diff --git a/CMakeLists.txt b/CMakeLists.txt index b174831109372cb014741d63032fa6a470e74042..c7d743e193e7d32dbc0b56f3bcb05b6c61f85f1d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -36,8 +36,8 @@ include(simd) ################################ Configurations ####################################### option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) -option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND}) -option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND}) +option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF) +option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) diff --git a/cmake/generic.cmake b/cmake/generic.cmake index 534be0abe246ac70950d85ad05441825c8ca768a..41b9b5928958ae31799c396a8d77fd7cff557905 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -187,7 +187,13 @@ function(cc_library TARGET_NAME) endif() # cpplint code style - add_style_check_target(${TARGET_NAME} ${cc_library_SRCS}) + foreach(source_file ${cc_library_SRCS}) + string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file}) + if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) + list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) + endif() + endforeach() + add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS}) else(cc_library_SRCS) if (cc_library_DEPS) @@ -239,6 +245,14 @@ function(nv_library TARGET_NAME) add_dependencies(${TARGET_NAME} ${nv_library_DEPS}) target_link_libraries(${TARGET_NAME} ${nv_library_DEPS}) endif() + # cpplint code style + foreach(source_file ${nv_library_SRCS}) + string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file}) + if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) + list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) + endif() + endforeach() + add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS}) else(nv_library_SRCS) if (nv_library_DEPS) merge_static_libs(${TARGET_NAME} ${nv_library_DEPS}) diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index 4b06966fba2bc9f92756be0cb8110bbcd5272423..f8a88cf317aee6c5dd25e4cc25d588c6c50fcbce 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -15,7 +15,6 @@ if(Boost_FOUND) add_subdirectory(platform) add_subdirectory(framework) add_subdirectory(operators) - add_subdirectory(pybind) endif() if(WITH_C_API) diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 12a3a00bba35d476fca9c9fb47ac20b87e6f53f2..9c39430835d37d5dfbe4031f29e5a6216ed8b67f 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -31,8 +31,14 @@ py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) -cc_library(net SRCS net.cc DEPS op_registry) -cc_test(net_op_test SRCS net_op_test.cc DEPS net) - -cc_library(backward SRCS backward.cc DEPS net) +cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward) +cc_library(paddle_pybind SHARED + SRCS pybind.cc + DEPS pybind python backward + fc_op + sgd_op + add_op + mean_op + cross_entropy_op + recurrent_op) diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index e784bb2b7d7ddd087a75371e508840e15c952473..c034e265fe4837ca22ab969b0e6952677904e05c 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -14,8 +14,8 @@ #include "paddle/framework/backward.h" #include -#include "paddle/framework/net.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/net_op.h" namespace paddle { namespace framework { @@ -32,7 +32,7 @@ static bool AllInSet(const std::vector& names, } static std::shared_ptr NOP() { - auto net_op = std::make_shared(); + auto net_op = std::make_shared(); net_op->type_ = "@NOP@"; net_op->CompleteAddOp(); return net_op; @@ -42,9 +42,9 @@ static std::shared_ptr NOP() { // // no_grad_names the gradient variable names without gradient calculating. // -// uniq_id is a unique index used inside recursively calling BackwardRecursive. -// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through -// recursive calling. +// uniq_id is a unique index used inside recursively calling +// BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and +// pass `uniq_id` through recursive calling. // // returns The backward operator. For simple situation, it is a simple // operator. For complex situation, it is a NetOp. @@ -64,8 +64,8 @@ std::shared_ptr BackwardRecursive( return NOP(); } - // All output gradients of forwarding operator do not need to calculate. Then - // all input gradients cannot be computed at all, and we put them into + // All output gradients of forwarding operator do not need to calculate. + // Then all input gradients cannot be computed at all, and we put them into // `no_grad_names` set. Return an NOP. if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(), no_grad_names)) { @@ -77,14 +77,14 @@ std::shared_ptr BackwardRecursive( } // Returned gradient network - auto net = std::make_shared(); + auto net = std::make_shared(); if (forwardOp.IsNetOp()) { // Because forwardOp is a net op, it can static_cast. - auto& forwardNet = static_cast(forwardOp); + auto& forwardNet = static_cast(forwardOp); - // Map from output gradient variable name to operator's indices in backward - // net. That operator generates that variable. + // Map from output gradient variable name to operator's indices in + // backward net. That operator generates that variable. std::unordered_map> dup_output_ops; size_t local_op_id = 0; diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index b095c2c3d5dbf21b5ea70e17475a4aaad9b1db44..8f437e68041188831a17217099e0b0c96432cda4 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -15,8 +15,9 @@ #include "paddle/framework/backward.h" #include -#include "paddle/framework/net.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/net_op.h" +#include "paddle/operators/type_alias.h" namespace paddle { namespace framework { @@ -70,7 +71,7 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { } }; -class FcOp : public NetOp { +class FcOp : public ops::NetOp { public: void Init() override { AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, @@ -161,8 +162,8 @@ TEST(Backward, simple_op_grad) { auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); ASSERT_NE(fwd, nullptr); auto gop = f::OpRegistry::CreateGradOp(*fwd); - ASSERT_EQ(1UL, gop->inputs_.size()); - ASSERT_EQ("Out" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->inputs_[0]); + ASSERT_EQ(4UL, gop->inputs_.size()); + ASSERT_EQ(f::OperatorBase::EMPTY_VAR_NAME(), gop->inputs_[0]); ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]); ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]); @@ -182,7 +183,8 @@ TEST(Backward, simple_op_not_need_grad) { auto no_input_gop = f::Backward(*fwd, {"X", "b"}); ASSERT_NE(no_input_gop, nullptr); ASSERT_TRUE(no_input_gop->IsNetOp()); - ASSERT_EQ(0UL, std::static_pointer_cast(no_input_gop)->ops_.size()); + ASSERT_EQ(0UL, + std::static_pointer_cast(no_input_gop)->ops_.size()); } TEST(Backward, net_fc_backward_normal) { @@ -191,7 +193,7 @@ TEST(Backward, net_fc_backward_normal) { ASSERT_NE(fwd, nullptr); std::shared_ptr gop = f::Backward(*fwd, {}); ASSERT_TRUE(gop->IsNetOp()); - auto net = static_cast(gop.get()); + auto net = static_cast(gop.get()); ASSERT_NO_THROW(net->DebugString()); @@ -214,7 +216,7 @@ TEST(Backward, net_fc_backward_not_have_b) { ASSERT_NE(fwd, nullptr); std::shared_ptr gop = f::Backward(*fwd, {}); ASSERT_TRUE(gop->IsNetOp()); - auto net = static_cast(gop.get()); + auto net = static_cast(gop.get()); ASSERT_NO_THROW(net->DebugString()); @@ -228,7 +230,7 @@ TEST(Backward, net_fc_backward_not_have_b) { } TEST(Backward, net_input_of_network_not_need_grad) { - f::NetOp net; + ops::NetOp net; net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"}, {"mul_tmp_0", "add_tmp_0", "hidden0"}, {})); net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"}, @@ -236,7 +238,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { net.CompleteAddOp(); auto bwd = Backward(net, {"X"}); // X@GRAD is not need. ASSERT_TRUE(bwd->IsNetOp()); - auto bwd_net = static_cast(bwd.get()); + auto bwd_net = static_cast(bwd.get()); std::unordered_set all_output = std::unordered_set( bwd_net->outputs_.begin(), bwd_net->outputs_.end()); @@ -253,7 +255,7 @@ TEST(Backward, net_input_of_network_not_need_grad) { ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); - auto first_fc_grad = static_cast(bwd_net->ops_[1].get()); + auto first_fc_grad = static_cast(bwd_net->ops_[1].get()); ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ( f::OperatorBase::EMPTY_VAR_NAME(), @@ -261,14 +263,14 @@ TEST(Backward, net_input_of_network_not_need_grad) { } TEST(Backward, net_shared_weight) { - f::NetOp net; + ops::NetOp net; net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {})); net.CompleteAddOp(); auto bwd = f::Backward(net, {}); ASSERT_TRUE(bwd->IsNetOp()); - auto bwd_net = static_cast(bwd.get()); + auto bwd_net = static_cast(bwd.get()); ASSERT_EQ(3UL, bwd_net->ops_.size()); ASSERT_EQ("add", bwd_net->ops_[2]->type_); } @@ -285,7 +287,7 @@ TEST(Backward, op_all_input_are_not_need) { auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto backward = f::Backward(*fwd, {"X", "b"}); ASSERT_TRUE(backward->IsNetOp()); - auto net = static_cast(backward.get()); + auto net = static_cast(backward.get()); ASSERT_TRUE(net->ops_.empty()); } @@ -293,7 +295,7 @@ TEST(Backward, op_all_output_are_not_need) { auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto backward = f::Backward(*fwd, {"Out"}); ASSERT_TRUE(backward->IsNetOp()); - auto net = static_cast(backward.get()); + auto net = static_cast(backward.get()); ASSERT_TRUE(net->ops_.empty()); } @@ -301,7 +303,7 @@ TEST(Backward, op_part_of_output_are_not_need) { auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {}); auto backward = f::Backward(*fwd, {"Z"}); ASSERT_TRUE(backward->IsNetOp()); - auto net = static_cast(backward.get()); + auto net = static_cast(backward.get()); ASSERT_EQ(net->ops_.size(), 2UL); auto &fill_zero = *net->ops_[0]; @@ -341,7 +343,7 @@ TEST(Backward, op_part_of_input_are_not_need) { } TEST(Backward, linear_net_intermediate_variable_has_no_grad) { - f::NetOp net; + ops::NetOp net; net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"}, {"mul_out1", "add_out1", "out1"}, {})); net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"}, @@ -351,14 +353,13 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { net.CompleteAddOp(); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); ASSERT_TRUE(backward->IsNetOp()); - auto bwd_net = static_cast(backward.get()); + auto bwd_net = static_cast(backward.get()); ASSERT_EQ(bwd_net->ops_.size(), 3UL); auto &grad_fc = *bwd_net->ops_[0]; EXPECT_EQ(grad_fc.inputs_.size(), 3UL /* external input number */ + 1UL /* external output number*/ + 1UL /* number of gradient of external output*/ - - 1UL /*ignoreGradient varable number*/ + 2U /* internal variable number*/); EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/ + 2UL /* input number of rowwise_add */ diff --git a/paddle/framework/ddim.h b/paddle/framework/ddim.h index 9fcc657edcd5459d0a42a64d708603a4bcd53cf0..5aa5af0c19be5a209c760282cb1a090fc57a53ad 100644 --- a/paddle/framework/ddim.h +++ b/paddle/framework/ddim.h @@ -25,18 +25,15 @@ limitations under the License. */ namespace paddle { namespace framework { -namespace { -typedef boost::variant, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>, - Dim<8>, Dim<9>> - DDimVar; -} - /** * \brief A dynamically sized dimension. * * The number of dimensions must be between [1, 9]. */ struct DDim { + typedef boost::variant, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>, + Dim<8>, Dim<9>> + DDimVar; DDimVar var; DDim() : var(Dim<1>()) {} diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index dd686cc78246f06cdc3ec7d013086863d7e8fac0..ea5e939c6e26514c2f3c515da5581b29103f75b6 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -8,107 +8,97 @@ You may obtain a copy of the License at Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ +WITHOpArgType::OUT WARRANTIES OR CONDITIONS OF ANY KOpArgType::IND, either +express or implied. See the License for the specific language governing +permissions and limitations under the License. */ #include "paddle/framework/grad_op_builder.h" +#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace framework { -OperatorBase* GradOpBuilder::Build() { - BuildOpInOutArgList(); - std::string grad_op_type = OpRegistry::grad_ops().at(op_.type_); - OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)(); - grad_op->type_ = grad_op_type; - CompleteGradOp(grad_op); - return grad_op; -} +class OpRegistry; + +using VarIndexMap = std::unordered_map; -OpInOutArg* GradOpBuilder::BuildArg(const VarProto& var, - const VarIndexMap& var_map, - const std::vector& format, - InOutType type) { - int idx = var_map.at(var.name()); - int begin_idx = format.empty() ? idx : format.at(idx); - int end_idx = format.empty() ? idx + 1 : format.at(idx + 1); - return new OpInOutArg(var.name(), type, !var.ignore_gradient(), begin_idx, - end_idx); +enum class OpArgType { IN, OUT }; + +static std::vector* GetOpFormat(OperatorBase* op, const OpArgType& type) { + std::string key = type == OpArgType::IN ? "input_format" : "output_format"; + return op->attrs_.count(key) + ? &boost::get>(op->attrs_.at(key)) + : nullptr; } -void GradOpBuilder::BuildOpInOutArgList() { - const OpProto& op_proto = OpRegistry::protos().at(op_.type_); - const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_.type_)); - const std::vector& in_format = - op_.attrs_.count("input_format") - ? op_.GetAttr>("input_format") - : std::vector(); - const std::vector& out_format = - op_.attrs_.count("output_format") - ? op_.GetAttr>("output_format") - : std::vector(); - for (const auto& var : op_proto.inputs()) { - arg_list_.emplace_back( - std::shared_ptr(BuildArg(var, var_map, in_format, IN))); - } - for (const auto& var : op_proto.outputs()) { - arg_list_.emplace_back( - std::shared_ptr(BuildArg(var, var_map, out_format, OUT))); - } +static const std::vector* GetOpFormat(const OperatorBase* op, + const OpArgType& type) { + std::string key = type == OpArgType::IN ? "input_format" : "output_format"; + return op->attrs_.count(key) + ? &boost::get>(op->attrs_.at(key)) + : nullptr; } -void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg, - std::vector& in_out, - std::vector& format, - VarIndexMap* varmap, int& idx, - bool is_grad) const { - std::string var_name = arg->proto_name_; - if (is_grad) { - var_name += OperatorBase::GRAD_VAR_SUFFIX(); - } - (*varmap)[var_name] = idx++; - size_t pre_sz = in_out.size(); - auto base_it = arg->type_ == IN ? op_.inputs_.begin() : op_.outputs_.begin(); - std::copy(base_it + arg->begin_idx_, base_it + arg->end_idx_, - std::back_inserter(in_out)); - if (is_grad) { - for (size_t i = pre_sz; i < in_out.size(); ++i) { - in_out[i] += OperatorBase::GRAD_VAR_SUFFIX(); +static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op, + const OpArgType& src_type, const OpArgType& dst_type, + int& idx, bool is_grad) { + const std::vector& src_inout = + src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; + const std::vector* src_format = GetOpFormat(src_op, src_type); + + std::vector& dst_inout = + dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_; + std::vector* dst_format = GetOpFormat(dst_op, dst_type); + const OpProto& proto = OpRegistry::protos().at(src_op->type_); + const auto& src_arg_list = + src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); + + for (const auto& arg : src_arg_list) { + std::string src_name = arg.name(); + std::string dst_name = + is_grad ? src_name + OperatorBase::GRAD_VAR_SUFFIX() : src_name; + (*dst_op->in_out_idxs_)[dst_name] = idx++; + int src_arg_idx = src_op->in_out_idxs_->at(src_name); + int src_begin = + src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx); + int src_end = src_format == nullptr ? src_arg_idx + 1 + : src_format->at(src_arg_idx + 1); + for (int i = src_begin; i < src_end; ++i) { + std::string s = is_grad ? src_inout[i] + OperatorBase::GRAD_VAR_SUFFIX() + : arg.ignore_gradient() + ? OperatorBase::EMPTY_VAR_NAME() + : src_inout[i]; + dst_inout.emplace_back(s); + } + if (dst_format != nullptr) { + dst_format->push_back(dst_inout.size()); } } - format.push_back(in_out.size()); } -void GradOpBuilder::CompleteGradOp(OperatorBase* grad_op) const { - grad_op->attrs_ = op_.attrs_; +OperatorBase* BuildGradOp(const OperatorBase* op) { + std::string grad_op_type = OpRegistry::grad_ops().at(op->type_); + OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)(); + grad_op->type_ = grad_op_type; + grad_op->attrs_ = op->attrs_; grad_op->attrs_.erase("input_format"); grad_op->attrs_.erase("output_format"); - VarIndexMap* grad_varmap = new VarIndexMap(); + if (GetOpFormat(op, OpArgType::IN) != nullptr) { + grad_op->attrs_["output_format"] = std::vector({0}); + } + if (GetOpFormat(op, OpArgType::IN) != nullptr || + GetOpFormat(op, OpArgType::OUT) != nullptr) { + grad_op->attrs_["input_format"] = std::vector({0}); + } + grad_op->in_out_idxs_.reset(new VarIndexMap()); int in_idx = 0; int out_idx = 0; - std::vector in_format({0}); - std::vector out_format({0}); - for (const auto& arg : arg_list_) { - // op_'s inputs_ and outputs_ - if (arg->needed_in_grad_) { - AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap, - in_idx, false); - } - if (arg->type_ == IN) { - // gradients of op_'s inputs_ - AddArgIntoGradOp(arg.get(), grad_op->outputs_, out_format, grad_varmap, - out_idx, true); - } else { - // gradients of op_'s outputs_ - AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap, - in_idx, true); - } - } - grad_op->attrs_["input_format"] = in_format; - grad_op->attrs_["output_format"] = out_format; - grad_op->in_out_idxs_.reset(grad_varmap); + TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I + TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G + TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG + TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG + return grad_op; } } // namespace framework diff --git a/paddle/framework/grad_op_builder.h b/paddle/framework/grad_op_builder.h index cc7a76f3726e00a08fbe06bca4c9b9f5bad466b4..998f8ebbb5f2f4fb8b7e938b5916afd0f8a7930d 100644 --- a/paddle/framework/grad_op_builder.h +++ b/paddle/framework/grad_op_builder.h @@ -1,48 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + #pragma once -#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/operator.h" namespace paddle { namespace framework { -class OpRegistry; - -enum InOutType { IN, OUT }; - -struct OpInOutArg { - OpInOutArg(const std::string& proto_name, const InOutType& type, - bool needed_in_grad, size_t begin_idx, size_t end_idx) - : proto_name_(proto_name), - type_(type), - needed_in_grad_(needed_in_grad), - begin_idx_(begin_idx), - end_idx_(end_idx) {} - - std::string proto_name_; - InOutType type_; - bool needed_in_grad_; - size_t begin_idx_; - size_t end_idx_; -}; - -class GradOpBuilder { - using VarIndexMap = std::unordered_map; - - public: - GradOpBuilder(const OperatorBase& op) : op_(op) {} - OperatorBase* Build(); - - private: - OpInOutArg* BuildArg(const VarProto& var, const VarIndexMap& var_map, - const std::vector& format, InOutType type); - void BuildOpInOutArgList(); - void AddArgIntoGradOp(const OpInOutArg* arg, std::vector& in_out, - std::vector& format, VarIndexMap* varmap, int& idx, - bool is_grad) const; - void CompleteGradOp(OperatorBase* grad_op) const; - const OperatorBase& op_; - std::vector> arg_list_; -}; + +OperatorBase* BuildGradOp(const OperatorBase* op); } // namespace framework } // namespace paddle diff --git a/paddle/framework/grad_op_builder_test.cc b/paddle/framework/grad_op_builder_test.cc index e9cf3b9798db2cbfb8d26259ae9a6741fbae8278..96d7f309d67b15c000ab8ce3769931322fbca880 100644 --- a/paddle/framework/grad_op_builder_test.cc +++ b/paddle/framework/grad_op_builder_test.cc @@ -8,10 +8,49 @@ USE_OP(add_two); namespace paddle { namespace framework { +class NOP : public OperatorBase { + public: + void InferShape(const Scope &scope) const override {} + void Run(const Scope &scope, + const platform::DeviceContext &dev_ctx) const override {} +}; + +class MutiInOutOpMaker : public OpProtoAndCheckerMaker { + public: + MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("In1", "a single input"); + AddInput("In2_mult", "a multiple input").SetMultiple(); + AddInput("In3", "another single input"); + AddOutput("Out1", "a single output"); + AddOutput("Out2_mult", "a multiple output").SetMultiple(); + AddComment("test op with multiple inputs and outputs"); + } +}; + +class IOIgnoredOpMaker : public OpProtoAndCheckerMaker { + public: + IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("In1", "a single input"); + AddInput("In2_mult", "a multiple input").SetMultiple().IgnoreGradient(); + AddInput("In3_mult", "another multiple input").SetMultiple(); + AddOutput("Out1_mult", "a multiple output").SetMultiple(); + AddOutput("Out2", "a single output").IgnoreGradient(); + AddComment("op with inputs and outputs ignored in gradient calculating"); + } +}; + +} // namespace framework +} // namespace paddle + +namespace f = paddle::framework; + TEST(GradOpBuilder, AddTwo) { - std::shared_ptr add_op( - OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); - std::shared_ptr grad_add_op = OpRegistry::CreateGradOp(*add_op); + std::shared_ptr add_op( + f::OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); + std::shared_ptr grad_add_op = + f::OpRegistry::CreateGradOp(*add_op); EXPECT_EQ(static_cast(grad_add_op->inputs_.size()), 4); EXPECT_EQ(static_cast(grad_add_op->outputs_.size()), 2); EXPECT_EQ(grad_add_op->Input("X"), "x"); @@ -22,5 +61,85 @@ TEST(GradOpBuilder, AddTwo) { EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); } -} // namespace framework -} // namespace paddle \ No newline at end of file +REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker); +REGISTER_GRADIENT_OP(mult_io, mult_io_grad, f::NOP); +REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker); +REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP); + +TEST(GradOpBuilder, MutiInOut) { + f::AttributeMap attrs{{"input_format", std::vector{0, 1, 4, 5}}, + {"output_format", std::vector{0, 1, 3}}}; + std::shared_ptr test_op(f::OpRegistry::CreateOp( + "mult_io", {"in1", "in2_1", "in2_2", "in2_3", "in3"}, + {"out1", "out2_1", "out2_2"}, attrs)); + std::shared_ptr grad_test_op = + f::OpRegistry::CreateGradOp(*test_op); + + ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); + EXPECT_EQ(grad_test_op->Input("In1"), "in1"); + EXPECT_EQ(grad_test_op->Inputs("In2_mult"), + std::vector({"in2_1", "in2_2", "in2_3"})); + EXPECT_EQ(grad_test_op->Input("In3"), "in3"); + EXPECT_EQ(grad_test_op->Input("Out1"), "out1"); + EXPECT_EQ(grad_test_op->Inputs("Out2_mult"), + std::vector({"out2_1", "out2_2"})); + EXPECT_EQ(grad_test_op->Input("Out1" + f::OperatorBase::GRAD_VAR_SUFFIX()), + "out1" + f::OperatorBase::GRAD_VAR_SUFFIX()); + EXPECT_EQ( + grad_test_op->Inputs("Out2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), + std::vector( + {"out2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), + "out2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()})); + + ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); + EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()), + "in1" + f::OperatorBase::GRAD_VAR_SUFFIX()); + EXPECT_EQ( + grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), + std::vector({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), + "in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX(), + "in2_3" + f::OperatorBase::GRAD_VAR_SUFFIX()})); + EXPECT_EQ(grad_test_op->Output("In3" + f::OperatorBase::GRAD_VAR_SUFFIX()), + "in3" + f::OperatorBase::GRAD_VAR_SUFFIX()); +} + +TEST(GradOpBuilder, IOIgnoredInGradient) { + f::AttributeMap attrs{{"input_format", std::vector{0, 1, 3, 5}}, + {"output_format", std::vector{0, 2, 3}}}; + std::shared_ptr test_op(f::OpRegistry::CreateOp( + "io_ignored", {"in1", "in2_1", "in2_2", "in3_1", "in3_2"}, + {"out1_1", "out1_2", "out2"}, attrs)); + std::shared_ptr grad_test_op = + f::OpRegistry::CreateGradOp(*test_op); + + // 'In2' and 'Out2' are ignored in gradient calculating + ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); + EXPECT_EQ(grad_test_op->Input("In1"), "in1"); + EXPECT_EQ(grad_test_op->Inputs("In2_mult"), + std::vector({f::OperatorBase::EMPTY_VAR_NAME(), + f::OperatorBase::EMPTY_VAR_NAME()})); + EXPECT_EQ(grad_test_op->Inputs("In3_mult"), + std::vector({"in3_1", "in3_2"})); + EXPECT_EQ(grad_test_op->Inputs("Out1_mult"), + std::vector({"out1_1", "out1_2"})); + EXPECT_EQ(grad_test_op->Input("Out2"), f::OperatorBase::EMPTY_VAR_NAME()); + EXPECT_EQ( + grad_test_op->Inputs("Out1_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), + std::vector( + {"out1_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), + "out1_2" + f::OperatorBase::GRAD_VAR_SUFFIX()})); + EXPECT_EQ(grad_test_op->Input("Out2" + f::OperatorBase::GRAD_VAR_SUFFIX()), + "out2" + f::OperatorBase::GRAD_VAR_SUFFIX()); + + ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); + EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()), + "in1" + f::OperatorBase::GRAD_VAR_SUFFIX()); + EXPECT_EQ( + grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), + std::vector({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), + "in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()})); + EXPECT_EQ( + grad_test_op->Outputs("In3_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), + std::vector({"in3_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), + "in3_2" + f::OperatorBase::GRAD_VAR_SUFFIX()})); +} diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 3e72e391266066de9e4114e68b43b066c15254db..1af894612c526fd57b5b6f1d26d934aac27493a9 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -306,8 +306,7 @@ class OpRegistry { static std::shared_ptr CreateGradOp(const OperatorBase& op) { PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); - GradOpBuilder builder(op); - std::shared_ptr grad_op(builder.Build()); + std::shared_ptr grad_op(BuildGradOp(&op)); grad_op->Init(); return grad_op; } @@ -315,7 +314,7 @@ class OpRegistry { static std::unordered_map& protos() { static std::unordered_map protos_; return protos_; - }; + } static std::unordered_map& grad_ops() { static std::unordered_map grad_ops_; @@ -337,7 +336,7 @@ class OpRegistry { static std::unordered_map& op_checkers() { static std::unordered_map op_checkers_; return op_checkers_; - }; + } static void GenerateTempVariableName(OperatorBase* op) { static std::atomic gUniqId(0UL); @@ -354,7 +353,7 @@ class OpRegistry { template class OpRegisterHelper { public: - OpRegisterHelper(const char* op_type) { + explicit OpRegisterHelper(const char* op_type) { OpRegistry::RegisterOp(op_type); } }; diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 55435103489ace11868eed61c38018d8ba357e65..fbf9113e5677080e6573ba3ff1e1deb36a2889e9 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -55,6 +55,10 @@ class OperatorBase { /// e.g. Variable "x@GRAD" is the gradient of varibale "x". static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; } + static std::string GRAD_VAR_NAME(const std::string& name) { + return name + GRAD_VAR_SUFFIX(); + } + /// Variables with this suffix are supposed to be filled up with zeros. static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; } @@ -280,7 +284,7 @@ class OperatorWithKernel : public OperatorBase { platform::Place place_; OpKernelKey() = default; - OpKernelKey(const platform::DeviceContext& dev_ctx) { + explicit OpKernelKey(const platform::DeviceContext& dev_ctx) { place_ = dev_ctx.GetPlace(); } diff --git a/paddle/pybind/pybind.cc b/paddle/framework/pybind.cc similarity index 59% rename from paddle/pybind/pybind.cc rename to paddle/framework/pybind.cc index 40ff164497f627c0b562b6d33bfb4bec590e4c85..b9889e483e27e9dad3310a34b5306f073ad1887d 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/framework/pybind.cc @@ -4,7 +4,7 @@ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 +http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, @@ -17,19 +17,19 @@ limitations under the License. */ #include #include "paddle/framework/backward.h" -#include "paddle/framework/net.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" #include "paddle/framework/scope.h" +#include "paddle/framework/tensor_py.h" +#include "paddle/operators/net_op.h" +#include "paddle/operators/type_alias.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" -#include "paddle/pybind/tensor_bind.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" #include "pybind11/stl.h" namespace py = pybind11; -namespace pd = paddle::framework; USE_OP(add_two); USE_OP(onehot_cross_entropy); @@ -41,17 +41,18 @@ USE_OP(sigmoid); USE_OP(softmax); USE_OP(rowwise_add); USE_OP_WITHOUT_KERNEL(recurrent_op); - +namespace paddle { +namespace framework { template -void ExposeOperator(ClassType& m) { +void ExposeOperator(ClassType &m) { m.def("infer_shape", &ClassType::type::InferShape) .def("run", &ClassType::type::Run) .def("type", - [](const typename ClassType::type& op) -> std::string { + [](const typename ClassType::type &op) -> std::string { return op.type_; }) .def("outputs", - [](const typename ClassType::type& op) -> std::vector { + [](const typename ClassType::type &op) -> std::vector { return op.outputs_; }) .def("__str__", &ClassType::type::DebugString); @@ -73,80 +74,81 @@ bool IsCompileGPU() { PYBIND11_PLUGIN(core) { py::module m("core", "C++ core of PaddlePaddle"); - py::class_(m, "Tensor", py::buffer_protocol()) - .def_buffer([](pd::Tensor& self) -> py::buffer_info { - return paddle::pybind::CastToPyBuffer(self); - }) + py::class_(m, "Tensor", py::buffer_protocol()) + .def_buffer( + [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); }) .def("get_dims", - [](const pd::Tensor& self) { return pd::vectorize(self.dims()); }) + [](const Tensor &self) { return vectorize(self.dims()); }) .def("set_dims", - [](pd::Tensor& self, const std::vector& dim) { - self.Resize(pd::make_ddim(dim)); + [](Tensor &self, const std::vector &dim) { + self.Resize(make_ddim(dim)); }) .def("alloc_float", - [](pd::Tensor& self, paddle::platform::GPUPlace& place) { + [](Tensor &self, paddle::platform::GPUPlace &place) { self.mutable_data(place); }) .def("alloc_float", - [](pd::Tensor& self, paddle::platform::CPUPlace& place) { + [](Tensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("alloc_int", - [](pd::Tensor& self, paddle::platform::CPUPlace& place) { + [](Tensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("alloc_int", - [](pd::Tensor& self, paddle::platform::GPUPlace& place) { + [](Tensor &self, paddle::platform::GPUPlace &place) { self.mutable_data(place); }) - .def("set", paddle::pybind::PyCPUTensorSetFromArray) - .def("set", paddle::pybind::PyCPUTensorSetFromArray) + .def("set", PyCPUTensorSetFromArray) + .def("set", PyCPUTensorSetFromArray) #ifndef PADDLE_ONLY_CPU - .def("set", paddle::pybind::PyCUDATensorSetFromArray) - .def("set", paddle::pybind::PyCUDATensorSetFromArray) + .def("set", PyCUDATensorSetFromArray) + .def("set", PyCUDATensorSetFromArray) #endif - .def("shape", - [](pd::Tensor& self) { return pd::vectorize(self.dims()); }); + .def("shape", [](Tensor &self) { return vectorize(self.dims()); }) + .def("set_float_element", + [](Tensor &self, size_t offset, float f) { + // TODO(yuyang18): Only support GPU now. + self.data()[offset] = f; + }) + .def("get_float_element", [](Tensor &self, size_t offset) -> float { + // TODO(yuyang18): Only support GPU now. + return self.data()[offset]; + }); - py::class_(m, "Variable", R"DOC(Variable Class. + py::class_(m, "Variable", R"DOC(Variable Class. All parameter, weight, gradient are variables in Paddle. )DOC") - .def("is_int", [](const pd::Variable& var) { return var.IsType(); }) + .def("is_int", [](const Variable &var) { return var.IsType(); }) .def("set_int", - [](pd::Variable& var, int val) -> void { - *var.GetMutable() = val; - }) - .def("get_int", - [](const pd::Variable& var) -> int { return var.Get(); }) + [](Variable &var, int val) -> void { *var.GetMutable() = val; }) + .def("get_int", [](const Variable &var) -> int { return var.Get(); }) .def("get_tensor", - [](pd::Variable& self) -> pd::Tensor* { - return self.GetMutable(); - }, + [](Variable &self) -> Tensor * { return self.GetMutable(); }, py::return_value_policy::reference) .def("get_net", - [](pd::Variable& self) -> pd::NetOp* { - return self.GetMutable(); + [](Variable &self) -> ops::NetOp * { + return self.GetMutable(); }, py::return_value_policy::reference); - py::class_(m, "Scope", "") + py::class_(m, "Scope", "") .def("new_var", - [](pd::Scope& self, const std::string& name) -> pd::Variable* { + [](Scope &self, const std::string &name) -> Variable * { return self.NewVar(name); }, py::return_value_policy::reference) - .def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference) + .def("find_var", &Scope::FindVar, py::return_value_policy::reference) .def(py::init<>()) - .def("new_scope", - [](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); }, + .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); }, py::return_value_policy::reference) - .def("drop_kids", &pd::Scope::DropKids); + .def("drop_kids", &Scope::DropKids); //! @note: Be careful! PyBind will return std::string as an unicode, not //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { - auto& protos = pd::OpRegistry::protos(); + auto &protos = OpRegistry::protos(); std::vector ret_values; for (auto it = protos.begin(); it != protos.end(); ++it) { PADDLE_ENFORCE(it->second.IsInitialized(), @@ -161,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle. m.def_submodule( "var_names", "The module will return special predefined variable name in Paddle") - .def("empty", pd::OperatorBase::EMPTY_VAR_NAME) - .def("temp", pd::OperatorBase::TMP_VAR_NAME); + .def("empty", OperatorBase::EMPTY_VAR_NAME) + .def("temp", OperatorBase::TMP_VAR_NAME); // clang-format off py::class_(m, "DeviceContext") .def_static("create", @@ -185,43 +187,45 @@ All parameter, weight, gradient are variables in Paddle. py::class_(m, "CPUPlace").def(py::init<>()); - py::class_> operator_base( + py::class_> operator_base( m, "Operator"); operator_base.def_static("create", [](py::bytes protobin) { - pd::OpDesc desc; + OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), "User OpDesc is not initialized, reason %s", desc.InitializationErrorString()); - return pd::OpRegistry::CreateOp(desc); + return OpRegistry::CreateOp(desc); }); operator_base.def("backward", - [](const pd::OperatorBase& forwardOp, - const std::unordered_set& no_grad_vars) { - return pd::Backward(forwardOp, no_grad_vars); + [](const OperatorBase &forwardOp, + const std::unordered_set &no_grad_vars) { + return Backward(forwardOp, no_grad_vars); }); ExposeOperator(operator_base); - py::class_> net(m, "Net"); + py::class_> net(m, "Net"); net.def_static("create", - []() -> std::shared_ptr { - auto retv = std::make_shared(); + []() -> std::shared_ptr { + auto retv = std::make_shared(); retv->type_ = "plain_net"; return retv; }) - .def("add_op", &pd::NetOp::AddOp) - .def("add_op", - [](pd::NetOp& self, const std::shared_ptr& net) -> void { - self.AddOp(std::static_pointer_cast(net)); - }) - .def("complete_add_op", &pd::NetOp::CompleteAddOp) + .def("add_op", &ops::NetOp::AddOp) + .def( + "add_op", + [](ops::NetOp &self, const std::shared_ptr &net) -> void { + self.AddOp(std::static_pointer_cast(net)); + }) + .def("complete_add_op", &ops::NetOp::CompleteAddOp) .def("complete_add_op", - [](std::shared_ptr& self) { self->CompleteAddOp(); }); + [](std::shared_ptr &self) { self->CompleteAddOp(); }); + ExposeOperator(net); m.def("unique_integer", UniqueIntegerGenerator); @@ -230,3 +234,5 @@ All parameter, weight, gradient are variables in Paddle. return m.ptr(); } +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 85af0e20a4174344716452bc03dcb1d5e596fe8d..4c3b14b83d841e88683a13634c93f51c012128b6 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -26,19 +26,17 @@ limitations under the License. */ #include "unsupported/Eigen/CXX11/Tensor" namespace paddle { -namespace pybind { -namespace details { // forward declare -template -struct CastToPyBufferImpl; -} // namespace details -} // namespace pybind namespace framework { +namespace details { +template +struct CastToPyBufferImpl; +} class Tensor { public: template - friend struct paddle::pybind::details::CastToPyBufferImpl; + friend struct details::CastToPyBufferImpl; template friend struct EigenTensor; diff --git a/paddle/pybind/tensor_bind.h b/paddle/framework/tensor_py.h similarity index 92% rename from paddle/pybind/tensor_bind.h rename to paddle/framework/tensor_py.h index def37219ccefd5435f1212c4e4daac5a351d76f4..4e1ab77b157fe1adaeac55c271c056236f2d40de 100644 --- a/paddle/pybind/tensor_bind.h +++ b/paddle/framework/tensor_py.h @@ -23,7 +23,7 @@ namespace py = pybind11; namespace paddle { -namespace pybind { +namespace framework { namespace details { @@ -63,11 +63,8 @@ struct CastToPyBufferImpl { } return py::buffer_info( dst_tensor.mutable_data(dst_tensor.holder_->place()), - sizeof(CUR_TYPE), - py::format_descriptor::format(), - (size_t)framework::arity(dst_tensor.dims()), - dims_outside, - strides); + sizeof(CUR_TYPE), py::format_descriptor::format(), + (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); } else { constexpr bool less = I + 1 < std::tuple_size>::value; return CastToPyBufferImpl()(tensor); @@ -110,8 +107,8 @@ void PyCUDATensorSetFromArray( self.Resize(framework::make_ddim(dims)); auto *dst = self.mutable_data(place); - paddle::platform::GpuMemcpySync( - dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); + paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), + cudaMemcpyHostToDevice); } #endif diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp index 9ddd449de7500f5682d59469328f06971c6e83bf..f98bf95064fa539b990309dfe0bff10c1e99d096 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp @@ -967,8 +967,9 @@ void RecurrentGradientMachine::generateSequence() { size_t numSequences = getGenBatchSize(); resizeBootFrame(numSequences); - // We create only two sub-network in generation for alternate use. - // Thus, we can reduce total memory of output_ in layer forward. + // We create only two sub-network in generation, one stores states of all + // layers in previous time step and the other storing the states at current + // time step. resizeOrCreateFrames(2); // outFrameLines_.size() > 1UL @@ -1001,10 +1002,9 @@ void RecurrentGradientMachine::generateSequence() { // init outArg size_t resultNum = generator_.config.num_results_per_sample(); - IVector::resizeOrCreate( - generator_.outArg.ids, - generator_.config.max_num_frames() * numSequences * resultNum, - false); + size_t maxGenWordCount = + generator_.config.max_num_frames() * numSequences * resultNum; + IVector::resizeOrCreate(generator_.outArg.ids, maxGenWordCount, false); if (resultNum > 1) { CHECK_LE(resultNum, static_cast(generator_.config.beam_size())); Matrix::resizeOrCreate(generator_.outArg.in, @@ -1012,6 +1012,11 @@ void RecurrentGradientMachine::generateSequence() { /* width */ resultNum, false, /* useGpu */ false); + Matrix::resizeOrCreate(generator_.outArg.value, + /* height */ maxGenWordCount, + /* width */ 1, + false, + /* useGpu */ false); } ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, numSequences + 1, @@ -1313,13 +1318,20 @@ void RecurrentGradientMachine::fillGenOutputs() { starts[0] = 0; if (numResults > 1) { real* probs = generator_.outArg.in->getData(); + real* idsProb = generator_.outArg.value->getData(); + size_t curPos = 0; for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) { Path& path = finalPaths_[i][j]; - generator_.ids.push_back(path.ids.size()); // sequence size + size_t genLen = path.ids.size(); + generator_.ids.push_back(genLen); // sequence size generator_.ids.insert( generator_.ids.end(), path.ids.begin(), path.ids.end()); generator_.ids.push_back(-1); // end of sequence + + memcpy(idsProb + curPos, path.idsProb.data(), sizeof(real) * genLen); + curPos += genLen; + idsProb[curPos++] = -1.0; probs[i * numResults + j] = path.logProb; if (!j && dataArgsSize_) { diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index f245620cf668bb341df99cf498105cbd996a6b24..fb3fc5877ac96323e891f800db80af83b6809831 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -189,6 +189,11 @@ public: */ std::vector ids; + /** + * @brief idsProb, log probability of each generated words. + */ + std::vector idsProb; + /** * @brief logProb, current probability of path. */ @@ -228,11 +233,13 @@ public: */ Path(Path& old, int newId, real logProb, int machineId, int topIndex) : ids(old.ids), + idsProb(old.idsProb), logProb(old.logProb + logProb), machineId(machineId), topIndex(topIndex), seqId(old.seqId) { ids.push_back(newId); + idsProb.push_back(logProb); if (!old.probHistory.empty()) { this->probHistory = old.probHistory; // probHistory store current prob, not sum @@ -411,8 +418,9 @@ protected: struct Generator { GeneratorConfig config; - std::vector ids; // store generated sequences - Argument outArg; // final output argument + std::vector ids; // store generated sequences + std::vector idsProb; // log probability of each generated word + Argument outArg; // final output argument }; bool generating_; Generator generator_; diff --git a/paddle/memory/detail/buddy_allocator.h b/paddle/memory/detail/buddy_allocator.h index 4fa3fb0ee5f826d2b084c0ba184c505aee3acc48..9c41378483993101a098fc4ad1068c1ef908e566 100644 --- a/paddle/memory/detail/buddy_allocator.h +++ b/paddle/memory/detail/buddy_allocator.h @@ -39,7 +39,7 @@ class BuddyAllocator { public: void* Alloc(size_t unaligned_size); - void Free(void*); + void Free(void* ptr); size_t Used(); public: diff --git a/paddle/memory/detail/meta_cache.h b/paddle/memory/detail/meta_cache.h index ca0789779e273fb71c3d6282c0a921cda2d776cc..cf5815644284c23a1d2abc904f8c5053ce107a72 100644 --- a/paddle/memory/detail/meta_cache.h +++ b/paddle/memory/detail/meta_cache.h @@ -33,17 +33,17 @@ namespace detail { */ class MetadataCache { public: - MetadataCache(bool uses_gpu); + explicit MetadataCache(bool uses_gpu); public: /*! \brief Load the associated metadata for the specified memory block. */ - Metadata load(const MemoryBlock*); + Metadata load(const MemoryBlock* memory_block); /*! \brief Store the associated metadata for the specified memory block. */ - void store(MemoryBlock*, const Metadata&); + void store(MemoryBlock* memory_block, const Metadata& meta_data); /*! \brief Indicate that the specified metadata will no longer be used. */ - void invalidate(MemoryBlock*); + void invalidate(MemoryBlock* memory_block); public: MetadataCache(const MetadataCache&) = delete; diff --git a/paddle/memory/memory.h b/paddle/memory/memory.h index 44f567caf9c19775f17988b5142b7693b41a126d..72351b9dfa63513713463bb47a3684f0dfd84ad3 100644 --- a/paddle/memory/memory.h +++ b/paddle/memory/memory.h @@ -68,7 +68,7 @@ class PODDeleter { static_assert(std::is_pod::value, "T must be POD"); public: - PODDeleter(Place place) : place_(place) {} + explicit PODDeleter(Place place) : place_(place) {} void operator()(T* ptr) { Free(place_, static_cast(ptr)); } private: diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 6465deeec93100f0238ac850b92f7f7c5a60b795..96c76e22e9814682008f2e6c7ae98e2599d391c2 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -41,6 +41,9 @@ function(op_library TARGET) endif() endfunction() +cc_library(net_op SRCS net_op.cc DEPS op_registry) +cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) + op_library(add_op SRCS add_op.cc add_op.cu) cc_test(add_op_test SRCS add_op_test.cc DEPS add_op) @@ -59,6 +62,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) op_library(fc_op SRCS fc_op.cc - DEPS mul_op rowwise_add_op sigmoid_op softmax_op net) -op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net) + DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op) +op_library(recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net_op) cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op) diff --git a/paddle/operators/add_op.cu b/paddle/operators/add_op.cu index f961b37565f400b5c26844b9e7a3cff5e682340b..9bd08634da96c5595d6dd702ad9afafb94632b03 100644 --- a/paddle/operators/add_op.cu +++ b/paddle/operators/add_op.cu @@ -1,3 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/framework/op_registry.h" #include "paddle/operators/add_op.h" diff --git a/paddle/operators/cross_entropy_op.cu b/paddle/operators/cross_entropy_op.cu index 926a0c616b957d8e542c1f3dee227a718fb29f07..2f453f8379ca7ce0612fed757719acb2d2cf0ad8 100644 --- a/paddle/operators/cross_entropy_op.cu +++ b/paddle/operators/cross_entropy_op.cu @@ -1,5 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/operators/cross_entropy_op.h" REGISTER_OP_GPU_KERNEL(onehot_cross_entropy, - ops::OnehotCrossEntropyOpKernel); \ No newline at end of file + ops::OnehotCrossEntropyOpKernel); diff --git a/paddle/operators/fill_zeros_like_op.cu b/paddle/operators/fill_zeros_like_op.cu index 55ad58f4f17cd4a3e737c01b001675d2690d273e..ed1068219c8fee8c6e8809f450a9d38c8226f317 100644 --- a/paddle/operators/fill_zeros_like_op.cu +++ b/paddle/operators/fill_zeros_like_op.cu @@ -1,6 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #include "paddle/framework/op_registry.h" #include "paddle/operators/fill_zeros_like_op.h" REGISTER_OP_GPU_KERNEL( fill_zeros_like, - paddle::operators::FillZerosLikeKernel); \ No newline at end of file + paddle::operators::FillZerosLikeKernel); diff --git a/paddle/operators/mean_op.cu b/paddle/operators/mean_op.cu index e15de2fd0dd84e4015ee0e3b5343d7651b027a88..8b97b0154ccdc8c41a90f7580af829c5c8663b60 100644 --- a/paddle/operators/mean_op.cu +++ b/paddle/operators/mean_op.cu @@ -1,6 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/operators/mean_op.h" REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel); -REGISTER_OP_GPU_KERNEL(mean_grad, ops::MeanGradKernel); \ No newline at end of file +REGISTER_OP_GPU_KERNEL(mean_grad, ops::MeanGradKernel); diff --git a/paddle/operators/mul_op.cu b/paddle/operators/mul_op.cu index dc9236701627dc9335b844d2a82e18eb1f7dfd42..1dc04c4297daed7a7861a09cf6b99446c296ffa5 100644 --- a/paddle/operators/mul_op.cu +++ b/paddle/operators/mul_op.cu @@ -15,4 +15,4 @@ #define EIGEN_USE_GPU #include "paddle/operators/mul_op.h" -REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); \ No newline at end of file +REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); diff --git a/paddle/framework/net.cc b/paddle/operators/net_op.cc similarity index 96% rename from paddle/framework/net.cc rename to paddle/operators/net_op.cc index 2cd378c6b21303d1a24206ba3010b0d035aaa766..fbc98e09923bda7f3baee04e02df9076247bff0b 100644 --- a/paddle/framework/net.cc +++ b/paddle/operators/net_op.cc @@ -14,11 +14,11 @@ limitations under the License. */ -#include "paddle/framework/net.h" +#include "paddle/operators/net_op.h" #include "paddle/framework/op_registry.h" namespace paddle { -namespace framework { +namespace operators { void NetOp::CompleteAddOp(bool calc) { add_op_done_ = true; @@ -74,5 +74,5 @@ std::string NetOp::DebugString() const { bool NetOp::IsNetOp() const { return true; } -} // namespace framework +} // namespace operators } // namespace paddle diff --git a/paddle/framework/net.h b/paddle/operators/net_op.h similarity index 89% rename from paddle/framework/net.h rename to paddle/operators/net_op.h index acf1a69da9fd8adce1bd89367c882eade052e725..13611e1ee83170db43e17d6088e4b04588ce6255 100644 --- a/paddle/framework/net.h +++ b/paddle/operators/net_op.h @@ -14,15 +14,17 @@ limitations under the License. */ #pragma once -#include -#include +#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_registry.h" +#include "paddle/framework/operator.h" #include "paddle/framework/scope.h" +#include "paddle/operators/type_alias.h" #include "paddle/platform/device_context.h" namespace paddle { -namespace framework { +namespace operators { + /** * @brief Network is also a type of Operator * @@ -37,13 +39,13 @@ namespace framework { * This is the base class of network, all the networks should implement the APIs * it defines. */ -class NetOp : public OperatorBase { - public: +class NetOp : public framework::OperatorBase { +public: /** * Infer all the operators' input and output variables' shapes, will be called * before every mini-batch */ - void InferShape(const Scope& scope) const override { + void InferShape(const framework::Scope& scope) const override { for (auto& op : ops_) { op->InferShape(scope); } @@ -56,7 +58,7 @@ class NetOp : public OperatorBase { * scope will be used instead. If no OpContext is provicded, default context * will be used. */ - void Run(const Scope& scope, + void Run(const framework::Scope& scope, const platform::DeviceContext& dev_ctx) const override { for (auto& op : ops_) { op->Run(scope, dev_ctx); @@ -88,7 +90,7 @@ class NetOp : public OperatorBase { std::vector> ops_; - private: +private: bool add_op_done_{false}; template @@ -97,5 +99,5 @@ class NetOp : public OperatorBase { } }; -} // namespace framework +} // namespace operators } // namespace paddle diff --git a/paddle/framework/net_design.md b/paddle/operators/net_op_design.md similarity index 100% rename from paddle/framework/net_design.md rename to paddle/operators/net_op_design.md diff --git a/paddle/framework/net_op_test.cc b/paddle/operators/net_op_test.cc similarity index 91% rename from paddle/framework/net_op_test.cc rename to paddle/operators/net_op_test.cc index f32e456e5d142bf8203f9ec03e8059772c4f5c99..18c5c60eb43250c23e2819a3c79ab8a96fec103e 100644 --- a/paddle/framework/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -1,16 +1,18 @@ +#include "paddle/operators/net_op.h" + #include -#include -#include -#include + +#include "paddle/framework/op_registry.h" +#include "paddle/framework/operator.h" namespace paddle { -namespace framework { +namespace operators { static int infer_shape_cnt = 0; static int run_cnt = 0; class TestOp : public OperatorBase { - public: +public: void InferShape(const framework::Scope& scope) const override { ++infer_shape_cnt; } @@ -21,7 +23,7 @@ class TestOp : public OperatorBase { }; class EmptyOp : public OperatorBase { - public: +public: void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} @@ -73,7 +75,7 @@ TEST(OpKernel, all) { ASSERT_THROW(net->AddOp(op2), paddle::platform::EnforceNotMet); } -TEST(Net, insert_op) { +TEST(NetOp, insert_op) { NetOp net; auto op1 = std::make_shared(); op1->inputs_ = {"x", "w1", "b1"}; @@ -85,5 +87,5 @@ TEST(Net, insert_op) { ASSERT_EQ(3UL, net.ops_.size()); } -} // namespace framework +} // namespace operators } // namespace paddle diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index e5b76e3724b5b0287071c90d26235b8e1a1d80cf..aeb95569b728f53b288a0c9a28220be8b5f7aaa4 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -18,8 +18,8 @@ #include #include -#include "paddle/framework/net.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/net_op.h" #include "paddle/platform/enforce.h" namespace paddle { diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index 2a0964fff326500b6215dd4afac63c75d64c4a06..35e6d9d50dd04048da7ffb384014d5909cd659a4 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -using namespace paddle::framework; +using namespace paddle::framework; // NOLINT namespace rnn { @@ -94,7 +94,7 @@ void InitArgument(const ArgumentName& name, Argument* arg); }; // namespace rnn // The sequence format in RecurrentOp is Tensor now. -// TODO: +// TODO(Yan Chunwei): // 1. No-padding computing for sequences with indifinite length in one batch. // 2. Hierarchical RNN for sequence with sub-sequence. // 3. Internal Memory. @@ -172,12 +172,10 @@ public: /** * InferShape must be called before Run. */ - virtual void InferShape(const Scope& scope) const override { - alg_.InferShape(scope); - } + void InferShape(const Scope& scope) const override { alg_.InferShape(scope); } - virtual void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + void Run(const Scope& scope, + const platform::DeviceContext& dev_ctx) const override { alg_.Run(scope, dev_ctx); } @@ -194,12 +192,10 @@ public: /** * InferShape must be called before Run. */ - virtual void InferShape(const Scope& scope) const override { - alg_.InferShape(scope); - } + void InferShape(const Scope& scope) const override { alg_.InferShape(scope); } - virtual void Run(const Scope& scope, - const platform::DeviceContext& dev_ctx) const override { + void Run(const Scope& scope, + const platform::DeviceContext& dev_ctx) const override { alg_.Run(scope, dev_ctx); } diff --git a/paddle/operators/recurrent_op_test.cc b/paddle/operators/recurrent_op_test.cc index 91f2972ca49953fd7a627289fa37db32916d85cd..08a6d9fe5681fdea180de2e9361734ade8564775 100644 --- a/paddle/operators/recurrent_op_test.cc +++ b/paddle/operators/recurrent_op_test.cc @@ -11,14 +11,15 @@ limitations under the License. */ +#include "paddle/operators/recurrent_op.h" + #include #include -#include "paddle/framework/net.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" #include "paddle/framework/tensor.h" -#include "paddle/operators/recurrent_op.h" +#include "paddle/operators/net_op.h" namespace paddle { namespace operators { diff --git a/paddle/operators/rowwise_add_op.cu b/paddle/operators/rowwise_add_op.cu index 82338ceccc06653791b26472e18d804f62735649..f76faa0a3a93a1ac277a1d1aa83c3fa6c3944648 100644 --- a/paddle/operators/rowwise_add_op.cu +++ b/paddle/operators/rowwise_add_op.cu @@ -1,3 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/operators/rowwise_add_op.h" diff --git a/paddle/operators/sgd_op.cu b/paddle/operators/sgd_op.cu index d79258cbf13c699cfb2afaee229cf96a3e377b5e..72629ccfbb8bc8ec53045289bd985c721c62fa10 100644 --- a/paddle/operators/sgd_op.cu +++ b/paddle/operators/sgd_op.cu @@ -1,4 +1,18 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/operators/sgd_op.h" -REGISTER_OP_GPU_KERNEL(sgd, ops::SGDOpKernel); \ No newline at end of file +REGISTER_OP_GPU_KERNEL(sgd, ops::SGDOpKernel); diff --git a/paddle/operators/sigmoid_op.cu b/paddle/operators/sigmoid_op.cu index c9d11a2e1f9dcc563765c9e8cc1bae6beff57f18..2123b17e4b5e90c22c2d6e9177f2a8956f8a4ac9 100644 --- a/paddle/operators/sigmoid_op.cu +++ b/paddle/operators/sigmoid_op.cu @@ -1,3 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/operators/sigmoid_op.h" diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index 5b59fad7d5f9729b0862f8cd78cb32f94f87f513..5cbb96ab754467ea6ddab9380ca25987c9376980 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -1,16 +1,17 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ #include "paddle/operators/softmax_op.h" namespace paddle { @@ -19,12 +20,13 @@ namespace operators { class SoftmaxOp : public OperatorWithKernel { protected: void InferShape(const InferShapeContext &ctx) const override { - PADDLE_ENFORCE(ctx.InputSize() == 1, "Only one input is need for softmax"); - PADDLE_ENFORCE(ctx.Input(0)->dims().size() == 2, + PADDLE_ENFORCE(ctx.InputSize() == 1UL, + "Only one input is need for softmax"); + PADDLE_ENFORCE(ctx.Input("X")->dims().size() == 2UL, "The input of softmax op must be matrix"); - PADDLE_ENFORCE(ctx.OutputSize() == 1, + PADDLE_ENFORCE(ctx.OutputSize() == 1UL, "Only one output is need for softmax"); - ctx.Output(0)->Resize(ctx.Input(0)->dims()); + ctx.Output("Y")->Resize(ctx.Input("X")->dims()); } }; @@ -40,10 +42,19 @@ public: class SoftmaxOpGrad : public OperatorWithKernel { protected: - void InferShape(const InferShapeContext &ctx) const override {} - std::string DebugString() const override { - LOG(INFO) << "SoftmaxOpGrad"; - return ""; + void InferShape(const InferShapeContext &ctx) const override { + PADDLE_ENFORCE(ctx.InputSize() == 3UL, + "Input of SoftmaxOpGrad should be 3, X, Y, YG"); + PADDLE_ENFORCE(ctx.OutputSize() == 1UL, + "Output of SoftmaxOpGrad should be 1"); + PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null"); + PADDLE_ENFORCE(ctx.InputVar(GRAD_VAR_NAME("Y")) != nullptr, + "Input(Y@GRAD) should not be null"); + PADDLE_ENFORCE(ctx.Input("Y")->dims() == + ctx.Input(GRAD_VAR_NAME("Y"))->dims(), + "the shape of Input(0) and Input(1) should be the same"); + ctx.Output(GRAD_VAR_NAME("X")) + ->Resize(ctx.Input("Y")->dims()); } }; @@ -51,5 +62,7 @@ protected: } // namespace paddle REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker); -REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad); REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel); +REGISTER_GRADIENT_OP(softmax, softmax_grad, ops::SoftmaxOpGrad); +REGISTER_OP_CPU_KERNEL(softmax_grad, + ops::SoftmaxGradKernel); diff --git a/paddle/operators/softmax_op.cu b/paddle/operators/softmax_op.cu index ddf8f6e913ccf450185f377f531bf978f69ed1fc..b79228580a7ea0f70b62eb2dc7a61cf85bc0b5fb 100644 --- a/paddle/operators/softmax_op.cu +++ b/paddle/operators/softmax_op.cu @@ -1,5 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + #define EIGEN_USE_GPU #include "paddle/framework/op_registry.h" #include "paddle/operators/softmax_op.h" REGISTER_OP_GPU_KERNEL(softmax, ops::SoftmaxKernel); +REGISTER_OP_GPU_KERNEL(softmax_grad, + ops::SoftmaxGradKernel); diff --git a/paddle/operators/softmax_op.h b/paddle/operators/softmax_op.h index 75c5197697dada58e09f4cda41cea13af56e79a3..13e74a79077982e9fba5d90f40986e699c1ed897 100644 --- a/paddle/operators/softmax_op.h +++ b/paddle/operators/softmax_op.h @@ -1,19 +1,22 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once +#include "paddle/framework/ddim.h" +#include "paddle/framework/operator.h" +#include "paddle/framework/tensor.h" #include "paddle/operators/type_alias.h" namespace paddle { @@ -23,8 +26,8 @@ template class SoftmaxKernel : public OpKernel { public: void Compute(const ExecutionContext& context) const override { - auto input = context.Input(0); - auto output = context.Output(0); + auto input = context.Input("X"); + auto output = context.Output("Y"); output->mutable_data(context.GetPlace()); auto logits = EigenMatrix::From(*input); @@ -57,5 +60,38 @@ public: .broadcast(one_by_class)); } }; + +template +class SoftmaxGradKernel : public OpKernel { +public: + void Compute(const ExecutionContext& context) const override { + std::shared_ptr scale_ = std::make_shared(); + + auto Y = context.Input("Y"); + auto dY = context.Input(OperatorBase::GRAD_VAR_NAME("Y")); + auto dX = context.Output(OperatorBase::GRAD_VAR_NAME("X")); + dX->mutable_data(context.GetPlace()); + + const int batch_size = Y->dims()[0]; + const int class_num = Y->dims()[1]; + + Eigen::DSizes along_class(1); + Eigen::DSizes batch_by_one(batch_size, 1); + Eigen::DSizes one_by_class(1, class_num); + + auto Y_eigen = EigenMatrix::From(*Y); + auto dY_eigen = EigenMatrix::From(*dY); + auto dX_eigen = EigenMatrix::From(*dX); + auto place = context.GetEigenDevice(); + + auto dot = (Y_eigen * dY_eigen) + .sum(along_class) + .eval() + .reshape(batch_by_one) + .broadcast(one_by_class); + dX_eigen.device(place) = (dY_eigen - dot) * Y_eigen; + } +}; + } // namespace operators } // namespace paddle diff --git a/paddle/operators/type_alias.h b/paddle/operators/type_alias.h index 9049ffda1da5408411687474c5ed0c76c2394623..931740e150946a939b8656be5a30185c6ee1cb8f 100644 --- a/paddle/operators/type_alias.h +++ b/paddle/operators/type_alias.h @@ -15,13 +15,14 @@ #pragma once #include "paddle/framework/eigen.h" -#include "paddle/framework/net.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/net_op.h" namespace paddle { namespace operators { using OpKernel = framework::OpKernel; +using OperatorBase = framework::OperatorBase; using InferShapeContext = framework::InferShapeContext; using ExecutionContext = framework::ExecutionContext; using Variable = framework::Variable; @@ -43,15 +44,16 @@ template using EigenTensor = framework::EigenTensor; using Tensor = framework::Tensor; +using Scope = framework::Scope; using OperatorWithKernel = framework::OperatorWithKernel; +using OperatorBase = framework::OperatorBase; using OpProtoAndCheckerMaker = framework::OpProtoAndCheckerMaker; using OpProto = framework::OpProto; using OpAttrChecker = framework::OpAttrChecker; using CPUPlace = platform::CPUPlace; using GPUPlace = platform::GPUPlace; -using NetOp = framework::NetOp; using OpRegistry = framework::OpRegistry; -using OperatorBase = framework::OperatorBase; + } // namespace operators } // namespace paddle diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 2038fafe2e15ec2631726643695ac6cbc317fed9..48b9f5dcb5cc578f9e70ed7abe076b66b68dc719 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -40,7 +40,7 @@ class DeviceContext { class CPUDeviceContext : public DeviceContext { public: CPUDeviceContext(); - CPUDeviceContext(CPUPlace); + explicit CPUDeviceContext(CPUPlace); virtual ~CPUDeviceContext() {} Eigen::DefaultDevice* eigen_device() const; @@ -55,7 +55,7 @@ class CPUDeviceContext : public DeviceContext { class CUDADeviceContext : public DeviceContext { public: - explicit CUDADeviceContext(GPUPlace); + CUDADeviceContext(GPUPlace); // NOLINT virtual ~CUDADeviceContext(); /*! \brief Wait for all operations completion in the stream. */ @@ -69,10 +69,10 @@ class CUDADeviceContext : public DeviceContext { // clang-format off /*! \brief Return cublas handle in the device context. */ - cublasHandle_t cublas_handle (); + cublasHandle_t cublas_handle(); /*! \brief Return cudnn handle in the device context. */ - cudnnHandle_t cudnn_handle (); + cudnnHandle_t cudnn_handle(); /*! \brief Return curand handle in the device context. */ curandGenerator_t curand_generator(); diff --git a/paddle/platform/dynload/cublas.cc b/paddle/platform/dynload/cublas.cc index 4e3dfdaefb2348346e8f917b1f6c758bf6d91a1a..9cd2a1f565526f8dc45932ba6168f4e25c6ad238 100644 --- a/paddle/platform/dynload/cublas.cc +++ b/paddle/platform/dynload/cublas.cc @@ -1,3 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + #include namespace paddle { diff --git a/paddle/platform/dynload/cudnn.cc b/paddle/platform/dynload/cudnn.cc index 8b5e15b5efcdae6a1eed09f002eb2f4f2163035f..d3e4cb567d71b987724366b6a0896f5df0eb6055 100644 --- a/paddle/platform/dynload/cudnn.cc +++ b/paddle/platform/dynload/cudnn.cc @@ -1,3 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + #include namespace paddle { @@ -25,4 +39,4 @@ CUDNN_DNN_ROUTINE_EACH_R5(DEFINE_WRAP); } // namespace dynload } // namespace platform -} // namespace paddle \ No newline at end of file +} // namespace paddle diff --git a/paddle/platform/dynload/curand.cc b/paddle/platform/dynload/curand.cc index 5c1fab992c98569d4a95b6e699d97d428511e48e..d05dd88126bfee7278e553710a717b8f2eb02ae0 100644 --- a/paddle/platform/dynload/curand.cc +++ b/paddle/platform/dynload/curand.cc @@ -1,3 +1,17 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + #include namespace paddle { @@ -10,6 +24,7 @@ void *curand_dso_handle; #define DEFINE_WRAP(__name) DynLoad__##__name __name CURAND_RAND_ROUTINE_EACH(DEFINE_WRAP); -} -} -} \ No newline at end of file + +} // namespace dynload +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/place.h b/paddle/platform/place.h index 7cead183884bc9379355cd931921b40d6c11ce90..a37ad38a8fb030192fa4c871106c6eb54816768a 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -32,7 +32,7 @@ struct CPUPlace { struct GPUPlace { GPUPlace() : GPUPlace(0) {} - GPUPlace(int d) : device(d) {} + GPUPlace(int d) : device(d) {} // NOLINT // needed for variant equality comparison inline bool operator==(const GPUPlace &o) const { return device == o.device; } diff --git a/paddle/string/piece.h b/paddle/string/piece.h index 0272529d1c9b2cb6000a26f1d4d80276d06bf27b..3b887490b5c6c016bc30d8db060c5c1c01b8bf54 100644 --- a/paddle/string/piece.h +++ b/paddle/string/piece.h @@ -39,8 +39,8 @@ public: // size_ is 0. Piece(); Piece(const char* d, size_t n); - Piece(const char* d); - Piece(const std::string& s); + Piece(const char* d); // NOLINT + Piece(const std::string& s); // NOLINT const char* data() const { return data_; } size_t len() const { return size_; } diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index 4619b0edc3dd7e253e01f7fee5e6a8641340d291..e66197030e2dd9e113e4564aaacb1c5dab25771b 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -13,4 +13,5 @@ add_python_test(test_framework test_sigmoid_op.py test_softmax_op.py test_rowwise_add_op.py - test_network.py) + test_network.py + gradient_checker.py) diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py new file mode 100644 index 0000000000000000000000000000000000000000..4022de1c40e41aa77a7f31d82b55b63585cbd5f5 --- /dev/null +++ b/python/paddle/v2/framework/tests/gradient_checker.py @@ -0,0 +1,90 @@ +import paddle.v2.framework.core as core +from paddle.v2.framework.create_op_creation_methods import op_creations +import numpy +import unittest + +__all__ = ['get_numeric_gradient'] + + +def get_numeric_gradient(op, + input_values, + output_name, + input_to_check, + delta=1e-2, + local_scope=None): + """ + Get Numeric Gradient for an operator's input. + + :param op: C++ operator instance, could be an network + :param input_values: The input variables. Should be an dictionary, key is + variable name. Value is numpy array. + :param output_name: The final output variable name. + :param input_to_check: The input variable need to get gradient. + :param delta: The perturbation value for numeric gradient method. The + smaller delta is, the more accurate result will get. But if that delta is + too small, it could occur numerical stability problem. + :param local_scope: The local scope used for get_numeric_gradient. + :return: The gradient array in numpy format. + """ + if local_scope is None: + local_scope = core.Scope() + + # Create all input variable in local_scope + for var_name in input_values: + var = local_scope.new_var(var_name) + tensor = var.get_tensor() + tensor.set_dims(input_values[var_name].shape) + tensor.alloc_float(core.CPUPlace()) + tensor.set(input_values[var_name], core.CPUPlace()) + + # Create all output variable in local_scope + for output in op.outputs(): + if local_scope.find_var(output) is None: + local_scope.new_var(output).get_tensor() + + op.infer_shape(local_scope) + + # allocate output memory + for output in op.outputs(): + local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace()) + + # TODO(yuyang18): Only CPU is support now. + cpu_ctx = core.DeviceContext.create(core.CPUPlace()) + + def get_output(): + op.run(local_scope, cpu_ctx) + return numpy.array(local_scope.find_var(output_name).get_tensor()).sum() + + def product(dim): + return reduce(lambda a, b: a * b, dim, 1) + + tensor_to_check = local_scope.find_var(input_to_check).get_tensor() + tensor_size = product(tensor_to_check.get_dims()) + gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32') + for i in xrange(tensor_size): + origin = tensor_to_check.get_float_element(i) + x_pos = origin + delta + tensor_to_check.set_float_element(i, x_pos) + y_pos = get_output() + + x_neg = origin - delta + tensor_to_check.set_float_element(i, x_neg) + y_neg = get_output() + + tensor_to_check.set_float_element(i, origin) # restore old value + gradient_flat[i] = (y_pos - y_neg) / delta / 2 + return gradient_flat.reshape(tensor_to_check.get_dims()) + + +if __name__ == '__main__': + + class GetNumericGradientTest(unittest.TestCase): + def test_add_op(self): + add_op = op_creations.add_two(X="X", Y="Y", Out="Z") + x = numpy.random.random((10, 1)).astype("float32") + y = numpy.random.random((10, 1)).astype("float32") + + arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X') + self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2) + + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_softmax_op.py b/python/paddle/v2/framework/tests/test_softmax_op.py index 191b698c1cdec9b86b4ded6b1f743586867ca62f..c80888128781d98e4ed30d845a30b39121f66459 100644 --- a/python/paddle/v2/framework/tests/test_softmax_op.py +++ b/python/paddle/v2/framework/tests/test_softmax_op.py @@ -1,6 +1,10 @@ import unittest -from op_test_util import OpTestMeta + import numpy as np +import paddle.v2.framework.core as core +import paddle.v2.framework.create_op_creation_methods as creation + +from op_test_util import OpTestMeta def stable_softmax(x): @@ -19,5 +23,63 @@ class TestSoftmaxOp(unittest.TestCase): self.Y = np.apply_along_axis(stable_softmax, 1, self.X) +class TestSoftmaxGradOp(unittest.TestCase): + def test_softmax_grad(self): + op = creation.op_creations.softmax(X="X", Y="Y") + backward_op = core.Operator.backward(op, set()) + self.assertEqual(backward_op.type(), "softmax_grad") + expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).''' + self.assertEqual(expected, str(backward_op)) + + batch_size = 3 + class_num = 5 + # Initialize X and add 1e-2 for numerical stability + Y = np.random.rand(batch_size, class_num).astype(np.float32) + Y = Y + 1e-2 + dY = np.random.rand(batch_size, class_num).astype(np.float32) + + # Reference implementation of cross entropy with soft labels + def label_softmax_grad(Y, dY): + dX = Y * 0.0 + for i in range(batch_size): + d = np.dot(Y[i, :], dY[i, :]) + dX[i, :] = Y[i, :] * (dY[i, :] - d) + return dX + + expected = label_softmax_grad(Y, dY) + + scope = core.Scope() + places = [] + places.append(core.CPUPlace()) + if core.is_compile_gpu(): + places.append(core.GPUPlace(0)) + + for place in places: + y = scope.new_var("Y") + y_tensor = y.get_tensor() + y_tensor.set_dims([batch_size, class_num]) + y_tensor.alloc_float(place) + y_tensor.set(Y, place) + + dy = scope.new_var("Y@GRAD") + dy_tensor = dy.get_tensor() + dy_tensor.set_dims([batch_size, class_num]) + dy_tensor.alloc_float(place) + dy_tensor.set(dY, place) + + x = scope.new_var("X") + dx = scope.new_var("X@GRAD") + + tensor = scope.find_var("X@GRAD").get_tensor() + backward_op.infer_shape(scope) + self.assertEqual([batch_size, class_num], tensor.shape()) + + ctx = core.DeviceContext.create(place) + backward_op.run(scope, ctx) + actual = np.array(tensor) + + np.testing.assert_almost_equal(actual, expected, decimal=3) + + if __name__ == '__main__': unittest.main()