc2(base.to_variable(inp)) + + self.assertFalse( + np.array_equal(fc1_weight_init.numpy(), fc2.weight.numpy())) + self.assertFalse(np.array_equal(out1.numpy(), out2.numpy())) + + mismatched_weight = np.random.randn(4, 4).astype("float32") + with self.assertRaises(ValueError): + fc2.weight.set_value(mismatched_weight) + fc2.weight.set_value(fc1_weight_init) + fc2.bias.set_value(fc1_bias_init) + + out2 = fc2(base.to_variable(inp)) + loss2 = fluid.layers.reduce_mean(out2) + loss2.backward() + optimizer2 = fluid.optimizer.SGD(learning_rate=0.1) + optimizer2.minimize(loss2) + + self.assertTrue( + np.array_equal(fc2.weight.numpy(), fc1_weight_updated.numpy())) + self.assertTrue(np.array_equal(out1.numpy(), out2.numpy())) + + fc2.weight = fc1.weight + fc2.bias = fc1.bias + self.assertTrue( + np.array_equal(fc2.weight.numpy(), fc1.weight.numpy())) + self.assertTrue(np.array_equal(fc2.bias.numpy(), fc1.bias.numpy())) + def test_layer_norm(self): inp = np.ones([3, 32, 32], dtype='float32') with self.static_graph(): @@ -238,6 +322,41 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_ret, dy_ret_value)) self.assertTrue(np.allclose(static_ret, static_ret2)) + with self.dynamic_graph(): + images = np.ones([2, 3, 5, 5], dtype='float32') + custom_weight = np.random.randn(3, 3, 2, 2).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + conv2d1 = nn.Conv2D('conv2d1', num_filters=3, filter_size=[2, 2]) + conv2d2 = nn.Conv2D( + 'conv2d2', + num_filters=3, + filter_size=[2, 2], + param_attr=weight_attr) + dy_ret1 = conv2d1(base.to_variable(images)) + dy_ret2 = conv2d2(base.to_variable(images)) + self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv2d1_weight_np = conv2d1.weight.numpy() + conv2d1_bias = conv2d1.bias + self.assertFalse( + np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())) + conv2d2.weight.set_value(conv2d1_weight_np) + self.assertTrue( + np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())) + conv2d2.bias.set_value(conv2d1_bias) + dy_ret1 = conv2d1(base.to_variable(images)) + dy_ret2 = conv2d2(base.to_variable(images)) + self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv2d2.weight = conv2d1.weight + conv2d2.bias = conv2d1.bias + self.assertTrue( + np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy())) + self.assertTrue( + np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy())) + def test_gru_unit(self): lod = [[2, 4, 3]] D = 5 @@ -282,6 +401,37 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_ret[i], static_ret2[i])) self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i])) + with self.dynamic_graph(): + custom_weight = np.random.randn(D, D * 3).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + gru1 = nn.GRUUnit('gru1', size=D * 3) + gru2 = nn.GRUUnit('gru2', size=D * 3, param_attr=weight_attr) + dy_ret1 = gru1( + base.to_variable(input), base.to_variable(hidden_input)) + dy_ret2 = gru2( + base.to_variable(input), base.to_variable(hidden_input)) + self.assertFalse( + np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())) + for o1, o2 in zip(dy_ret1, dy_ret2): + self.assertFalse(np.array_equal(o1.numpy(), o2.numpy())) + gru2.weight.set_value(gru1.weight.numpy()) + gru2.bias.set_value(gru1.bias) + dy_ret1 = gru1( + base.to_variable(input), base.to_variable(hidden_input)) + dy_ret2 = gru2( + base.to_variable(input), base.to_variable(hidden_input)) + for o1, o2 in zip(dy_ret1, dy_ret2): + self.assertTrue(np.array_equal(o1.numpy(), o2.numpy())) + + gru2.weight = gru1.weight + gru2.bias = gru1.bias + self.assertTrue( + np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())) + self.assertTrue( + np.array_equal(gru1.bias.numpy(), gru2.bias.numpy())) + def test_elementwise_math(self): n = np.ones([3, 3], dtype='float32') n2 = np.ones([3, 3], dtype='float32') * 1.1 @@ -417,6 +567,42 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(dy_rlt_value, static_rlt2)) + with self.dynamic_graph(): + images = np.ones([2, 3, 5, 5], dtype='float32') + custom_weight = np.random.randn(3, 3, 2, 2).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + conv2d1 = nn.Conv2DTranspose( + 'conv2d1', num_filters=3, filter_size=[2, 2]) + conv2d2 = nn.Conv2DTranspose( + 'conv2d2', + num_filters=3, + filter_size=[2, 2], + param_attr=weight_attr) + dy_ret1 = conv2d1(base.to_variable(images)) + dy_ret2 = conv2d2(base.to_variable(images)) + self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv2d1_weight_np = conv2d1.weight.numpy() + conv2d1_bias = conv2d1.bias + self.assertFalse( + np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())) + conv2d2.weight.set_value(conv2d1_weight_np) + self.assertTrue( + np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())) + conv2d2.bias.set_value(conv2d1_bias) + dy_ret1 = conv2d1(base.to_variable(images)) + dy_ret2 = conv2d2(base.to_variable(images)) + self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv2d2.weight = conv2d1.weight + conv2d2.bias = conv2d1.bias + self.assertTrue( + np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy())) + self.assertTrue( + np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy())) + def test_bilinear_tensor_product(self): inp_np_x = np.array([[1, 2, 3]]).astype('float32') inp_np_y = np.array([[4, 5, 6]]).astype('float32') @@ -498,9 +684,36 @@ class TestLayer(LayerTest): self.assertTrue(np.array_equal(static_rlt2, static_rlt)) self.assertTrue(np.array_equal(dy_rlt_value, static_rlt)) + with self.dynamic_graph(): + custom_weight = np.random.randn(6, 3, 3).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + btp1 = nn.BilinearTensorProduct('btp1', 6, act='sigmoid') + btp2 = nn.BilinearTensorProduct( + 'btp2', 6, act='sigmoid', param_attr=weight_attr) + dy_rlt1 = btp1( + base.to_variable(inp_np_x), base.to_variable(inp_np_y)) + dy_rlt2 = btp2( + base.to_variable(inp_np_x), base.to_variable(inp_np_y)) + self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())) + btp2.weight.set_value(btp1.weight.numpy()) + btp2.bias.set_value(btp1.bias) + dy_rlt1 = btp1( + base.to_variable(inp_np_x), base.to_variable(inp_np_y)) + dy_rlt2 = btp2( + base.to_variable(inp_np_x), base.to_variable(inp_np_y)) + self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())) + + btp2.weight = btp1.weight + btp2.bias = btp1.bias + self.assertTrue( + np.array_equal(btp1.weight.numpy(), btp2.weight.numpy())) + self.assertTrue( + np.array_equal(btp1.bias.numpy(), btp2.bias.numpy())) + def test_prelu(self): inp_np = np.ones([5, 200, 100, 100]).astype('float32') - with self.static_graph(): data_t = layers.data( name="input", @@ -540,6 +753,32 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) + with self.dynamic_graph(): + inp_np = np.random.randn(5, 200, 100, 100).astype("float32") + inp = base.to_variable(inp_np) + mode = 'channel' + prelu1 = nn.PRelu( + 'prelu1', + mode=mode, + param_attr=ParamAttr(initializer=Constant(2.0))) + prelu2 = nn.PRelu( + 'prelu2', + mode=mode, + param_attr=ParamAttr(initializer=Constant(1.0))) + dy_rlt1 = prelu1(inp) + dy_rlt2 = prelu2(inp) + self.assertFalse( + np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())) + self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())) + prelu2.weight.set_value(prelu1.weight.numpy()) + dy_rlt1 = prelu1(inp) + dy_rlt2 = prelu2(inp) + self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())) + + prelu2.weight = prelu1.weight + self.assertTrue( + np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())) + def test_embeding(self): inp_word = np.array([[[1]]]).astype('int64') dict_size = 20 @@ -574,6 +813,31 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) + with self.dynamic_graph(): + custom_weight = np.random.randn(dict_size, 32).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + emb1 = nn.Embedding( + name_scope='embedding', size=[dict_size, 32], is_sparse=False) + emb2 = nn.Embedding( + name_scope='embedding', + size=[dict_size, 32], + param_attr=weight_attr, + is_sparse=False) + rep1 = emb1(base.to_variable(inp_word)) + rep2 = emb2(base.to_variable(inp_word)) + self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight)) + self.assertTrue(np.array_equal(emb2.weight.numpy(), custom_weight)) + self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy())) + emb2.weight.set_value(emb1.weight.numpy()) + rep2 = emb2(base.to_variable(inp_word)) + self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy())) + + emb2.weight = emb1.weight + self.assertTrue( + np.array_equal(emb1.weight.numpy(), emb2.weight.numpy())) + def test_nce(self): window_size = 5 dict_size = 20 @@ -695,6 +959,69 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) + with self.dynamic_graph(force_to_use_cpu=True): + custom_weight = np.random.randn(dict_size, 128).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + words = [] + for i in range(window_size): + words.append(base.to_variable(inp_word[i])) + sample_weights = layers.fill_constant( + shape=[5, 1], dtype='float32', value=1) + emb = nn.Embedding( + 'embedding', + size=[dict_size, 32], + param_attr='emb.w', + is_sparse=False) + + embs3 = [] + for i in range(window_size): + if i == label_word: + continue + + emb_rlt = emb(words[i]) + embs3.append(emb_rlt) + + embs3 = layers.concat(input=embs3, axis=1) + nce1 = nn.NCE('nce1', + num_total_classes=dict_size, + num_neg_samples=2, + sampler="custom_dist", + custom_dist=nid_freq_arr.tolist(), + seed=seed, + param_attr='nce1.w', + bias_attr='nce1.b', + sample_weight=sample_weights) + + nce2 = nn.NCE('nce2', + param_attr=weight_attr, + num_total_classes=dict_size, + num_neg_samples=2, + sampler="custom_dist", + custom_dist=nid_freq_arr.tolist(), + seed=seed, + bias_attr='nce2.b', + sample_weight=sample_weights) + + nce1_loss = nce1(embs3, words[label_word]) + nce2_loss = nce2(embs3, words[label_word]) + self.assertFalse( + np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())) + nce2.weight.set_value(nce1.weight.numpy()) + nce2.bias.set_value(nce1.bias) + nce1_loss = nce1(embs3, words[label_word]) + nce2_loss = nce2(embs3, words[label_word]) + self.assertTrue( + np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())) + + nce2.weight = nce1.weight + nce2.bias = nce1.bias + self.assertTrue( + np.array_equal(nce1.weight.numpy(), nce2.weight.numpy())) + self.assertTrue( + np.array_equal(nce1.bias.numpy(), nce2.bias.numpy())) + def test_conv3d(self): with self.static_graph(): images = layers.data( @@ -724,6 +1051,38 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_ret, dy_rlt_value)) self.assertTrue(np.allclose(static_ret, static_ret2)) + with self.dynamic_graph(): + images = np.ones([2, 3, 6, 6, 6], dtype='float32') + custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + conv3d1 = nn.Conv3D('conv3d1', num_filters=3, filter_size=2) + conv3d2 = nn.Conv3D( + 'conv3d2', num_filters=3, filter_size=2, param_attr=weight_attr) + dy_ret1 = conv3d1(base.to_variable(images)) + dy_ret2 = conv3d2(base.to_variable(images)) + self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv3d1_weight_np = conv3d1.weight.numpy() + conv3d1_bias = conv3d1.bias + self.assertFalse( + np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())) + conv3d2.weight.set_value(conv3d1_weight_np) + self.assertTrue( + np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())) + conv3d1.bias.set_value(conv3d1_bias) + dy_ret1 = conv3d1(base.to_variable(images)) + dy_ret2 = conv3d2(base.to_variable(images)) + self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv3d2.weight = conv3d1.weight + conv3d2.bias = conv3d1.bias + self.assertTrue( + np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy())) + self.assertTrue( + np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy())) + def test_row_conv(self): input = np.arange(15).reshape([3, 5]).astype('float32') if core.is_compiled_with_cuda(): @@ -943,6 +1302,45 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, dy_rlt_value)) + with self.dynamic_graph(): + custom_weight = np.random.randn(5, 3, 6, 1).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + treeConv1 = nn.TreeConv( + 'SpectralNorm1', + output_size=6, + num_filters=1, + max_depth=2, + bias_attr='tc1_b') + treeConv2 = nn.TreeConv( + 'SpectralNorm2', + output_size=6, + num_filters=1, + max_depth=2, + param_attr=weight_attr, + bias_attr='tc2_b') + dy_ret1 = treeConv1( + base.to_variable(vectors), base.to_variable(adj)) + dy_ret2 = treeConv2( + base.to_variable(vectors), base.to_variable(adj)) + self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + treeConv2.weight.set_value(treeConv1.weight.numpy()) + treeConv2.bias.set_value(treeConv1.bias) + dy_ret1 = treeConv1( + base.to_variable(vectors), base.to_variable(adj)) + dy_ret2 = treeConv2( + base.to_variable(vectors), base.to_variable(adj)) + self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + treeConv2.weight = treeConv1.weight + treeConv2.bias = treeConv1.bias + self.assertTrue( + np.array_equal(treeConv1.weight.numpy(), + treeConv2.weight.numpy())) + self.assertTrue( + np.array_equal(treeConv1.bias.numpy(), treeConv2.bias.numpy())) + def test_conv3d_transpose(self): input_array = np.arange(0, 48).reshape( [2, 3, 2, 2, 2]).astype('float32') @@ -974,6 +1372,48 @@ class TestLayer(LayerTest): self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(dy_rlt_value, static_rlt)) + with self.dynamic_graph(): + images = np.ones([2, 3, 6, 6, 6], dtype='float32') + custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32") + weight_attr = fluid.ParamAttr( + initializer=fluid.initializer.NumpyArrayInitializer( + custom_weight)) + conv3d1 = nn.Conv3DTranspose( + 'conv3d1', + num_filters=3, + filter_size=2, + bias_attr='conv3d1_b', + use_cudnn=False) + conv3d2 = nn.Conv3DTranspose( + 'conv3d2', + num_filters=3, + filter_size=2, + param_attr=weight_attr, + bias_attr='conv3d2_b', + use_cudnn=False) + dy_ret1 = conv3d1(base.to_variable(images)) + dy_ret2 = conv3d2(base.to_variable(images)) + self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv3d1_weight_np = conv3d1.weight.numpy() + conv3d1_bias = conv3d1.bias + self.assertFalse( + np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())) + conv3d2.weight.set_value(conv3d1_weight_np) + self.assertTrue( + np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())) + conv3d1.bias.set_value(conv3d1_bias) + dy_ret1 = conv3d1(base.to_variable(images)) + dy_ret2 = conv3d2(base.to_variable(images)) + self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())) + + conv3d2.weight = conv3d1.weight + conv3d2.bias = conv3d1.bias + self.assertTrue( + np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy())) + self.assertTrue( + np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy())) + def test_eye_op(self): np_eye = np.eye(3, 2) array_rlt1 = [np_eye for _ in range(3)]