Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
54a43981
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
54a43981
编写于
9月 15, 2022
作者:
J
Jiabin Yang
提交者:
GitHub
9月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Eager] Optimize log (#45783)
* make eager log readable * fix compile error * recover test * invoke ci again
上级
34510e8f
变更
23
显示空白变更内容
内联
并排
Showing
23 changed file
with
403 addition
and
128 deletion
+403
-128
paddle/fluid/eager/accumulation/accumulation_node.cc
paddle/fluid/eager/accumulation/accumulation_node.cc
+17
-1
paddle/fluid/eager/accumulation/accumulation_node.h
paddle/fluid/eager/accumulation/accumulation_node.h
+3
-3
paddle/fluid/eager/api/manual/eager_manual/dygraph_forward_api.h
...fluid/eager/api/manual/eager_manual/dygraph_forward_api.h
+2
-2
paddle/fluid/eager/api/manual/eager_manual/forwards/add_n_fwd_func.cc
.../eager/api/manual/eager_manual/forwards/add_n_fwd_func.cc
+3
-3
paddle/fluid/eager/api/manual/eager_manual/forwards/conv2d_fwd_function.cc
...r/api/manual/eager_manual/forwards/conv2d_fwd_function.cc
+24
-24
paddle/fluid/eager/api/manual/eager_manual/nodes/add_n_node.cc
...e/fluid/eager/api/manual/eager_manual/nodes/add_n_node.cc
+1
-2
paddle/fluid/eager/api/manual/fluid_manual/forwards/fused_attention_fwd_func.cc
.../manual/fluid_manual/forwards/fused_attention_fwd_func.cc
+0
-1
paddle/fluid/eager/auto_code_generator/generator/codegen_utils.py
...luid/eager/auto_code_generator/generator/codegen_utils.py
+16
-3
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
...le/fluid/eager/auto_code_generator/generator/eager_gen.py
+97
-28
paddle/fluid/eager/backward.cc
paddle/fluid/eager/backward.cc
+19
-19
paddle/fluid/eager/eager_amp_auto_cast.h
paddle/fluid/eager/eager_amp_auto_cast.h
+2
-2
paddle/fluid/eager/eager_layout_transformer.h
paddle/fluid/eager/eager_layout_transformer.h
+1
-1
paddle/fluid/eager/grad_node_info.cc
paddle/fluid/eager/grad_node_info.cc
+10
-10
paddle/fluid/eager/grad_node_info.h
paddle/fluid/eager/grad_node_info.h
+5
-5
paddle/fluid/eager/grad_tensor_holder.cc
paddle/fluid/eager/grad_tensor_holder.cc
+2
-2
paddle/fluid/eager/tensor_wrapper.h
paddle/fluid/eager/tensor_wrapper.h
+5
-5
paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc
...le/fluid/eager/tests/performance_tests/benchmark_utils.cc
+1
-1
paddle/fluid/eager/to_static/run_program_op_func.h
paddle/fluid/eager/to_static/run_program_op_func.h
+1
-1
paddle/fluid/eager/utils.cc
paddle/fluid/eager/utils.cc
+2
-2
paddle/fluid/eager/utils.h
paddle/fluid/eager/utils.h
+179
-0
paddle/fluid/pybind/eager_custom_python_api.h
paddle/fluid/pybind/eager_custom_python_api.h
+3
-3
paddle/fluid/pybind/eager_legacy_custom_python_api.h
paddle/fluid/pybind/eager_legacy_custom_python_api.h
+1
-1
paddle/fluid/pybind/eager_method.cc
paddle/fluid/pybind/eager_method.cc
+9
-9
未找到文件。
paddle/fluid/eager/accumulation/accumulation_node.cc
浏览文件 @
54a43981
...
...
@@ -16,6 +16,7 @@
#include "glog/logging.h"
#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -89,7 +90,7 @@ GradNodeAccumulation::operator()(
kSlotSmallVectorSize
>&
grads
,
// NOLINT
bool
create_graph
,
bool
is_new_grad
)
{
VLOG
(
3
)
<<
"Running
Eager Backward Node
: GradNodeAccumulation"
;
VLOG
(
3
)
<<
"Running
AD API Grad
: GradNodeAccumulation"
;
PADDLE_ENFORCE
(
grads
.
size
()
==
1
,
paddle
::
platform
::
errors
::
Fatal
(
"GradNodeAccumulation should take exactly 1 grad tensor"
...
...
@@ -122,7 +123,22 @@ GradNodeAccumulation::operator()(
if
(
ReduceHooksRegistered
())
{
ApplyReduceHooks
();
}
VLOG
(
3
)
<<
"Finish AD API Grad: GradNodeAccumulation"
;
if
(
VLOG_IS_ON
(
4
))
{
const
char
*
INPUT_PRINT_TEMPLATE
=
"{ Input: [%s], Output: [%s] } "
;
std
::
string
input_str
=
""
;
std
::
string
output_str
=
""
;
const
char
*
TENSOR_OUT_GRAD_TEMPLATE
=
"(grads[0][0], [%s]), "
;
std
::
string
input_out_grad_str
=
paddle
::
string
::
Sprintf
(
TENSOR_OUT_GRAD_TEMPLATE
,
egr
::
EagerUtils
::
TensorStr
(
grads
[
0
][
0
]));
const
char
*
TENSOR_X_GRAD_TEMPLATE
=
"(grad_out, [%s]), "
;
std
::
string
output_x_grad_str
=
paddle
::
string
::
Sprintf
(
TENSOR_X_GRAD_TEMPLATE
,
egr
::
EagerUtils
::
TensorStr
(
grad_out
));
output_str
+=
output_x_grad_str
;
VLOG
(
4
)
<<
paddle
::
string
::
Sprintf
(
INPUT_PRINT_TEMPLATE
,
input_str
,
output_str
);
}
return
{{
grad_out
}};
}
...
...
paddle/fluid/eager/accumulation/accumulation_node.h
浏览文件 @
54a43981
...
...
@@ -24,7 +24,7 @@ class GradNodeAccumulation : public GradNodeBase {
public:
// Constructor: configure fwd input tensors to grad node
explicit
GradNodeAccumulation
(
AutogradMeta
*
meta
)
:
GradNodeBase
(
1
,
1
)
{
VLOG
(
6
)
<<
"Construct GradNodeAccumulation"
;
VLOG
(
5
)
<<
"Construct GradNodeAccumulation"
;
if
(
meta
)
{
weak_grad_
=
meta
->
WeakGrad
();
}
...
...
@@ -33,7 +33,7 @@ class GradNodeAccumulation : public GradNodeBase {
}
~
GradNodeAccumulation
()
override
{
VLOG
(
6
)
<<
"Destruct GradNodeAccumulation"
;
VLOG
(
5
)
<<
"Destruct GradNodeAccumulation"
;
}
// Functor: perform backward computations
...
...
@@ -44,7 +44,7 @@ class GradNodeAccumulation : public GradNodeBase {
bool
create_graph
=
false
,
bool
is_new_grad
=
false
)
override
;
void
ClearTensorWrappers
()
override
{
VLOG
(
6
)
<<
"Do nothing here now"
;
}
void
ClearTensorWrappers
()
override
{
VLOG
(
5
)
<<
"Do nothing here now"
;
}
std
::
string
name
()
{
return
"GradNodeAccumulation"
;
}
...
...
paddle/fluid/eager/api/manual/eager_manual/dygraph_forward_api.h
浏览文件 @
54a43981
...
...
@@ -16,10 +16,10 @@
#include "paddle/phi/api/include/tensor.h"
paddle
::
experimental
::
Tensor
add_n_
dygraph_function
(
paddle
::
experimental
::
Tensor
add_n_
ad_func
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
x
);
paddle
::
experimental
::
Tensor
conv2d_
dygraph_function
(
paddle
::
experimental
::
Tensor
conv2d_
ad_func
(
const
paddle
::
experimental
::
Tensor
&
input
,
const
paddle
::
experimental
::
Tensor
&
filter
,
std
::
vector
<
int
>
strides
,
...
...
paddle/fluid/eager/api/manual/eager_manual/forwards/add_n_fwd_func.cc
浏览文件 @
54a43981
...
...
@@ -23,7 +23,7 @@
#pragma GCC diagnostic ignored "-Wunused-variable"
DECLARE_bool
(
check_nan_inf
);
paddle
::
experimental
::
Tensor
add_n_
dygraph_function
(
paddle
::
experimental
::
Tensor
add_n_
ad_func
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
x
)
{
// Dygraph Record Event
paddle
::
platform
::
RecordEvent
dygraph_entrance_record_event
(
...
...
@@ -46,7 +46,7 @@ paddle::experimental::Tensor add_n_dygraph_function(
paddle
::
imperative
::
AutoCastGuard
guard
(
egr
::
Controller
::
Instance
().
GetCurrentTracer
(),
paddle
::
imperative
::
AmpLevel
::
O0
);
return
add_n_
dygraph_function
(
NEW_x
);
return
add_n_
ad_func
(
NEW_x
);
}
}
...
...
@@ -56,7 +56,7 @@ paddle::experimental::Tensor add_n_dygraph_function(
std
::
vector
<
egr
::
AutogradMeta
*>*
x_autograd_meta
=
&
x_autograd_meta_vec
;
// Forward API Call
VLOG
(
3
)
<<
"Final State Running: "
<<
"add_n_
dygraph_function
"
;
<<
"add_n_
ad_func
"
;
auto
api_result
=
paddle
::
experimental
::
add_n
(
x
);
// Check NaN and Inf if needed
if
(
FLAGS_check_nan_inf
)
{
...
...
paddle/fluid/eager/api/manual/eager_manual/forwards/conv2d_fwd_function.cc
浏览文件 @
54a43981
...
...
@@ -24,7 +24,7 @@
#pragma GCC diagnostic ignored "-Wunused-variable"
DECLARE_bool
(
check_nan_inf
);
paddle
::
experimental
::
Tensor
conv2d_
dygraph_function
(
paddle
::
experimental
::
Tensor
conv2d_
ad_func
(
const
paddle
::
experimental
::
Tensor
&
input
,
const
paddle
::
experimental
::
Tensor
&
filter
,
std
::
vector
<
int
>
strides
,
...
...
@@ -60,7 +60,7 @@ paddle::experimental::Tensor conv2d_dygraph_function(
paddle
::
imperative
::
AutoCastGuard
guard
(
egr
::
Controller
::
Instance
().
GetCurrentTracer
(),
paddle
::
imperative
::
AmpLevel
::
O0
);
return
conv2d_
dygraph_function
(
NEW_input
,
return
conv2d_
ad_func
(
NEW_input
,
NEW_filter
,
strides
,
paddings
,
...
...
@@ -89,7 +89,7 @@ paddle::experimental::Tensor conv2d_dygraph_function(
bool
is_enable_tune
=
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
UseLayoutAutoTune
();
paddle
::
imperative
::
LayoutAutoTune
::
Instance
().
DisableLayoutAutoTune
();
auto
out
=
conv2d_
dygraph_function
(
NEW_input
,
auto
out
=
conv2d_
ad_func
(
NEW_input
,
filter
,
strides
,
paddings
,
...
...
@@ -115,7 +115,7 @@ paddle::experimental::Tensor conv2d_dygraph_function(
egr
::
EagerUtils
::
nullable_autograd_meta
(
filter
);
// Forward API Call
VLOG
(
3
)
<<
"Final State Running: "
<<
"conv2d_
dygraph_function
"
;
<<
"conv2d_
ad_func
"
;
auto
api_result
=
paddle
::
experimental
::
conv2d
(
input
,
filter
,
strides
,
...
...
paddle/fluid/eager/api/manual/eager_manual/nodes/add_n_node.cc
浏览文件 @
54a43981
...
...
@@ -64,8 +64,7 @@ AddNGradNodeFinal::operator()(
// dygraph function
for
(
size_t
i
=
0
;
i
<
returns
[
0
].
size
();
i
++
)
{
returns
[
0
][
i
]
=
::
scale_dygraph_function
(
out_grad
,
phi
::
Scalar
(
1.0
),
0.0
,
true
);
returns
[
0
][
i
]
=
::
scale_ad_func
(
out_grad
,
phi
::
Scalar
(
1.0
),
0.0
,
true
);
}
// Check NaN and Inf id needed
...
...
paddle/fluid/eager/api/manual/fluid_manual/forwards/fused_attention_fwd_func.cc
浏览文件 @
54a43981
...
...
@@ -531,7 +531,6 @@ fused_attention_dygraph_function(
egr
::
EagerUtils
::
SetHistory
(
p_autograd_Y
,
grad_node
);
grad_node
->
SetGradInMeta
(
Y
,
19
);
egr
::
EagerUtils
::
CheckAndRetainGrad
(
Y
);
auto
QKVOut_accumulation_node
=
std
::
make_shared
<
egr
::
GradNodeAccumulation
>
(
p_autograd_QKVOut
);
egr
::
EagerUtils
::
SetOutRankWithSlot
(
p_autograd_QKVOut
,
0
);
...
...
paddle/fluid/eager/auto_code_generator/generator/codegen_utils.py
浏览文件 @
54a43981
...
...
@@ -161,11 +161,24 @@ def GetGradNodeName(string):
string
=
str2Hump
(
string
)
if
string
.
rfind
(
"Grad"
)
==
(
len
(
string
)
-
4
):
string
=
string
[:
-
4
]
return
f
"
{
string
}
GradNode
Final
"
return
f
"
{
string
}
GradNode"
def
GetDygraphForwardFunctionName
(
string
):
return
f
"
{
string
}
_dygraph_function"
return
f
"
{
string
}
_ad_func"
def
GetDygraphLogName
(
string
):
def
str2Hump
(
text
):
arr
=
filter
(
None
,
text
.
split
(
'_'
))
res
=
''
for
i
in
arr
:
res
=
res
+
i
[
0
].
upper
()
+
i
[
1
:]
return
res
string
=
str2Hump
(
string
)
return
string
def
GetIntermediateAPIFunctionName
(
string
):
...
...
@@ -198,7 +211,7 @@ def GetInplacedFunctionName(function_name):
def
GetForwardFunctionName
(
string
):
return
f
"
{
string
}
_
dygraph_function
"
return
f
"
{
string
}
_
ad_func
"
def
GetIndent
(
num
):
...
...
paddle/fluid/eager/auto_code_generator/generator/eager_gen.py
浏览文件 @
54a43981
...
...
@@ -23,7 +23,7 @@ from codegen_utils import ReadFwdFile, ReadBwdFile
from
codegen_utils
import
FindGradName
,
FindForwardName
,
GetSavedName
,
GetGradNodeName
from
codegen_utils
import
IsPlainTensorType
,
IsVectorTensorType
from
codegen_utils
import
GetConstReference
,
RemoveConstAndReference
from
codegen_utils
import
GetDygraphForwardFunctionName
,
GetIntermediateAPIFunctionName
from
codegen_utils
import
GetDygraphForwardFunctionName
,
GetIntermediateAPIFunctionName
,
GetDygraphLogName
from
codegen_utils
import
GetAutoGradMetaName
,
GetAutoGradMetaVectorName
from
codegen_utils
import
RemoveSpecialSymbolsInName
,
RecoverBaseNameOfInplaceFunction
from
codegen_utils
import
GetInplacedFunctionName
...
...
@@ -150,6 +150,7 @@ class {} : public egr::GradNodeBase {{
GRAD_FUNCTION_TEMPLATE
=
\
"""
paddle::small_vector<std::vector<paddle::experimental::Tensor>, egr::kSlotSmallVectorSize> {}::operator()(paddle::small_vector<std::vector<paddle::experimental::Tensor>, egr::kSlotSmallVectorSize>& grads, bool create_graph, bool is_new_grad) {{
VLOG(3) <<
\"
Running AD API GRAD:
\"
<<
\"
{}
\"
;
// Fill Zero For GradIn Tensors
{}
// Apply Gradient Hooks
...
...
@@ -166,7 +167,7 @@ paddle::small_vector<std::vector<paddle::experimental::Tensor>, egr::kSlotSmallV
// Inplace Strategy
{}
// Call grad_api function
VLOG(
3) <<
\"
Final State Running:
{}
\"
;
VLOG(
5) <<
\"
Running C++ API:
\"
<<
\"
{}
\"
;
{}
// Check NaN and Inf id needed
{}
...
...
@@ -174,6 +175,9 @@ paddle::small_vector<std::vector<paddle::experimental::Tensor>, egr::kSlotSmallV
{}
// Create Grad Node
{}
VLOG(4) <<
\"
Finish AD API GRAD: {}";
// LOG IF DEBUG
{}
// Return
{}
}}
...
...
@@ -182,6 +186,7 @@ paddle::small_vector<std::vector<paddle::experimental::Tensor>, egr::kSlotSmallV
FORWARD_FUNCTION_TEMPLATE
=
\
"""
{} {}({}) {{
VLOG(3) <<
\"
Running AD API:
\"
<<
\"
{}
\"
;
// Dygraph Record Event
{}
// AMP Logic
...
...
@@ -191,7 +196,7 @@ FORWARD_FUNCTION_TEMPLATE = \
// Get Input AutoGradMeta
{}
// Forward API Call
VLOG(
3) <<
\"
Final State Running
:
\"
<<
\"
{}
\"
;
VLOG(
5) <<
\"
Running C++ API
:
\"
<<
\"
{}
\"
;
{}
// Check NaN and Inf if needed
{}
...
...
@@ -206,15 +211,29 @@ FORWARD_FUNCTION_TEMPLATE = \
{}{}
// Node Creation
{}
VLOG(4) <<
\"
Finish AD API: {}";
// LOG IF DEBUG
{}
// Returns
return {};
}}
"""
LOG_PRINT_TEMPLATE
=
\
"""
if(VLOG_IS_ON(4)){{
const char* INPUT_PRINT_TEMPLATE =
\"
{{ Input: [%s], Output: [%s] }}
\"
;
{}
VLOG(4) << paddle::string::Sprintf(INPUT_PRINT_TEMPLATE, input_str, output_str);
}}
"""
FORWARD_ONLY_FUNCTION_TEMPLATE
=
\
"""
{} {}({}) {{
VLOG(3) <<
\"
Running AD API:
\"
<<
\"
{}
\"
;
// Dygraph Record Event
{}
// AMP Logic
...
...
@@ -222,11 +241,13 @@ FORWARD_ONLY_FUNCTION_TEMPLATE = \
// Layout autotune
{}
// Forward API Call
VLOG(
3) <<
\"
Final State Running
:
\"
<<
\"
{}
\"
;
VLOG(
5) <<
\"
Running C++ API
:
\"
<<
\"
{}
\"
;
{}
// Get Outputs
{}
VLOG(4) <<
\"
Finish AD API: {}";
// LOG IF DEBUG
{}
// Returns
return {};
}}
...
...
@@ -867,7 +888,7 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase):
set_grad_out_meta_list
.
append
(
set_grad_out_meta
)
set_grad_out_meta_str
=
"
\n
"
.
join
(
set_grad_out_meta_list
)
# SetOutRank & SetHistory & SetGradInMeta
& CheckAndRetainGrad
# SetOutRank & SetHistory & SetGradInMeta
set_out_rank_list
=
[]
set_history_list
=
[]
set_grad_in_meta_list
=
[]
...
...
@@ -885,7 +906,6 @@ class DygraphFunctionGeneratorBase(FunctionGeneratorBase):
set_grad_in_meta
=
f
"
{
indent
}
grad_node->SetGradInMeta(
{
name
}
,
{
pos
}
);"
set_retain_grad
=
f
"
{
indent
}
egr::EagerUtils::CheckAndRetainGrad(
{
name
}
);"
set_out_rank_list
.
append
(
set_out_rank
)
set_history_list
.
append
(
set_history
)
set_grad_in_meta_list
.
append
(
set_grad_in_meta
)
...
...
@@ -1294,7 +1314,8 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
node_creation_str
=
self
.
node_creation_str
dygraph_event_str
=
f
"
{
indent
}
paddle::platform::RecordEvent dygraph_entrance_record_event(
\"
{
forward_api_name
}
dygraph
\"
, paddle::platform::TracerEventType::Operator, 1);
\n
"
forward_function_name
=
GetDygraphForwardFunctionName
(
forward_api_name
)
forward_ad_function_name
=
GetDygraphForwardFunctionName
(
forward_api_name
)
# Forward amp logic
kernel_trans2_op_name_str
=
f
"auto op_name = phi::TransToFluidOpName(
\"
{
forward_api_name
}
\"
);"
...
...
@@ -1307,9 +1328,10 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
amp_autocast_list
)
+
" "
+
" "
.
join
(
amp_autocast_optional_list
)
amp_inputs_call_args_str
=
", "
.
join
(
amp_inputs_call_list
)
amp_call_str
=
f
"return
{
forward_function_name
}
(
{
amp_inputs_call_args_str
}
);"
amp_call_str
=
f
"return
{
forward_
ad_
function_name
}
(
{
amp_inputs_call_args_str
}
);"
if
is_inplaced
or
(
forward_api_name
==
"cast"
):
amp_logic_str
=
""
amp_logic_str
=
"
\n
VLOG(5) <<
\"
No AMP for {} because it is a inplace or cast api.
\"
; "
.
format
(
forward_ad_function_name
)
else
:
amp_logic_str
=
AMP_LOGIC_TEMPLATE
.
format
(
kernel_trans2_op_name_str
,
amp_tensors_vector_list_str
,
...
...
@@ -1335,8 +1357,8 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
layout_autotune_attr
)
==
0
:
layout_logic_str
=
""
else
:
# after_call_str = f"return {forward_function_name}({layout_inputs_call_args_str});\n"
after_call_str
=
f
"auto api_result =
{
forward_function_name
}
(
{
layout_inputs_call_args_str
}
);
\n
"
# after_call_str = f"return {forward_
ad_
function_name}({layout_inputs_call_args_str});\n"
after_call_str
=
f
"auto api_result =
{
forward_
ad_
function_name
}
(
{
layout_inputs_call_args_str
}
);
\n
"
layout_logic_str
=
LAYOUT_LOGIC_TEMPLATE
.
format
(
amp_tensors_vector_list_str
,
" "
.
join
(
layout_tensors_vector_optional_list
),
...
...
@@ -1345,26 +1367,45 @@ class DygraphForwardFunctionGenerator(DygraphFunctionGeneratorBase):
" "
.
join
(
layout_autotune_optional_list
),
after_call_str
,
layout_autotune_outs_list
,
returns_str
)
# For inputs outputs prepare for logging
var_str
=
f
"
\n
{
indent
}
std::string input_str =
\"\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string output_str =
\"\"
;"
for
name
,
(
ttype
,
pos
)
in
forward_inputs_position_map
.
items
():
var_str
+=
f
"
\n
{
indent
}
const char* TENSOR_
{
name
.
upper
()
}
_TEMPLATE =
\"
(
{
name
}
, [%s]),
\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string input_
{
name
}
_str = paddle::string::Sprintf(TENSOR_
{
name
.
upper
()
}
_TEMPLATE, egr::EagerUtils::TensorStr(
{
name
}
));"
var_str
+=
f
"
\n
{
indent
}
input_str += input_
{
name
}
_str; "
for
name
,
(
ttype
,
pos
)
in
forward_outputs_position_map
.
items
():
var_str
+=
f
"
\n
{
indent
}
const char* TENSOR_
{
name
.
upper
()
}
_TEMPLATE =
\"
(
{
name
}
, [%s]),
\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string output_
{
name
}
_str = paddle::string::Sprintf(TENSOR_
{
name
.
upper
()
}
_TEMPLATE, egr::EagerUtils::TensorStr(
{
name
}
));"
var_str
+=
f
"
\n
{
indent
}
output_str += output_
{
name
}
_str; "
log_str
=
LOG_PRINT_TEMPLATE
.
format
(
var_str
)
# Generate forward_definition_str and forward_declaration_str
if
self
.
is_forward_only
:
if
len
(
amp_tensors_vector_list
)
==
0
:
amp_logic_str
=
""
amp_logic_str
=
"
\n
VLOG(7) <<
\"
No AMP for {} because it has no input.
\"
; "
.
format
(
forward_ad_function_name
)
self
.
forward_definition_str
+=
FORWARD_ONLY_FUNCTION_TEMPLATE
.
format
(
returns_type_str
,
forward_function_name
,
inputs_args_definition_str
,
dygraph_event_str
,
amp_logic_str
,
layout_logic_str
,
forward_function_name
,
forward_call_str
,
get_outputs_str
,
returns_str
)
returns_type_str
,
forward_ad_function_name
,
inputs_args_definition_str
,
GetDygraphLogName
(
forward_api_name
),
dygraph_event_str
,
amp_logic_str
,
layout_logic_str
,
forward_api_name
,
forward_call_str
,
get_outputs_str
,
forward_ad_function_name
,
log_str
,
returns_str
)
else
:
self
.
forward_definition_str
+=
FORWARD_FUNCTION_TEMPLATE
.
format
(
returns_type_str
,
forward_function_name
,
inputs_args_definition_str
,
dygraph_event_str
,
amp_logic_str
,
layout_logic_str
,
inputs_autograd_meta_str
,
forward_function_name
,
forward_call_str
,
check_nan_inf_str
,
returns_type_str
,
forward_ad_function_name
,
inputs_args_definition_str
,
GetDygraphLogName
(
forward_api_name
),
dygraph_event_str
,
amp_logic_str
,
layout_logic_str
,
inputs_autograd_meta_str
,
forward_api_name
,
forward_call_str
,
check_nan_inf_str
,
get_outputs_str
,
outputs_autograd_meta_str
,
compute_require_grad_args_str
,
check_inplace_str
,
bump_inplace_version_str
,
node_creation_str
,
returns_str
)
bump_inplace_version_str
,
node_creation_str
,
forward_ad_function_name
,
log_str
,
returns_str
)
self
.
forward_declaration_str
+=
f
"
{
returns_type_str
}
{
forward_function_name
}
(
{
inputs_args_declaration_str
}
);
\n
"
self
.
forward_declaration_str
+=
f
"
{
returns_type_str
}
{
forward_
ad_
function_name
}
(
{
inputs_args_declaration_str
}
);
\n
"
def
GenerateInplacedForwardDygraphFunctions
(
self
):
# Inplaced Version Dygraph Function Generation
...
...
@@ -1770,7 +1811,8 @@ class DygraphNodeGenerator(DygraphFunctionGeneratorBase):
forward_api_name
=
self
.
grad_api_contents
[
'invoke'
].
split
(
'('
)[
0
].
strip
()
autograd_api
=
self
.
grad_api_contents
[
'invoke'
].
replace
(
forward_api_name
,
forward_api_name
+
'_dygraph_function'
,
1
)
forward_api_name
,
GetDygraphForwardFunctionName
(
forward_api_name
),
1
)
grad_function_call_str
=
f
"""
if (trace_backward) {{
{
indent
}{
autograd_api_out
}
api_output =
{
autograd_api
}
;
...
...
@@ -1839,13 +1881,40 @@ class DygraphNodeGenerator(DygraphFunctionGeneratorBase):
returns_str
+=
f
"
{
indent
}
return returns;
\n
"
grad_node_name
=
GetGradNodeName
(
self
.
backward_api_name
)
# For inputs outputs prepare for logging
var_str
=
f
"
\n
{
indent
}
std::string input_str =
\"\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string output_str =
\"\"
;"
for
name
,
(
ttype
,
fwd_position
,
grad_api_position
)
in
backward_grad_inputs_map
.
items
():
new_name
=
self
.
TransformToNextGradName
(
name
)
var_str
+=
f
"
\n
{
indent
}
const char* TENSOR_
{
new_name
.
upper
()
}
_TEMPLATE =
\"
(
{
new_name
}
, [%s]),
\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string input_
{
new_name
}
_str = paddle::string::Sprintf(TENSOR_
{
new_name
.
upper
()
}
_TEMPLATE, egr::EagerUtils::TensorStr(
{
new_name
}
));"
var_str
+=
f
"
\n
{
indent
}
input_str += input_
{
new_name
}
_str; "
for
name
,
(
backward_input_type
,
is_fwd_input
,
grad_api_position
),
in
backward_forward_inputs_map
.
items
():
new_name
=
self
.
TransformToNextGradName
(
name
)
var_str
+=
f
"
\n
{
indent
}
const char* TENSOR_
{
new_name
.
upper
()
}
_TEMPLATE =
\"
(
{
new_name
}
, [%s]),
\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string input_
{
new_name
}
_str = paddle::string::Sprintf(TENSOR_
{
new_name
.
upper
()
}
_TEMPLATE, egr::EagerUtils::TensorStr(
{
new_name
}
));"
var_str
+=
f
"
\n
{
indent
}
input_str += input_
{
new_name
}
_str; "
for
name
,
(
ttype
,
fwd_position
,
grad_api_position
)
in
backward_grad_outputs_map
.
items
():
new_name
=
self
.
TransformToNextGradName
(
name
)
var_str
+=
f
"
\n
{
indent
}
const char* TENSOR_
{
new_name
.
upper
()
}
_TEMPLATE =
\"
(
{
new_name
}
, [%s]),
\"
;"
var_str
+=
f
"
\n
{
indent
}
std::string output_
{
new_name
}
_str = paddle::string::Sprintf(TENSOR_
{
new_name
.
upper
()
}
_TEMPLATE, egr::EagerUtils::TensorStr(
{
new_name
}
));"
var_str
+=
f
"
\n
{
indent
}
output_str += output_
{
new_name
}
_str; "
log_str
=
LOG_PRINT_TEMPLATE
.
format
(
var_str
)
self
.
node_definition_str
=
GRAD_FUNCTION_TEMPLATE
.
format
(
grad_node_name
,
fill_zero_str
,
get_grad_in_args_str
,
grad_function_prepare_str
,
compute_require_next_grad_str
,
inplace_check_str
,
inplace_for_grad_outs_str
,
grad_node_name
,
grad_node_name
,
GetDygraphLogName
(
self
.
backward_api_name
),
fill_zero_str
,
get_grad_in_args_str
,
grad_function_prepare_str
,
compute_require_next_grad_str
,
inplace_check_str
,
inplace_for_grad_outs_str
,
self
.
backward_api_name
,
grad_function_call_str
,
check_nan_inf_str
,
outputs_autograd_meta_str
,
next_grad_node_creation_str
,
returns_str
)
outputs_autograd_meta_str
,
next_grad_node_creation_str
,
GetDygraphLogName
(
self
.
backward_api_name
),
log_str
,
returns_str
)
def
run
(
self
):
super
().
run
()
...
...
paddle/fluid/eager/backward.cc
浏览文件 @
54a43981
...
...
@@ -133,7 +133,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
AutogradMeta
*
auto_grad_meta
=
EagerUtils
::
nullable_autograd_meta
(
tensor
);
if
(
auto_grad_meta
==
nullptr
)
{
VLOG
(
3
)
<<
"Skip auto grad since there is no grad op for var or loss is "
VLOG
(
5
)
<<
"Skip auto grad since there is no grad op for var or loss is "
"stop_gradient=True: "
<<
tensor
.
name
();
continue
;
...
...
@@ -141,14 +141,14 @@ std::vector<paddle::experimental::Tensor> RunBackward(
// Get grad input info from target tensors
auto
input_info
=
auto_grad_meta
->
OutRankInfo
();
VLOG
(
2
)
<<
"Out Rank of Tensor is slot: "
<<
input_info
.
first
VLOG
(
5
)
<<
"Out Rank of Tensor is slot: "
<<
input_info
.
first
<<
", rank: "
<<
input_info
.
second
;
// Get target GradNodeBase from target tensors
auto
shared_grad_node
=
auto_grad_meta
->
GetMutableGradNode
();
if
(
shared_grad_node
==
nullptr
||
shared_grad_node
.
get
()
==
nullptr
||
auto_grad_meta
->
StopGradient
())
{
VLOG
(
3
)
<<
"Skip auto grad since there is no grad op for var or loss is "
VLOG
(
5
)
<<
"Skip auto grad since there is no grad op for var or loss is "
"stop_gradient=True: "
<<
tensor
.
name
();
continue
;
...
...
@@ -169,7 +169,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
// Prepare GradTensorHolder
if
(
!
node_input_buffers_dict
.
count
(
grad_node
))
{
VLOG
(
6
)
<<
"Create Value for grad input tensor "
<<
i
VLOG
(
5
)
<<
"Create Value for grad input tensor "
<<
i
<<
" of grad node: "
<<
grad_node
->
name
();
node_input_buffers_dict
[
grad_node
]
=
std
::
make_unique
<
GradTensorHolder
>
(
grad_node
->
InputMeta
());
...
...
@@ -184,13 +184,13 @@ std::vector<paddle::experimental::Tensor> RunBackward(
"grad_tensors should either have "
"size = 0 or same size as tensors."
));
// Feed given tensor if it's provided
VLOG
(
6
)
<<
"Fill grad input tensor "
<<
i
<<
"with give grad tensor"
;
VLOG
(
3
)
<<
"Fill grad input tensor "
<<
i
<<
"with give grad tensor"
;
// Deep copy
node_input_buffers_dict
[
grad_node
]
->
CopyValueFromTensor
(
input_info
.
first
,
input_info
.
second
,
grad_tensors
[
i
]);
}
else
{
VLOG
(
6
)
<<
"Fill grad input tensor "
<<
i
<<
" with 1.0"
;
VLOG
(
3
)
<<
"Fill grad input tensor "
<<
i
<<
" with 1.0"
;
// Initialize tensor with 1.0
// Forward Tensor "tensor" is passed to indicate tensortype, datatype and
// dims
...
...
@@ -210,12 +210,12 @@ std::vector<paddle::experimental::Tensor> RunBackward(
inputs
,
no_grad_vars
,
orig_queue
,
&
queue
,
node_input_buffers_dict
);
}
VLOG
(
6
)
<<
"Update In degree Map for backward"
;
VLOG
(
5
)
<<
"Update In degree Map for backward"
;
// 3. Compute in_degree for each node
std
::
unordered_map
<
GradNodeBase
*
,
int
>
node_in_degree_map
=
getInDegreeMap
(
queue
);
VLOG
(
3
)
<<
"Startup_ops's size is "
<<
queue
.
size
();
VLOG
(
5
)
<<
"Startup_ops's size is "
<<
queue
.
size
();
/* --- Topological Visit --- */
// 1. Pop queue
...
...
@@ -224,11 +224,10 @@ std::vector<paddle::experimental::Tensor> RunBackward(
// |- node(grads)
// |- Prepare for next node
// 3. Update queue
VLOG
(
3
)
<<
"Run Backward"
;
while
(
!
queue
.
empty
())
{
GradNodeBase
*
node
=
queue
.
front
();
VLOG
(
3
)
<<
"
Runn
ing GradNode:"
<<
node
->
name
()
<<
" addr:"
<<
node
;
VLOG
(
3
)
<<
"
Prepar
ing GradNode:"
<<
node
->
name
()
<<
" addr:"
<<
node
;
VLOG
(
4
)
<<
EagerUtils
::
GradNodeStr
(
*
node
);
paddle
::
platform
::
RecordEvent
node_record_event
(
std
::
string
((
*
node
).
name
()),
paddle
::
platform
::
TracerEventType
::
Operator
,
...
...
@@ -255,7 +254,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
// Check input
EnforceGradNodeHasInput
(
node
);
VLOG
(
6
)
<<
"Run Backward Kernel with GradTensorHolder."
;
VLOG
(
7
)
<<
"Run Backward Kernel with GradTensorHolder."
;
// Run Pre Backward Node and get outputs
paddle
::
small_vector
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>
,
kSlotSmallVectorSize
>
...
...
@@ -269,7 +268,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
// retain_grad or not
if
(
!
retain_graph
)
{
VLOG
(
6
)
VLOG
(
3
)
<<
"retain_graph is false, need to clear the TensorWrapper of nodes."
;
node
->
ClearTensorWrappers
();
}
...
...
@@ -322,11 +321,11 @@ std::vector<paddle::experimental::Tensor> RunBackward(
if
((
!
grad_output_tensor
.
defined
()
||
!
grad_output_tensor
.
initialized
()))
{
VLOG
(
6
)
<<
"We get grad_output_tensor with slot: "
<<
i
VLOG
(
7
)
<<
"We get grad_output_tensor with slot: "
<<
i
<<
", rank: "
<<
j
<<
" as uninitialized or undefined tensor"
;
}
VLOG
(
6
)
<<
"Get Edge and grad_output_tensor with slot: "
<<
i
VLOG
(
7
)
<<
"Get Edge and grad_output_tensor with slot: "
<<
i
<<
", rank: "
<<
j
<<
" 's name is: "
<<
grad_output_tensor
.
name
();
...
...
@@ -335,12 +334,12 @@ std::vector<paddle::experimental::Tensor> RunBackward(
const
auto
&
input_meta
=
next_node
->
InputMeta
();
auto
grad_tensor_holder
=
std
::
make_unique
<
GradTensorHolder
>
(
input_meta
);
VLOG
(
6
)
<<
"Construct GradTensorHolder for grad node: "
VLOG
(
7
)
<<
"Construct GradTensorHolder for grad node: "
<<
next_node
->
name
();
node_input_buffers_dict
[
next_node
]
=
std
::
move
(
grad_tensor_holder
);
}
VLOG
(
6
)
<<
"Sum grad inputs for edge slot: "
<<
edge_rank
.
first
VLOG
(
3
)
<<
"Sum grad inputs for edge slot: "
<<
edge_rank
.
first
<<
", rank: "
<<
edge_rank
.
second
;
node_input_buffers_dict
[
next_node
]
->
add
(
edge_rank
.
first
,
...
...
@@ -350,7 +349,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
// Update queue
node_in_degree_map
[
next_node
]
--
;
VLOG
(
6
)
<<
next_node
->
name
()
VLOG
(
7
)
<<
next_node
->
name
()
<<
" ref_cnt is: "
<<
node_in_degree_map
[
next_node
];
PADDLE_ENFORCE
(
...
...
@@ -382,7 +381,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
}
}
VLOG
(
6
)
<<
"Run Backward Final hook size: "
VLOG
(
7
)
<<
"Run Backward Final hook size: "
<<
egr
::
Controller
::
Instance
().
FinalBackwardHooks
().
size
();
for
(
auto
&
hook
:
egr
::
Controller
::
Instance
().
FinalBackwardHooks
())
{
(
*
hook
)();
...
...
@@ -390,6 +389,7 @@ std::vector<paddle::experimental::Tensor> RunBackward(
egr
::
Controller
::
Instance
().
ClearFinalBackwardHooks
();
if
(
!
is_general_grad
)
return
{};
return
GeneralGrad
::
Instance
().
GetResults
(
inputs
,
allow_unused
,
create_graph
);
VLOG
(
3
)
<<
"Finish Backward"
;
}
void
Backward
(
...
...
paddle/fluid/eager/eager_amp_auto_cast.h
浏览文件 @
54a43981
...
...
@@ -45,7 +45,7 @@ inline paddle::experimental::Tensor Cast(
const
bool
trace_backward
=
true
)
{
if
(
input
.
is_sparse_coo_tensor
()
||
input
.
is_sparse_csr_tensor
())
{
if
(
trace_backward
)
{
return
sparse
::
cast_
dygraph_function
(
return
sparse
::
cast_
ad_func
(
input
,
paddle
::
experimental
::
DataType
::
UNDEFINED
,
dst_dtype
);
}
else
{
return
paddle
::
experimental
::
sparse
::
cast
(
...
...
@@ -53,7 +53,7 @@ inline paddle::experimental::Tensor Cast(
}
}
else
{
if
(
trace_backward
)
{
return
cast_
dygraph_function
(
input
,
dst_dtype
);
return
cast_
ad_func
(
input
,
dst_dtype
);
}
else
{
return
paddle
::
experimental
::
cast
(
input
,
dst_dtype
);
}
...
...
paddle/fluid/eager/eager_layout_transformer.h
浏览文件 @
54a43981
...
...
@@ -35,7 +35,7 @@ inline paddle::experimental::Tensor EagerTraceTransposeOp(
}
else
{
axis
=
{
0
,
1
,
2
,
3
};
}
auto
out_tensor
=
transpose_
dygraph_function
(
in
,
axis
);
auto
out_tensor
=
transpose_
ad_func
(
in
,
axis
);
VLOG
(
4
)
<<
"AutoTune Transpose from "
<<
paddle
::
framework
::
DataLayoutToString
(
in
.
layout
())
<<
" to "
<<
paddle
::
framework
::
DataLayoutToString
(
layout
);
...
...
paddle/fluid/eager/grad_node_info.cc
浏览文件 @
54a43981
...
...
@@ -41,7 +41,7 @@ static void CheckTensor(const paddle::experimental::Tensor& pre,
"The tensor in before and after hook are not consistent"
));
}
if
(
pre
.
initialized
()
&&
post
.
initialized
())
{
VLOG
(
4
)
<<
paddle
::
framework
::
DataType2String
(
pre
.
dtype
())
<<
" "
VLOG
(
7
)
<<
paddle
::
framework
::
DataType2String
(
pre
.
dtype
())
<<
" "
<<
paddle
::
framework
::
DataType2String
(
post
.
dtype
());
PADDLE_ENFORCE_EQ
(
pre
.
dtype
(),
...
...
@@ -62,7 +62,7 @@ static void CheckTensor(const paddle::experimental::Tensor& pre,
}
GradNodeBase
::
GradNodeBase
(
size_t
bwd_in_slot_num
,
size_t
bwd_out_slot_num
)
{
VLOG
(
6
)
<<
"Construct GradNodeBase"
;
VLOG
(
7
)
<<
"Construct GradNodeBase"
;
bwd_in_meta_
.
resize
(
bwd_in_slot_num
);
bwd_out_meta_
.
resize
(
bwd_out_slot_num
);
}
...
...
@@ -84,7 +84,7 @@ GradNodeBase::MutableOutputMeta() {
void
GradNodeBase
::
SetGradInMeta
(
const
paddle
::
experimental
::
Tensor
&
fwd_out
,
size_t
slot_rank
)
{
VLOG
(
6
)
<<
"Set GradSlotMeta for Grad Inputs"
;
VLOG
(
7
)
<<
"Set GradSlotMeta for Grad Inputs"
;
auto
*
fwd_out_meta
=
egr
::
EagerUtils
::
nullable_autograd_meta
(
fwd_out
);
PADDLE_ENFORCE_LE
(
slot_rank
,
...
...
@@ -104,7 +104,7 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
}
if
(
!
fwd_out
.
initialized
())
{
VLOG
(
6
)
VLOG
(
7
)
<<
"Skip Configuring GradSlotMeta for uninitialized GradInput Tensor"
;
return
;
}
...
...
@@ -123,7 +123,7 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
static_cast
<
phi
::
SparseCsrTensor
*>
(
fwd_out
.
impl
().
get
());
dense_tensor
=
csr_tensor
->
mutable_non_zero_elements
();
}
else
{
VLOG
(
6
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
VLOG
(
7
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument."
;
}
PADDLE_ENFORCE_NE
(
...
...
@@ -145,7 +145,7 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
void
GradNodeBase
::
SetGradInMeta
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
fwd_out
,
size_t
slot_rank
)
{
VLOG
(
6
)
<<
"Set GradSlotMeta for Grad Inputs"
;
VLOG
(
7
)
<<
"Set GradSlotMeta for Grad Inputs"
;
size_t
slot_size
=
fwd_out
.
size
();
PADDLE_ENFORCE_LE
(
slot_rank
,
...
...
@@ -177,7 +177,7 @@ void GradNodeBase::SetGradInMeta(
}
if
(
!
fwd_out_tensor
.
initialized
())
{
VLOG
(
6
)
VLOG
(
7
)
<<
"Skip Configuring GradSlotMeta for uninitialized GradInput Tensor"
;
return
;
}
...
...
@@ -202,7 +202,7 @@ void GradNodeBase::SetGradInMeta(
need_complex_to_real_
=
true
;
}
}
else
{
VLOG
(
6
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta "
VLOG
(
7
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta "
"with non-DenseTensor argument."
;
}
}
...
...
@@ -260,7 +260,7 @@ void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
meta
.
SetPlace
(
fwd_in
.
place
());
}
}
else
{
VLOG
(
6
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
VLOG
(
7
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument."
;
}
}
...
...
@@ -319,7 +319,7 @@ void GradNodeBase::SetGradOutMeta(
meta
.
SetPlace
(
fwd_in_tensor
.
place
());
}
}
else
{
VLOG
(
6
)
VLOG
(
7
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument."
;
}
...
...
paddle/fluid/eager/grad_node_info.h
浏览文件 @
54a43981
...
...
@@ -74,7 +74,7 @@ class Edge {
}
void
SetGradNode
(
const
std
::
shared_ptr
<
GradNodeBase
>&
node
)
{
VLOG
(
6
)
<<
"Reseting Edge's Grad Node"
;
VLOG
(
7
)
<<
"Reseting Edge's Grad Node"
;
grad_node_
=
node
;
}
...
...
@@ -167,10 +167,10 @@ class GradSlotMeta {
class
GradNodeBase
{
public:
GradNodeBase
()
{
VLOG
(
6
)
<<
"Construct GradNodeBase"
;
}
GradNodeBase
()
{
VLOG
(
7
)
<<
"Construct GradNodeBase"
;
}
GradNodeBase
(
size_t
bwd_in_slot_num
,
size_t
bwd_out_slot_num
);
// TODO(jiabin): Should we have other constructor here?
virtual
~
GradNodeBase
()
{
VLOG
(
6
)
<<
"Destruct GradNodeBase"
;
}
virtual
~
GradNodeBase
()
{
VLOG
(
7
)
<<
"Destruct GradNodeBase"
;
}
/**
* operator() designed to contian the real backward execution logic, it should
...
...
@@ -255,14 +255,14 @@ class GradNodeBase {
std
::
map
<
int64_t
,
std
::
tuple
<
size_t
,
size_t
,
std
::
shared_ptr
<
TensorHook
>>>
GetGradientHookFuntions
()
{
VLOG
(
6
)
<<
"GetGradientHookFuntions "
;
VLOG
(
7
)
<<
"GetGradientHookFuntions "
;
return
gradient_hooks_
;
}
void
SetGradientHookFuntions
(
std
::
map
<
int64_t
,
std
::
tuple
<
size_t
,
size_t
,
std
::
shared_ptr
<
TensorHook
>>>
hooks
)
{
VLOG
(
6
)
<<
"SetGradientHookFuntions "
;
VLOG
(
7
)
<<
"SetGradientHookFuntions "
;
gradient_hooks_
=
hooks
;
}
...
...
paddle/fluid/eager/grad_tensor_holder.cc
浏览文件 @
54a43981
...
...
@@ -143,7 +143,7 @@ void GradTensorHolder::add(size_t slot_id,
if
(
t
.
is_dense_tensor
())
{
if
(
buffer_tensor
.
is_dense_tensor
())
{
if
(
create_graph
||
t
.
is_custom_device
())
{
buffer_tensor
=
add_
dygraph_function
(
t
,
buffer_tensor
);
buffer_tensor
=
add_
ad_func
(
t
,
buffer_tensor
);
}
else
{
paddle
::
imperative
::
TensorAdd
<
paddle
::
experimental
::
Tensor
>
(
t
,
&
buffer_tensor
);
...
...
@@ -170,7 +170,7 @@ void GradTensorHolder::add(size_t slot_id,
std
::
make_shared
<
phi
::
DenseTensor
>
(
buffer_sparse
->
non_zero_elements
()));
if
(
create_graph
||
t
.
is_custom_device
())
{
buffer_values
=
add_
dygraph_function
(
t_values
,
buffer_values
);
buffer_values
=
add_
ad_func
(
t_values
,
buffer_values
);
}
else
{
paddle
::
imperative
::
TensorAdd
<
paddle
::
experimental
::
Tensor
>
(
t_values
,
&
buffer_values
);
...
...
paddle/fluid/eager/tensor_wrapper.h
浏览文件 @
54a43981
...
...
@@ -100,10 +100,10 @@ class TensorWrapper {
std
::
shared_ptr
<
GradNodeBase
>
new_grad_node
=
weak_grad_node_
.
lock
();
if
(
new_grad_node
)
{
VLOG
(
3
)
<<
"Recovered TensorWrapper with GradNode "
VLOG
(
7
)
<<
"Recovered TensorWrapper with GradNode "
<<
new_grad_node
->
name
()
<<
" addr: "
<<
new_grad_node
.
get
();
}
else
{
VLOG
(
3
)
<<
"Recovered TensorWrapper with Empty GradNode"
;
VLOG
(
7
)
<<
"Recovered TensorWrapper with Empty GradNode"
;
}
auto
*
intermediate_autograd_meta
=
EagerUtils
::
nullable_autograd_meta
(
intermidiate_tensor_
);
...
...
@@ -129,7 +129,7 @@ class TensorWrapper {
private:
void
check_inplace_version
()
{
if
(
no_need_buffer_
)
{
VLOG
(
6
)
<<
"There's no need to check inplace_version because "
VLOG
(
7
)
<<
"There's no need to check inplace_version because "
"no_need_buffer_ is true."
;
return
;
}
...
...
@@ -154,10 +154,10 @@ class TensorWrapper {
intermidiate_tensor_
.
name
(),
tensor_version
,
wrapper_version_snapshot
));
VLOG
(
6
)
<<
" The wrapper_version_snapshot of Tensor '"
VLOG
(
7
)
<<
" The wrapper_version_snapshot of Tensor '"
<<
intermidiate_tensor_
.
name
()
<<
"' is [ "
<<
wrapper_version_snapshot
<<
" ]"
;
VLOG
(
6
)
<<
" The tensor_version of Tensor '"
VLOG
(
7
)
<<
" The tensor_version of Tensor '"
<<
intermidiate_tensor_
.
name
()
<<
"' is [ "
<<
tensor_version
<<
" ]"
;
}
...
...
paddle/fluid/eager/tests/performance_tests/benchmark_utils.cc
浏览文件 @
54a43981
...
...
@@ -77,7 +77,7 @@ void benchmark_eager_matmul(const paddle::experimental::Tensor& X,
size_t
max_num_runs
=
accuracy_check
?
2
:
max_num_benchmark_runs
;
for
(
size_t
i
=
0
;
i
<
max_num_runs
;
i
++
)
{
input_tensor0
=
matmul_
dygraph_function
(
input_tensor0
,
Y
,
false
,
false
);
input_tensor0
=
matmul_
ad_func
(
input_tensor0
,
Y
,
false
,
false
);
}
std
::
vector
<
paddle
::
experimental
::
Tensor
>
target_tensors
=
{
input_tensor0
};
...
...
paddle/fluid/eager/to_static/run_program_op_func.h
浏览文件 @
54a43981
...
...
@@ -54,7 +54,7 @@ static void clear_no_grad_edges_with_partial_block(
}
}
inline
void
run_program_
dygraph_function
(
inline
void
run_program_
ad_func
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
x
,
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
params
,
std
::
vector
<
paddle
::
experimental
::
Tensor
*>&
out
,
// NOLINT
...
...
paddle/fluid/eager/utils.cc
浏览文件 @
54a43981
...
...
@@ -296,7 +296,7 @@ void EagerUtils::HandleViewBetweenInputAndOutput(
view_output_dense_tensor
->
ShareInplaceVersionCounterWith
(
*
input_dense_tensor
);
VLOG
(
3
)
<<
"Perform View between Output Tensor("
VLOG
(
4
)
<<
"Perform View between Output Tensor("
<<
view_output_tensor
->
name
()
<<
") and Input Tensor("
<<
input_tensor
.
name
()
<<
"), share allocation and inplace version."
;
...
...
@@ -409,7 +409,7 @@ std::vector<paddle::experimental::Tensor> EagerUtils::RecoverTensorWrapper(
}
return
ret
;
}
// TODO(jiabin): remove all this when we fix all test using tmp grad
void
EagerUtils
::
CheckAndRetainGrad
(
const
paddle
::
experimental
::
Tensor
&
tensor
)
{
VLOG
(
6
)
<<
"Check RetainGradForTensor: "
<<
tensor
.
name
();
...
...
paddle/fluid/eager/utils.h
浏览文件 @
54a43981
...
...
@@ -230,6 +230,7 @@ class EagerUtils {
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
tensors
);
static
void
CheckAndRetainGrad
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
*>&
tensors
);
static
std
::
shared_ptr
<
egr
::
GradNodeBase
>
GetGradAccumulationNode
(
const
paddle
::
experimental
::
Tensor
&
tensor
);
...
...
@@ -246,6 +247,184 @@ class EagerUtils {
static
void
FillZeroForEmptyGradInput
(
std
::
vector
<
paddle
::
experimental
::
Tensor
>*
in_grads
,
const
std
::
vector
<
GradSlotMeta
>&
grad_in_metas
);
/**
* Print Input Output (level 0 means least info, level 2 means most info)
* **/
static
const
std
::
string
TensorStr
(
const
paddle
::
experimental
::
Tensor
&
t
)
{
std
::
string
tensor_name_str
=
""
;
if
(
t
.
name
()
==
""
)
{
tensor_name_str
=
"None"
;
}
else
{
tensor_name_str
=
t
.
name
();
}
const
char
*
TENSOR_INFO_TEMPLATE
=
"{ Type: [
\"
%s
\"
], Dtype:[
\"
%s
\"
], Place:[
\"
%s
\"
] }"
;
std
::
string
tensor_info_str
=
""
;
if
(
t
.
defined
())
{
if
(
t
.
initialized
())
{
tensor_info_str
+=
paddle
::
string
::
Sprintf
(
TENSOR_INFO_TEMPLATE
,
t
.
impl
()
->
type_info
().
name
(),
t
.
dtype
(),
t
.
place
().
DebugString
());
}
else
{
tensor_info_str
+=
paddle
::
string
::
Sprintf
(
TENSOR_INFO_TEMPLATE
,
t
.
impl
()
->
type_info
().
name
(),
"Unknown"
,
"Unknown"
);
}
}
else
{
tensor_info_str
+=
"Unknown"
;
}
if
(
VLOG_IS_ON
(
6
))
{
const
char
*
TENSOR_PRINT_TEMPLATE
=
"{ Name:[
\"
%s
\"
], Initialized: [
\"
%d
\"
], Ptr: [
\"
%d
\"
] "
"TensorInfo: [
\"
%s
\"
], ADInfo:[
\"
%s
\"
] }"
;
auto
*
ad_meta
=
nullable_autograd_meta
(
t
);
if
(
!
ad_meta
&&
!
(
ad_meta
->
WeakGrad
().
lock
().
get
()))
{
std
::
string
ad_info_str
=
""
;
const
char
*
AD_INFO_TEMPLATE
=
"{ Grad: [
\"
%s
\"
], GradNode: [ %s ], StopGradient: [ %d ] }"
;
ad_info_str
+=
paddle
::
string
::
Sprintf
(
AD_INFO_TEMPLATE
,
TensorStr
(
ad_meta
->
Grad
()),
GradNodeStr
(
t
),
ad_meta
->
StopGradient
());
return
paddle
::
string
::
Sprintf
(
TENSOR_PRINT_TEMPLATE
,
tensor_name_str
,
t
.
initialized
(),
t
.
impl
(),
tensor_info_str
,
ad_info_str
);
}
else
{
return
paddle
::
string
::
Sprintf
(
TENSOR_PRINT_TEMPLATE
,
tensor_name_str
,
t
.
initialized
(),
t
.
impl
(),
tensor_info_str
,
"None"
);
}
}
else
if
(
VLOG_IS_ON
(
5
))
{
const
char
*
TENSOR_PRINT_TEMPLATE
=
"{ Name:[
\"
%s
\"
], Initialized: [
\"
%d
\"
], Ptr: [
\"
%d
\"
] "
"TensorInfo: [
\"
%s
\"
] }"
;
return
paddle
::
string
::
Sprintf
(
TENSOR_PRINT_TEMPLATE
,
tensor_name_str
,
t
.
initialized
(),
t
.
impl
(),
tensor_info_str
);
}
else
if
(
VLOG_IS_ON
(
4
))
{
const
char
*
TENSOR_PRINT_TEMPLATE
=
"{ Name:[
\"
%s
\"
], Initialized: [
\"
%d
\"
], Ptr: [
\"
%d
\"
] }"
;
return
paddle
::
string
::
Sprintf
(
TENSOR_PRINT_TEMPLATE
,
tensor_name_str
,
t
.
initialized
(),
t
.
impl
());
}
else
{
return
"[ Not specified tensor log level ]"
;
}
}
static
const
std
::
string
GradNodeStr
(
const
egr
::
GradNodeBase
&
node
)
{
if
(
VLOG_IS_ON
(
6
))
{
const
char
*
GRAD_NODE_TEMPLATE
=
" { BackwardOutMeta: [ %s ], BackwardInMeta: [ %s ] }"
;
const
char
*
GRAD_SLOT_META_TEMPLATE
=
" {SlotSize: [%d]: %s} "
;
const
char
*
SLOT_INFO_TEMPLATE
=
" {SlotID: [
\"
%s
\"
], StopGradients: [ %s ], Edges[ %s ] }"
;
auto
out_metas
=
node
.
OutputMeta
();
auto
in_metas
=
node
.
InputMeta
();
std
::
string
out_slot_str
=
""
;
std
::
string
in_slot_str
=
""
;
const
char
*
EDGE_INFO_TEMPLATE
=
" { [%d, %d]: [%s, %s] }, "
;
std
::
string
slot_str
=
""
;
for
(
size_t
i
=
0
;
i
<
out_metas
.
size
();
i
++
)
{
std
::
string
edges_str
=
""
;
std
::
string
sg_str
=
""
;
for
(
const
GradSlotMeta
&
meta
:
out_metas
[
i
])
{
const
egr
::
Edge
&
edge
=
meta
.
GetEdge
();
if
(
edge
.
IsInitialized
())
{
edges_str
+=
paddle
::
string
::
Sprintf
(
EDGE_INFO_TEMPLATE
,
edge
.
GetEdgeRankInfo
().
first
,
edge
.
GetEdgeRankInfo
().
second
,
edge
.
GetGradNode
(),
edge
.
GetGradNode
()
->
name
());
}
else
{
edges_str
+=
paddle
::
string
::
Sprintf
(
"{ NULL Edge }"
);
}
sg_str
+=
meta
.
IsStopGradient
()
?
"1, "
:
"0, "
;
}
out_slot_str
+=
paddle
::
string
::
Sprintf
(
SLOT_INFO_TEMPLATE
,
i
,
sg_str
,
edges_str
);
}
std
::
string
out_meta_str
=
paddle
::
string
::
Sprintf
(
GRAD_SLOT_META_TEMPLATE
,
out_metas
.
size
(),
out_slot_str
);
for
(
size_t
i
=
0
;
i
<
in_metas
.
size
();
i
++
)
{
std
::
string
edges_str
=
""
;
std
::
string
sg_str
=
""
;
for
(
const
GradSlotMeta
&
meta
:
in_metas
[
i
])
{
edges_str
+=
paddle
::
string
::
Sprintf
(
"{ NULL Edge }"
);
sg_str
+=
meta
.
IsStopGradient
()
?
"1, "
:
"0, "
;
}
in_slot_str
+=
paddle
::
string
::
Sprintf
(
SLOT_INFO_TEMPLATE
,
i
,
sg_str
,
edges_str
);
}
std
::
string
in_meta_str
=
paddle
::
string
::
Sprintf
(
GRAD_SLOT_META_TEMPLATE
,
in_slot_str
);
return
paddle
::
string
::
Sprintf
(
GRAD_NODE_TEMPLATE
,
out_meta_str
,
in_meta_str
);
}
else
if
(
VLOG_IS_ON
(
5
))
{
const
char
*
GRAD_NODE_TEMPLATE
=
" { BackwardOutMeta: [ %s ], BackwardInMeta: [ %s ] }"
;
const
char
*
GRAD_SLOT_META_TEMPLATE
=
"SlotSize: [
\"
%d
\"
]"
;
std
::
string
out_meta_str
=
paddle
::
string
::
Sprintf
(
GRAD_SLOT_META_TEMPLATE
,
node
.
OutputMeta
().
size
());
std
::
string
in_meta_str
=
paddle
::
string
::
Sprintf
(
GRAD_SLOT_META_TEMPLATE
,
node
.
InputMeta
().
size
());
return
paddle
::
string
::
Sprintf
(
GRAD_NODE_TEMPLATE
,
out_meta_str
,
in_meta_str
);
}
else
{
return
"[ Not specified grad node log level. ] "
;
}
}
static
const
std
::
string
GradNodeStr
(
const
paddle
::
experimental
::
Tensor
&
t
)
{
auto
*
ad_meta
=
nullable_autograd_meta
(
t
);
if
(
ad_meta
&&
!
(
ad_meta
->
GetMutableGradNode
().
get
()))
{
return
GradNodeStr
((
*
ad_meta
->
GetMutableGradNode
().
get
()));
}
else
{
return
"None"
;
}
}
static
const
std
::
string
TensorStr
(
const
std
::
vector
<
paddle
::
experimental
::
Tensor
>&
tensors
)
{
std
::
string
tensors_str
=
""
;
for
(
const
auto
&
tensor
:
tensors
)
{
tensors_str
+=
TensorStr
(
tensor
)
+
", "
;
}
return
"[ "
+
tensors_str
+
" ]"
;
}
static
const
std
::
string
TensorStr
(
const
paddle
::
optional
<
paddle
::
experimental
::
Tensor
>&
t
)
{
if
(
!
t
.
is_initialized
())
{
return
"{ UnDefinedTensor }"
;
}
else
{
return
TensorStr
((
*
t
.
get_ptr
()));
}
}
static
const
std
::
string
TensorStr
(
const
paddle
::
optional
<
std
::
vector
<
paddle
::
experimental
::
Tensor
>>&
tensors
)
{
std
::
string
tensors_str
=
""
;
if
(
!
tensors
.
is_initialized
())
{
return
"[ UnDefinedTensor List ]"
;
}
else
{
for
(
const
auto
&
tensor
:
(
*
tensors
.
get_ptr
()))
{
tensors_str
+=
TensorStr
(
tensor
)
+
", "
;
}
return
"[ "
+
tensors_str
+
" ]"
;
}
}
};
}
// namespace egr
paddle/fluid/pybind/eager_custom_python_api.h
浏览文件 @
54a43981
...
...
@@ -30,13 +30,13 @@ static PyObject *eager_api_linear(PyObject *self,
auto
bias
=
GetTensorFromArgs
(
"linear"
,
"Bias"
,
args
,
2
,
true
);
tstate
=
PyEval_SaveThread
();
if
(
bias
.
initialized
())
{
auto
mm_out
=
matmul_
dygraph_function
(
x
,
weight
,
false
,
false
);
auto
out
=
add_
dygraph_function
(
mm_out
,
bias
);
auto
mm_out
=
matmul_
ad_func
(
x
,
weight
,
false
,
false
);
auto
out
=
add_
ad_func
(
mm_out
,
bias
);
PyEval_RestoreThread
(
tstate
);
tstate
=
nullptr
;
return
ToPyObject
(
out
);
}
else
{
auto
mm_out
=
matmul_
dygraph_function
(
x
,
weight
,
false
,
false
);
auto
mm_out
=
matmul_
ad_func
(
x
,
weight
,
false
,
false
);
PyEval_RestoreThread
(
tstate
);
tstate
=
nullptr
;
return
ToPyObject
(
mm_out
);
...
...
paddle/fluid/pybind/eager_legacy_custom_python_api.h
浏览文件 @
54a43981
...
...
@@ -38,7 +38,7 @@ static PyObject *eager_api_run_program(PyObject *self,
"run_program"
,
args
,
6
,
PyTuple_GET_SIZE
(
args
),
attrs
);
tstate
=
PyEval_SaveThread
();
run_program_
dygraph_function
(
X
,
Params
,
Out
,
OutScope
,
DOut
,
attrs
);
run_program_
ad_func
(
X
,
Params
,
Out
,
OutScope
,
DOut
,
attrs
);
PyEval_RestoreThread
(
tstate
);
tstate
=
nullptr
;
Py_RETURN_NONE
;
...
...
paddle/fluid/pybind/eager_method.cc
浏览文件 @
54a43981
...
...
@@ -808,14 +808,14 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
decrease_axis
.
end
());
if
(
op_type
==
"slice"
)
{
out
=
slice_
dygraph_function
(
self
->
tensor
,
out
=
slice_
ad_func
(
self
->
tensor
,
slice_axes_tmp
,
slice_starts
,
slice_ends
,
infer_flags_tmp
,
decrease_axis_tmp
);
}
else
if
(
op_type
==
"strided_slice"
)
{
out
=
strided_slice_
dygraph_function
(
out
=
strided_slice_
ad_func
(
self
->
tensor
,
slice_axes
,
slice_starts
,
slice_ends
,
slice_strides
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
...
...
@@ -854,7 +854,7 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
}
paddle
::
experimental
::
Tensor
new_out
;
new_out
=
unsqueeze_
dygraph_function
(
out
,
none_axes
);
new_out
=
unsqueeze_
ad_func
(
out
,
none_axes
);
return
ToPyObject
(
new_out
);
}
}
...
...
@@ -870,7 +870,7 @@ static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
paddle
::
framework
::
TensorFromVector
(
list_select_idxs
,
*
dev_ctx
,
idx_tensor
.
get
());
framework
::
AttributeMap
attrs
=
{{
"dim"
,
0
}};
out
=
index_select_
dygraph_function
(
self
->
tensor
,
select_index
,
0
);
out
=
index_select_
ad_func
(
self
->
tensor
,
select_index
,
0
);
}
return
ToPyObject
(
out
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录