提交 54731749 编写于 作者: P phlrain

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_some_yaml_config

......@@ -52,12 +52,12 @@ tools/__pycache__
# This file is automatically generated.
# TODO(zhiqiang) Move this file to build directory.
paddle/infrt/dialect/pd_ops.td
paddle/infrt/dialect/pd/ir/pd_ops.td
paddle/infrt/dialect/phi/ir/phi_cpu_kernels.td
paddle/infrt/dialect/phi/ir/phi_gpu_kernels.td
tools/infrt/kernels.json
tools/infrt/kernel_signature.json
paddle/infrt/dialect/pd_ops_info.h
paddle/infrt/dialect/pd/common/pd_ops_info.h
.lit_test_times.txt
paddle/infrt/tests/dialect/Output
paddle/infrt/tests/lit.cfg.py
......
......@@ -61,6 +61,7 @@ set(PADDLE2ONNX_OPTIONAL_ARGS
-DONNX_CUSTOM_PROTOC_PATH=${PROTOC_BIN_PATH}
-DWITH_STATIC=OFF
-DCMAKE_INSTALL_PREFIX=${PADDLE2ONNX_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${PADDLE2ONNX_INSTALL_DIR}/${LIBDIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
......
......@@ -4,7 +4,7 @@ if(WITH_PYTHON)
endif()
proto_library(interceptor_message_proto SRCS interceptor_message.proto)
if(WITH_DISTRIBUTE AND WITH_PSCORE AND NOT (WITH_ASCEND OR WITH_ASCEND_CL))
if(WITH_DISTRIBUTE AND WITH_PSCORE)
set(BRPC_DEPS brpc ssl crypto protobuf zlib leveldb snappy gflags glog)
else()
set(BRPC_DEPS "")
......
......@@ -67,8 +67,7 @@ bool MessageBus::IsInit() const { return is_init_; }
MessageBus::~MessageBus() {
VLOG(3) << "Message bus releases resource.";
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
server_.Stop(1000);
server_.Join();
#endif
......@@ -87,8 +86,7 @@ bool MessageBus::Send(int64_t dst_rank,
IsInit(), true,
platform::errors::PreconditionNotMet(
"Using message bus since it has not been initialized."));
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
int retry_time = 0; // message bus will retry sending for 10 times
while (retry_time < 10) {
++retry_time;
......@@ -173,8 +171,7 @@ void MessageBus::ListenPort() {
LOG(INFO) << "No need listen to port since training on single card.";
return;
}
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
// function keep listen the port and handle the message
PADDLE_ENFORCE_EQ(
server_.AddService(&message_service_, brpc::SERVER_DOESNT_OWN_SERVICE), 0,
......@@ -203,8 +200,7 @@ void MessageBus::ListenPort() {
#endif
}
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
bool MessageBus::SendInterRank(int64_t dst_rank,
const InterceptorMessage& interceptor_message) {
const auto& dst_addr = GetAddr(dst_rank);
......
......@@ -20,8 +20,7 @@
#include <thread>
#include <unordered_map>
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
#include "brpc/channel.h"
#include "brpc/server.h"
#include "paddle/fluid/distributed/fleet_executor/message_service.h"
......@@ -64,8 +63,7 @@ class MessageBus final {
const std::string& GetAddr(int64_t rank) const;
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
// send the message inter rank (dst is different rank with src)
bool SendInterRank(int64_t dst_rank,
const InterceptorMessage& interceptor_message);
......@@ -81,8 +79,7 @@ class MessageBus final {
// the ip needs to be listened
std::string addr_;
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
MessageServiceImpl message_service_;
// brpc server
brpc::Server server_;
......
......@@ -11,8 +11,7 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/fleet_executor/message_service.h"
#include "brpc/server.h"
#include "paddle/fluid/distributed/fleet_executor/global.h"
......
......@@ -11,8 +11,7 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
!defined(PADDLE_WITH_ASCEND_CL)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
#pragma once
#include "brpc/server.h"
......
......@@ -115,6 +115,7 @@ message TableParameter {
optional CommonAccessorParameter common = 6;
optional TableType type = 7;
optional bool compress_in_save = 8 [ default = false ];
optional GraphParameter graph_parameter = 9;
}
message TableAccessorParameter {
......@@ -211,3 +212,25 @@ message SparseAdamSGDParameter { // SparseAdamSGDRule
optional double ada_epsilon = 5 [ default = 1e-08 ];
repeated float weight_bounds = 6;
}
message GraphParameter {
optional int32 task_pool_size = 1 [ default = 24 ];
optional bool gpups_mode = 2 [ default = false ];
optional string gpups_graph_sample_class = 3
[ default = "CompleteGraphSampler" ];
optional string gpups_graph_sample_args = 4 [ default = "" ];
optional bool use_cache = 5 [ default = true ];
optional float cache_ratio = 6 [ default = 0.3 ];
optional int32 cache_ttl = 7 [ default = 5 ];
optional GraphFeature graph_feature = 8;
optional string table_name = 9 [ default = "" ];
optional string table_type = 10 [ default = "" ];
optional int32 gpups_mode_shard_num = 11 [ default = 127 ];
optional int32 gpu_num = 12 [ default = 1 ];
}
message GraphFeature {
repeated string name = 1;
repeated string dtype = 2;
repeated int32 shape = 3;
}
\ No newline at end of file
......@@ -44,7 +44,7 @@ void GraphPsService_Stub::service(
}
}
int GraphBrpcClient::get_server_index_by_id(uint64_t id) {
int GraphBrpcClient::get_server_index_by_id(int64_t id) {
int shard_num = get_shard_num();
int shard_per_server = shard_num % server_size == 0
? shard_num / server_size
......@@ -53,7 +53,7 @@ int GraphBrpcClient::get_server_index_by_id(uint64_t id) {
}
std::future<int32_t> GraphBrpcClient::get_node_feat(
const uint32_t &table_id, const std::vector<uint64_t> &node_ids,
const uint32_t &table_id, const std::vector<int64_t> &node_ids,
const std::vector<std::string> &feature_names,
std::vector<std::vector<std::string>> &res) {
std::vector<int> request2server;
......@@ -66,7 +66,7 @@ std::future<int32_t> GraphBrpcClient::get_node_feat(
}
}
size_t request_call_num = request2server.size();
std::vector<std::vector<uint64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int>> query_idx_buckets(request_call_num);
for (int query_idx = 0; query_idx < node_ids.size(); ++query_idx) {
int server_index = get_server_index_by_id(node_ids[query_idx]);
......@@ -129,7 +129,7 @@ std::future<int32_t> GraphBrpcClient::get_node_feat(
closure->request(request_idx)
->add_params((char *)node_id_buckets[request_idx].data(),
sizeof(uint64_t) * node_num);
sizeof(int64_t) * node_num);
std::string joint_feature_name =
paddle::string::join_strings(feature_names, '\t');
closure->request(request_idx)
......@@ -179,9 +179,9 @@ std::future<int32_t> GraphBrpcClient::clear_nodes(uint32_t table_id) {
return fut;
}
std::future<int32_t> GraphBrpcClient::add_graph_node(
uint32_t table_id, std::vector<uint64_t> &node_id_list,
uint32_t table_id, std::vector<int64_t> &node_id_list,
std::vector<bool> &is_weighted_list) {
std::vector<std::vector<uint64_t>> request_bucket;
std::vector<std::vector<int64_t>> request_bucket;
std::vector<std::vector<bool>> is_weighted_bucket;
bool add_weight = is_weighted_list.size() > 0;
std::vector<int> server_index_arr;
......@@ -191,7 +191,7 @@ std::future<int32_t> GraphBrpcClient::add_graph_node(
if (index_mapping[server_index] == -1) {
index_mapping[server_index] = request_bucket.size();
server_index_arr.push_back(server_index);
request_bucket.push_back(std::vector<uint64_t>());
request_bucket.push_back(std::vector<int64_t>());
if (add_weight) is_weighted_bucket.push_back(std::vector<bool>());
}
request_bucket[index_mapping[server_index]].push_back(
......@@ -229,7 +229,7 @@ std::future<int32_t> GraphBrpcClient::add_graph_node(
size_t node_num = request_bucket[request_idx].size();
closure->request(request_idx)
->add_params((char *)request_bucket[request_idx].data(),
sizeof(uint64_t) * node_num);
sizeof(int64_t) * node_num);
if (add_weight) {
bool weighted[is_weighted_bucket[request_idx].size() + 1];
for (size_t j = 0; j < is_weighted_bucket[request_idx].size(); j++)
......@@ -248,8 +248,8 @@ std::future<int32_t> GraphBrpcClient::add_graph_node(
return fut;
}
std::future<int32_t> GraphBrpcClient::remove_graph_node(
uint32_t table_id, std::vector<uint64_t> &node_id_list) {
std::vector<std::vector<uint64_t>> request_bucket;
uint32_t table_id, std::vector<int64_t> &node_id_list) {
std::vector<std::vector<int64_t>> request_bucket;
std::vector<int> server_index_arr;
std::vector<int> index_mapping(server_size, -1);
for (size_t query_idx = 0; query_idx < node_id_list.size(); ++query_idx) {
......@@ -257,7 +257,7 @@ std::future<int32_t> GraphBrpcClient::remove_graph_node(
if (index_mapping[server_index] == -1) {
index_mapping[server_index] = request_bucket.size();
server_index_arr.push_back(server_index);
request_bucket.push_back(std::vector<uint64_t>());
request_bucket.push_back(std::vector<int64_t>());
}
request_bucket[index_mapping[server_index]].push_back(
node_id_list[query_idx]);
......@@ -291,7 +291,7 @@ std::future<int32_t> GraphBrpcClient::remove_graph_node(
closure->request(request_idx)
->add_params((char *)request_bucket[request_idx].data(),
sizeof(uint64_t) * node_num);
sizeof(int64_t) * node_num);
// PsService_Stub rpc_stub(get_cmd_channel(server_index));
GraphPsService_Stub rpc_stub =
getServiceStub(get_cmd_channel(server_index));
......@@ -303,9 +303,9 @@ std::future<int32_t> GraphBrpcClient::remove_graph_node(
}
// char* &buffer,int &actual_size
std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
uint32_t table_id, std::vector<uint64_t> node_ids, int sample_size,
// std::vector<std::vector<std::pair<uint64_t, float>>> &res,
std::vector<std::vector<uint64_t>> &res,
uint32_t table_id, std::vector<int64_t> node_ids, int sample_size,
// std::vector<std::vector<std::pair<int64_t, float>>> &res,
std::vector<std::vector<int64_t>> &res,
std::vector<std::vector<float>> &res_weight, bool need_weight,
int server_index) {
if (server_index != -1) {
......@@ -337,7 +337,7 @@ std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
int start = 0;
while (start < actual_size) {
res[node_idx].emplace_back(
*(uint64_t *)(node_buffer + offset + start));
*(int64_t *)(node_buffer + offset + start));
start += GraphNode::id_size;
if (need_weight) {
res_weight[node_idx].emplace_back(
......@@ -358,7 +358,7 @@ std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
closure->request(0)->set_table_id(table_id);
closure->request(0)->set_client_id(_client_id);
closure->request(0)->add_params((char *)node_ids.data(),
sizeof(uint64_t) * node_ids.size());
sizeof(int64_t) * node_ids.size());
closure->request(0)->add_params((char *)&sample_size, sizeof(int));
closure->request(0)->add_params((char *)&need_weight, sizeof(bool));
;
......@@ -380,14 +380,14 @@ std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
server2request[server_index] = request2server.size();
request2server.push_back(server_index);
}
// res.push_back(std::vector<std::pair<uint64_t, float>>());
// res.push_back(std::vector<std::pair<int64_t, float>>());
res.push_back({});
if (need_weight) {
res_weight.push_back({});
}
}
size_t request_call_num = request2server.size();
std::vector<std::vector<uint64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int>> query_idx_buckets(request_call_num);
for (int query_idx = 0; query_idx < node_ids.size(); ++query_idx) {
int server_index = get_server_index_by_id(node_ids[query_idx]);
......@@ -428,7 +428,7 @@ std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
int start = 0;
while (start < actual_size) {
res[query_idx].emplace_back(
*(uint64_t *)(node_buffer + offset + start));
*(int64_t *)(node_buffer + offset + start));
start += GraphNode::id_size;
if (need_weight) {
res_weight[query_idx].emplace_back(
......@@ -459,7 +459,7 @@ std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
closure->request(request_idx)
->add_params((char *)node_id_buckets[request_idx].data(),
sizeof(uint64_t) * node_num);
sizeof(int64_t) * node_num);
closure->request(request_idx)
->add_params((char *)&sample_size, sizeof(int));
closure->request(request_idx)
......@@ -476,7 +476,7 @@ std::future<int32_t> GraphBrpcClient::batch_sample_neighbors(
}
std::future<int32_t> GraphBrpcClient::random_sample_nodes(
uint32_t table_id, int server_index, int sample_size,
std::vector<uint64_t> &ids) {
std::vector<int64_t> &ids) {
DownpourBrpcClosure *closure = new DownpourBrpcClosure(1, [&](void *done) {
int ret = 0;
auto *closure = (DownpourBrpcClosure *)done;
......@@ -490,7 +490,7 @@ std::future<int32_t> GraphBrpcClient::random_sample_nodes(
auto size = io_buffer_itr.copy_and_forward((void *)(buffer), bytes_size);
int index = 0;
while (index < bytes_size) {
ids.push_back(*(uint64_t *)(buffer + index));
ids.push_back(*(int64_t *)(buffer + index));
index += GraphNode::id_size;
}
delete[] buffer;
......@@ -633,7 +633,7 @@ std::future<int32_t> GraphBrpcClient::pull_graph_list(
}
std::future<int32_t> GraphBrpcClient::set_node_feat(
const uint32_t &table_id, const std::vector<uint64_t> &node_ids,
const uint32_t &table_id, const std::vector<int64_t> &node_ids,
const std::vector<std::string> &feature_names,
const std::vector<std::vector<std::string>> &features) {
std::vector<int> request2server;
......@@ -646,7 +646,7 @@ std::future<int32_t> GraphBrpcClient::set_node_feat(
}
}
size_t request_call_num = request2server.size();
std::vector<std::vector<uint64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int>> query_idx_buckets(request_call_num);
std::vector<std::vector<std::vector<std::string>>> features_idx_buckets(
request_call_num);
......@@ -696,7 +696,7 @@ std::future<int32_t> GraphBrpcClient::set_node_feat(
closure->request(request_idx)
->add_params((char *)node_id_buckets[request_idx].data(),
sizeof(uint64_t) * node_num);
sizeof(int64_t) * node_num);
std::string joint_feature_name =
paddle::string::join_strings(feature_names, '\t');
closure->request(request_idx)
......
......@@ -63,8 +63,8 @@ class GraphBrpcClient : public BrpcPsClient {
virtual ~GraphBrpcClient() {}
// given a batch of nodes, sample graph_neighbors for each of them
virtual std::future<int32_t> batch_sample_neighbors(
uint32_t table_id, std::vector<uint64_t> node_ids, int sample_size,
std::vector<std::vector<uint64_t>>& res,
uint32_t table_id, std::vector<int64_t> node_ids, int sample_size,
std::vector<std::vector<int64_t>>& res,
std::vector<std::vector<float>>& res_weight, bool need_weight,
int server_index = -1);
......@@ -75,20 +75,20 @@ class GraphBrpcClient : public BrpcPsClient {
virtual std::future<int32_t> random_sample_nodes(uint32_t table_id,
int server_index,
int sample_size,
std::vector<uint64_t>& ids);
std::vector<int64_t>& ids);
virtual std::future<int32_t> get_node_feat(
const uint32_t& table_id, const std::vector<uint64_t>& node_ids,
const uint32_t& table_id, const std::vector<int64_t>& node_ids,
const std::vector<std::string>& feature_names,
std::vector<std::vector<std::string>>& res);
virtual std::future<int32_t> set_node_feat(
const uint32_t& table_id, const std::vector<uint64_t>& node_ids,
const uint32_t& table_id, const std::vector<int64_t>& node_ids,
const std::vector<std::string>& feature_names,
const std::vector<std::vector<std::string>>& features);
virtual std::future<int32_t> clear_nodes(uint32_t table_id);
virtual std::future<int32_t> add_graph_node(
uint32_t table_id, std::vector<uint64_t>& node_id_list,
uint32_t table_id, std::vector<int64_t>& node_id_list,
std::vector<bool>& is_weighted_list);
virtual std::future<int32_t> use_neighbors_sample_cache(uint32_t table_id,
size_t size_limit,
......@@ -96,11 +96,11 @@ class GraphBrpcClient : public BrpcPsClient {
virtual std::future<int32_t> load_graph_split_config(uint32_t table_id,
std::string path);
virtual std::future<int32_t> remove_graph_node(
uint32_t table_id, std::vector<uint64_t>& node_id_list);
uint32_t table_id, std::vector<int64_t>& node_id_list);
virtual int32_t initialize();
int get_shard_num() { return shard_num; }
void set_shard_num(int shard_num) { this->shard_num = shard_num; }
int get_server_index_by_id(uint64_t id);
int get_server_index_by_id(int64_t id);
void set_local_channel(int index) {
this->local_channel = get_cmd_channel(index);
}
......
......@@ -140,9 +140,9 @@ int32_t GraphBrpcService::add_graph_node(Table *table,
return 0;
}
size_t node_num = request.params(0).size() / sizeof(uint64_t);
uint64_t *node_data = (uint64_t *)(request.params(0).c_str());
std::vector<uint64_t> node_ids(node_data, node_data + node_num);
size_t node_num = request.params(0).size() / sizeof(int64_t);
int64_t *node_data = (int64_t *)(request.params(0).c_str());
std::vector<int64_t> node_ids(node_data, node_data + node_num);
std::vector<bool> is_weighted_list;
if (request.params_size() == 2) {
size_t weight_list_size = request.params(1).size() / sizeof(bool);
......@@ -165,9 +165,9 @@ int32_t GraphBrpcService::remove_graph_node(Table *table,
"graph_get_node_feat request requires at least 1 argument");
return 0;
}
size_t node_num = request.params(0).size() / sizeof(uint64_t);
uint64_t *node_data = (uint64_t *)(request.params(0).c_str());
std::vector<uint64_t> node_ids(node_data, node_data + node_num);
size_t node_num = request.params(0).size() / sizeof(int64_t);
int64_t *node_data = (int64_t *)(request.params(0).c_str());
std::vector<int64_t> node_ids(node_data, node_data + node_num);
((GraphTable *)table)->remove_graph_node(node_ids);
return 0;
......@@ -386,9 +386,9 @@ int32_t GraphBrpcService::graph_random_sample_neighbors(
"graph_random_sample_neighbors request requires at least 3 arguments");
return 0;
}
size_t node_num = request.params(0).size() / sizeof(uint64_t);
uint64_t *node_data = (uint64_t *)(request.params(0).c_str());
int sample_size = *(uint64_t *)(request.params(1).c_str());
size_t node_num = request.params(0).size() / sizeof(int64_t);
int64_t *node_data = (int64_t *)(request.params(0).c_str());
int sample_size = *(int64_t *)(request.params(1).c_str());
bool need_weight = *(bool *)(request.params(2).c_str());
std::vector<std::shared_ptr<char>> buffers(node_num);
std::vector<int> actual_sizes(node_num, 0);
......@@ -407,7 +407,7 @@ int32_t GraphBrpcService::graph_random_sample_neighbors(
int32_t GraphBrpcService::graph_random_sample_nodes(
Table *table, const PsRequestMessage &request, PsResponseMessage &response,
brpc::Controller *cntl) {
size_t size = *(uint64_t *)(request.params(0).c_str());
size_t size = *(int64_t *)(request.params(0).c_str());
std::unique_ptr<char[]> buffer;
int actual_size;
if (((GraphTable *)table)->random_sample_nodes(size, buffer, actual_size) ==
......@@ -430,9 +430,9 @@ int32_t GraphBrpcService::graph_get_node_feat(Table *table,
"graph_get_node_feat request requires at least 2 arguments");
return 0;
}
size_t node_num = request.params(0).size() / sizeof(uint64_t);
uint64_t *node_data = (uint64_t *)(request.params(0).c_str());
std::vector<uint64_t> node_ids(node_data, node_data + node_num);
size_t node_num = request.params(0).size() / sizeof(int64_t);
int64_t *node_data = (int64_t *)(request.params(0).c_str());
std::vector<int64_t> node_ids(node_data, node_data + node_num);
std::vector<std::string> feature_names =
paddle::string::split_string<std::string>(request.params(1), "\t");
......@@ -464,16 +464,16 @@ int32_t GraphBrpcService::sample_neighbors_across_multi_servers(
"at least 3 arguments");
return 0;
}
size_t node_num = request.params(0).size() / sizeof(uint64_t),
size_t node_num = request.params(0).size() / sizeof(int64_t),
size_of_size_t = sizeof(size_t);
uint64_t *node_data = (uint64_t *)(request.params(0).c_str());
int sample_size = *(uint64_t *)(request.params(1).c_str());
bool need_weight = *(uint64_t *)(request.params(2).c_str());
// std::vector<uint64_t> res = ((GraphTable
int64_t *node_data = (int64_t *)(request.params(0).c_str());
int sample_size = *(int64_t *)(request.params(1).c_str());
bool need_weight = *(int64_t *)(request.params(2).c_str());
// std::vector<int64_t> res = ((GraphTable
// *)table).filter_out_non_exist_nodes(node_data, sample_size);
std::vector<int> request2server;
std::vector<int> server2request(server_size, -1);
std::vector<uint64_t> local_id;
std::vector<int64_t> local_id;
std::vector<int> local_query_idx;
size_t rank = get_rank();
for (int query_idx = 0; query_idx < node_num; ++query_idx) {
......@@ -496,7 +496,7 @@ int32_t GraphBrpcService::sample_neighbors_across_multi_servers(
std::vector<std::shared_ptr<char>> local_buffers;
std::vector<int> local_actual_sizes;
std::vector<size_t> seq;
std::vector<std::vector<uint64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int64_t>> node_id_buckets(request_call_num);
std::vector<std::vector<int>> query_idx_buckets(request_call_num);
for (int query_idx = 0; query_idx < node_num; ++query_idx) {
int server_index =
......@@ -583,7 +583,7 @@ int32_t GraphBrpcService::sample_neighbors_across_multi_servers(
closure->request(request_idx)
->add_params((char *)node_id_buckets[request_idx].data(),
sizeof(uint64_t) * node_num);
sizeof(int64_t) * node_num);
closure->request(request_idx)
->add_params((char *)&sample_size, sizeof(int));
closure->request(request_idx)
......@@ -618,9 +618,9 @@ int32_t GraphBrpcService::graph_set_node_feat(Table *table,
"graph_set_node_feat request requires at least 3 arguments");
return 0;
}
size_t node_num = request.params(0).size() / sizeof(uint64_t);
uint64_t *node_data = (uint64_t *)(request.params(0).c_str());
std::vector<uint64_t> node_ids(node_data, node_data + node_num);
size_t node_num = request.params(0).size() / sizeof(int64_t);
int64_t *node_data = (int64_t *)(request.params(0).c_str());
std::vector<int64_t> node_ids(node_data, node_data + node_num);
std::vector<std::string> feature_names =
paddle::string::split_string<std::string>(request.params(1), "\t");
......
......@@ -44,9 +44,9 @@ void GraphPyService::add_table_feat_conf(std::string table_name,
}
}
void add_graph_node(std::vector<uint64_t> node_ids,
void add_graph_node(std::vector<int64_t> node_ids,
std::vector<bool> weight_list) {}
void remove_graph_node(std::vector<uint64_t> node_ids) {}
void remove_graph_node(std::vector<int64_t> node_ids) {}
void GraphPyService::set_up(std::string ips_str, int shard_num,
std::vector<std::string> node_types,
std::vector<std::string> edge_types) {
......@@ -260,7 +260,7 @@ void GraphPyClient::clear_nodes(std::string name) {
}
void GraphPyClient::add_graph_node(std::string name,
std::vector<uint64_t>& node_ids,
std::vector<int64_t>& node_ids,
std::vector<bool>& weight_list) {
if (this->table_id_map.count(name)) {
uint32_t table_id = this->table_id_map[name];
......@@ -271,7 +271,7 @@ void GraphPyClient::add_graph_node(std::string name,
}
void GraphPyClient::remove_graph_node(std::string name,
std::vector<uint64_t>& node_ids) {
std::vector<int64_t>& node_ids) {
if (this->table_id_map.count(name)) {
uint32_t table_id = this->table_id_map[name];
auto status = get_ps_client()->remove_graph_node(table_id, node_ids);
......@@ -290,13 +290,12 @@ void GraphPyClient::load_node_file(std::string name, std::string filepath) {
}
}
std::pair<std::vector<std::vector<uint64_t>>, std::vector<float>>
std::pair<std::vector<std::vector<int64_t>>, std::vector<float>>
GraphPyClient::batch_sample_neighbors(std::string name,
std::vector<uint64_t> node_ids,
std::vector<int64_t> node_ids,
int sample_size, bool return_weight,
bool return_edges) {
// std::vector<std::vector<std::pair<uint64_t, float>>> v;
std::vector<std::vector<uint64_t>> v;
std::vector<std::vector<int64_t>> v;
std::vector<std::vector<float>> v1;
if (this->table_id_map.count(name)) {
uint32_t table_id = this->table_id_map[name];
......@@ -309,7 +308,7 @@ GraphPyClient::batch_sample_neighbors(std::string name,
// res.first[1]: slice index
// res.first[2]: src nodes
// res.second: edges weight
std::pair<std::vector<std::vector<uint64_t>>, std::vector<float>> res;
std::pair<std::vector<std::vector<int64_t>>, std::vector<float>> res;
res.first.push_back({});
res.first.push_back({});
if (return_edges) res.first.push_back({});
......@@ -342,10 +341,10 @@ void GraphPyClient::use_neighbors_sample_cache(std::string name,
status.wait();
}
}
std::vector<uint64_t> GraphPyClient::random_sample_nodes(std::string name,
std::vector<int64_t> GraphPyClient::random_sample_nodes(std::string name,
int server_index,
int sample_size) {
std::vector<uint64_t> v;
std::vector<int64_t> v;
if (this->table_id_map.count(name)) {
uint32_t table_id = this->table_id_map[name];
auto status =
......@@ -357,7 +356,7 @@ std::vector<uint64_t> GraphPyClient::random_sample_nodes(std::string name,
// (name, dtype, ndarray)
std::vector<std::vector<std::string>> GraphPyClient::get_node_feat(
std::string node_type, std::vector<uint64_t> node_ids,
std::string node_type, std::vector<int64_t> node_ids,
std::vector<std::string> feature_names) {
std::vector<std::vector<std::string>> v(
feature_names.size(), std::vector<std::string>(node_ids.size()));
......@@ -371,7 +370,7 @@ std::vector<std::vector<std::string>> GraphPyClient::get_node_feat(
}
void GraphPyClient::set_node_feat(
std::string node_type, std::vector<uint64_t> node_ids,
std::string node_type, std::vector<int64_t> node_ids,
std::vector<std::string> feature_names,
const std::vector<std::vector<std::string>> features) {
if (this->table_id_map.count(node_type)) {
......
......@@ -70,18 +70,34 @@ class GraphPyService {
::paddle::distributed::TableAccessorParameter* accessor_proto =
sparse_table_proto->mutable_accessor();
::paddle::distributed::CommonAccessorParameter* common_proto =
sparse_table_proto->mutable_common();
// ::paddle::distributed::CommonAccessorParameter* common_proto =
// sparse_table_proto->mutable_common();
::paddle::distributed::GraphParameter* graph_proto =
sparse_table_proto->mutable_graph_parameter();
::paddle::distributed::GraphFeature* graph_feature =
graph_proto->mutable_graph_feature();
graph_proto->set_task_pool_size(24);
graph_proto->set_table_name(table_name);
graph_proto->set_table_type(table_type);
graph_proto->set_use_cache(false);
// Set GraphTable Parameter
common_proto->set_table_name(table_name);
common_proto->set_name(table_type);
// common_proto->set_table_name(table_name);
// common_proto->set_name(table_type);
// for (size_t i = 0; i < feat_name.size(); i++) {
// common_proto->add_params(feat_dtype[i]);
// common_proto->add_dims(feat_shape[i]);
// common_proto->add_attributes(feat_name[i]);
// }
for (size_t i = 0; i < feat_name.size(); i++) {
common_proto->add_params(feat_dtype[i]);
common_proto->add_dims(feat_shape[i]);
common_proto->add_attributes(feat_name[i]);
graph_feature->add_dtype(feat_dtype[i]);
graph_feature->add_shape(feat_shape[i]);
graph_feature->add_name(feat_name[i]);
}
accessor_proto->set_accessor_class("CommMergeAccessor");
}
......@@ -143,24 +159,24 @@ class GraphPyClient : public GraphPyService {
void load_edge_file(std::string name, std::string filepath, bool reverse);
void load_node_file(std::string name, std::string filepath);
void clear_nodes(std::string name);
void add_graph_node(std::string name, std::vector<uint64_t>& node_ids,
void add_graph_node(std::string name, std::vector<int64_t>& node_ids,
std::vector<bool>& weight_list);
void remove_graph_node(std::string name, std::vector<uint64_t>& node_ids);
void remove_graph_node(std::string name, std::vector<int64_t>& node_ids);
int get_client_id() { return client_id; }
void set_client_id(int client_id) { this->client_id = client_id; }
void start_client();
std::pair<std::vector<std::vector<uint64_t>>, std::vector<float>>
batch_sample_neighbors(std::string name, std::vector<uint64_t> node_ids,
std::pair<std::vector<std::vector<int64_t>>, std::vector<float>>
batch_sample_neighbors(std::string name, std::vector<int64_t> node_ids,
int sample_size, bool return_weight,
bool return_edges);
std::vector<uint64_t> random_sample_nodes(std::string name, int server_index,
std::vector<int64_t> random_sample_nodes(std::string name, int server_index,
int sample_size);
std::vector<std::vector<std::string>> get_node_feat(
std::string node_type, std::vector<uint64_t> node_ids,
std::string node_type, std::vector<int64_t> node_ids,
std::vector<std::string> feature_names);
void use_neighbors_sample_cache(std::string name, size_t total_size_limit,
size_t ttl);
void set_node_feat(std::string node_type, std::vector<uint64_t> node_ids,
void set_node_feat(std::string node_type, std::vector<int64_t> node_ids,
std::vector<std::string> feature_names,
const std::vector<std::vector<std::string>> features);
std::vector<FeatureNode> pull_graph_list(std::string name, int server_index,
......
......@@ -53,7 +53,6 @@ cc_library(memory_sparse_table SRCS memory_sparse_table.cc DEPS ps_framework_pro
set_source_files_properties(memory_sparse_geo_table.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_library(memory_sparse_geo_table SRCS memory_sparse_geo_table.cc DEPS ps_framework_proto ${TABLE_DEPS} common_table)
cc_library(table SRCS table.cc DEPS memory_sparse_table memory_sparse_geo_table common_table tensor_accessor tensor_table ps_framework_proto string_helper device_context gflags glog boost)
target_link_libraries(table -fopenmp)
......@@ -38,10 +38,14 @@
#include <vector>
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/phi/core/utils/rw_lock.h"
#ifdef PADDLE_WITH_HETERPS
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
namespace paddle {
namespace distributed {
class GraphShard {
......@@ -51,37 +55,37 @@ class GraphShard {
~GraphShard();
std::vector<Node *> &get_bucket() { return bucket; }
std::vector<Node *> get_batch(int start, int end, int step);
std::vector<uint64_t> get_ids_by_range(int start, int end) {
std::vector<uint64_t> res;
std::vector<int64_t> get_ids_by_range(int start, int end) {
std::vector<int64_t> res;
for (int i = start; i < end && i < (int)bucket.size(); i++) {
res.push_back(bucket[i]->get_id());
}
return res;
}
GraphNode *add_graph_node(uint64_t id);
GraphNode *add_graph_node(int64_t id);
GraphNode *add_graph_node(Node *node);
FeatureNode *add_feature_node(uint64_t id);
Node *find_node(uint64_t id);
void delete_node(uint64_t id);
FeatureNode *add_feature_node(int64_t id);
Node *find_node(int64_t id);
void delete_node(int64_t id);
void clear();
void add_neighbor(uint64_t id, uint64_t dst_id, float weight);
std::unordered_map<uint64_t, int> &get_node_location() {
void add_neighbor(int64_t id, int64_t dst_id, float weight);
std::unordered_map<int64_t, int> &get_node_location() {
return node_location;
}
private:
std::unordered_map<uint64_t, int> node_location;
std::unordered_map<int64_t, int> node_location;
std::vector<Node *> bucket;
};
enum LRUResponse { ok = 0, blocked = 1, err = 2 };
struct SampleKey {
uint64_t node_key;
int64_t node_key;
size_t sample_size;
bool is_weighted;
SampleKey(uint64_t _node_key, size_t _sample_size, bool _is_weighted)
SampleKey(int64_t _node_key, size_t _sample_size, bool _is_weighted)
: node_key(_node_key),
sample_size(_sample_size),
is_weighted(_is_weighted) {}
......@@ -300,7 +304,7 @@ class ScaledLRU {
node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
}
if (node_size <= size_t(1.1 * size_limit) + 1) return 0;
if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
if (pthread_rwlock_wrlock(&rwlock) == 0) {
// VLOG(0)<"in shrink\n";
global_count = 0;
......@@ -308,9 +312,9 @@ class ScaledLRU {
global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
}
// VLOG(0)<<"global_count "<<global_count<<"\n";
if (global_count > size_limit) {
if ((size_t)global_count > size_limit) {
size_t remove = global_count - size_limit;
for (int i = 0; i < lru_pool.size(); i++) {
for (size_t i = 0; i < lru_pool.size(); i++) {
lru_pool[i].total_diff = 0;
lru_pool[i].remove_count +=
1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
......@@ -352,9 +356,69 @@ class ScaledLRU {
friend class RandomSampleLRU<K, V>;
};
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
public:
GraphSampler() {
status = GraphSamplerStatus::waiting;
thread_pool.reset(new ::ThreadPool(1));
callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
return;
};
}
virtual int run_graph_sampling() = 0;
virtual int start_graph_sampling() {
if (status != GraphSamplerStatus::waiting) {
return -1;
}
std::promise<int> prom;
std::future<int> fut = prom.get_future();
graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
prom.set_value(0);
status = GraphSamplerStatus::running;
return run_graph_sampling();
});
return fut.get();
}
virtual void init(size_t gpu_num, GraphTable *graph_table,
std::vector<std::string> args) = 0;
virtual void set_graph_sample_callback(
std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
callback) {
this->callback = callback;
}
virtual int end_graph_sampling() {
if (status == GraphSamplerStatus::running) {
status = GraphSamplerStatus::terminating;
return graph_sample_task_over.get();
}
return -1;
}
virtual GraphSamplerStatus get_graph_sampler_status() { return status; }
protected:
std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
callback;
std::shared_ptr<::ThreadPool> thread_pool;
GraphSamplerStatus status;
std::future<int> graph_sample_task_over;
std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif
class GraphTable : public SparseTable {
public:
GraphTable() { use_cache = false; }
GraphTable() {
use_cache = false;
shard_num = 0;
#ifdef PADDLE_WITH_HETERPS
gpups_mode = false;
#endif
rw_lock.reset(new pthread_rwlock_t());
}
virtual ~GraphTable();
virtual int32_t pull_graph_list(int start, int size,
std::unique_ptr<char[]> &buffer,
......@@ -362,7 +426,7 @@ class GraphTable : public SparseTable {
int step);
virtual int32_t random_sample_neighbors(
uint64_t *node_ids, int sample_size,
int64_t *node_ids, int sample_size,
std::vector<std::shared_ptr<char>> &buffers,
std::vector<int> &actual_sizes, bool need_weight);
......@@ -370,9 +434,11 @@ class GraphTable : public SparseTable {
int &actual_sizes);
virtual int32_t get_nodes_ids_by_ranges(
std::vector<std::pair<int, int>> ranges, std::vector<uint64_t> &res);
virtual int32_t initialize();
std::vector<std::pair<int, int>> ranges, std::vector<int64_t> &res);
virtual int32_t initialize() { return 0; }
virtual int32_t initialize(const TableParameter &config,
const FsClientParameter &fs_config);
virtual int32_t initialize(const GraphParameter &config);
int32_t load(const std::string &path, const std::string &param);
int32_t load_graph_split_config(const std::string &path);
......@@ -380,13 +446,13 @@ class GraphTable : public SparseTable {
int32_t load_nodes(const std::string &path, std::string node_type);
int32_t add_graph_node(std::vector<uint64_t> &id_list,
int32_t add_graph_node(std::vector<int64_t> &id_list,
std::vector<bool> &is_weight_list);
int32_t remove_graph_node(std::vector<uint64_t> &id_list);
int32_t remove_graph_node(std::vector<int64_t> &id_list);
int32_t get_server_index_by_id(uint64_t id);
Node *find_node(uint64_t id);
int32_t get_server_index_by_id(int64_t id);
Node *find_node(int64_t id);
virtual int32_t pull_sparse(float *values,
const PullSparseValue &pull_value) {
......@@ -407,16 +473,27 @@ class GraphTable : public SparseTable {
return 0;
}
virtual int32_t initialize_shard() { return 0; }
virtual uint32_t get_thread_pool_index_by_shard_index(uint64_t shard_index);
virtual uint32_t get_thread_pool_index(uint64_t node_id);
virtual int32_t set_shard(size_t shard_idx, size_t server_num) {
_shard_idx = shard_idx;
/*
_shard_num is not used in graph_table, this following operation is for the
purpose of
being compatible with base class table.
*/
_shard_num = server_num;
this->server_num = server_num;
return 0;
}
virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
virtual uint32_t get_thread_pool_index(int64_t node_id);
virtual std::pair<int32_t, std::string> parse_feature(std::string feat_str);
virtual int32_t get_node_feat(const std::vector<uint64_t> &node_ids,
virtual int32_t get_node_feat(const std::vector<int64_t> &node_ids,
const std::vector<std::string> &feature_names,
std::vector<std::vector<std::string>> &res);
virtual int32_t set_node_feat(
const std::vector<uint64_t> &node_ids,
const std::vector<int64_t> &node_ids,
const std::vector<std::string> &feature_names,
const std::vector<std::vector<std::string>> &res);
......@@ -433,11 +510,25 @@ class GraphTable : public SparseTable {
}
return 0;
}
#ifdef PADDLE_WITH_HETERPS
virtual int32_t start_graph_sampling() {
return this->graph_sampler->start_graph_sampling();
}
virtual int32_t end_graph_sampling() {
return this->graph_sampler->end_graph_sampling();
}
virtual int32_t set_graph_sample_callback(
std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
callback) {
graph_sampler->set_graph_sample_callback(callback);
return 0;
}
// virtual GraphSampler *get_graph_sampler() { return graph_sampler.get(); }
#endif
protected:
std::vector<GraphShard *> shards, extra_shards;
size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
const int task_pool_size_ = 24;
int task_pool_size_ = 24;
const int random_sample_nodes_ranges = 3;
std::vector<std::string> feat_name;
......@@ -450,11 +541,61 @@ class GraphTable : public SparseTable {
std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
std::unordered_set<uint64_t> extra_nodes;
std::unordered_map<uint64_t, size_t> extra_nodes_to_thread_index;
std::unordered_set<int64_t> extra_nodes;
std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
bool use_cache, use_duplicate_nodes;
mutable std::mutex mutex_;
std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
// paddle::framework::GpuPsGraphTable gpu_graph_table;
bool gpups_mode;
// std::shared_ptr<::ThreadPool> graph_sample_pool;
std::shared_ptr<GraphSampler> graph_sampler;
REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
#endif
};
#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
public:
CompleteGraphSampler() {}
~CompleteGraphSampler() {}
// virtual pthread_rwlock_t *export_rw_lock();
virtual int run_graph_sampling();
virtual void init(size_t gpu_num, GraphTable *graph_table,
std::vector<std::string> args_);
protected:
GraphTable *graph_table;
std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
std::vector<std::vector<int64_t>> sample_neighbors;
// std::vector<GpuPsCommGraph> sample_res;
// std::shared_ptr<std::mt19937_64> random;
int gpu_num;
};
class BasicBfsGraphSampler : public GraphSampler {
public:
BasicBfsGraphSampler() {}
~BasicBfsGraphSampler() {}
// virtual pthread_rwlock_t *export_rw_lock();
virtual int run_graph_sampling();
virtual void init(size_t gpu_num, GraphTable *graph_table,
std::vector<std::string> args_);
protected:
GraphTable *graph_table;
// std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
std::vector<std::vector<int64_t>> sample_neighbors;
size_t gpu_num;
int node_num_for_each_shard, edge_num_for_each_node;
int rounds, interval;
std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
sample_neighbors_map;
};
#endif
} // namespace distributed
}; // namespace paddle
......
......@@ -23,6 +23,7 @@
#include "gflags/gflags.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
namespace paddle {
......@@ -117,13 +118,9 @@ class TruncatedGaussianInitializer : public Initializer {
seed_ = static_cast<unsigned int>(std::stoi(attrs[1]));
mean_ = std::stof(attrs[2]);
std_ = std::stof(attrs[3]);
auto normal_cdf = [](float x) {
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
};
float a_normal_cdf = normal_cdf((-2.0 - mean_) / std_);
float b_normal_cdf = normal_cdf((2.0 - mean_) / std_);
std::uniform_real_distribution<float> dist_(2.0 * a_normal_cdf - 1.0,
2.0 * b_normal_cdf - 1.0);
std::uniform_real_distribution<float> dist_(
std::numeric_limits<float>::min(), 1.0);
random_engine_ = framework::GetCPURandomEngine(seed_);
}
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#define DECLARE_GRAPH_FRIEND_CLASS(a) friend class a;
#define DECLARE_1_FRIEND_CLASS(a, ...) DECLARE_GRAPH_FRIEND_CLASS(a)
#define DECLARE_2_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_1_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_3_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_2_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_4_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_3_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_5_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_4_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_6_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_5_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_7_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_6_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_8_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_7_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_9_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_8_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_10_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_9_FRIEND_CLASS(__VA_ARGS__)
#define DECLARE_11_FRIEND_CLASS(a, ...) \
DECLARE_GRAPH_FRIEND_CLASS(a) DECLARE_10_FRIEND_CLASS(__VA_ARGS__)
#define REGISTER_GRAPH_FRIEND_CLASS(n, ...) \
DECLARE_##n##_FRIEND_CLASS(__VA_ARGS__)
......@@ -17,11 +17,11 @@
namespace paddle {
namespace distributed {
void GraphEdgeBlob::add_edge(uint64_t id, float weight = 1) {
void GraphEdgeBlob::add_edge(int64_t id, float weight = 1) {
id_arr.push_back(id);
}
void WeightedGraphEdgeBlob::add_edge(uint64_t id, float weight = 1) {
void WeightedGraphEdgeBlob::add_edge(int64_t id, float weight = 1) {
id_arr.push_back(id);
weight_arr.push_back(weight);
}
......
......@@ -24,19 +24,20 @@ class GraphEdgeBlob {
GraphEdgeBlob() {}
virtual ~GraphEdgeBlob() {}
size_t size() { return id_arr.size(); }
virtual void add_edge(uint64_t id, float weight);
uint64_t get_id(int idx) { return id_arr[idx]; }
virtual void add_edge(int64_t id, float weight);
int64_t get_id(int idx) { return id_arr[idx]; }
virtual float get_weight(int idx) { return 1; }
std::vector<int64_t>& export_id_array() { return id_arr; }
protected:
std::vector<uint64_t> id_arr;
std::vector<int64_t> id_arr;
};
class WeightedGraphEdgeBlob : public GraphEdgeBlob {
public:
WeightedGraphEdgeBlob() {}
virtual ~WeightedGraphEdgeBlob() {}
virtual void add_edge(uint64_t id, float weight);
virtual void add_edge(int64_t id, float weight);
virtual float get_weight(int idx) { return weight_arr[idx]; }
protected:
......
......@@ -48,6 +48,7 @@ class Node {
virtual void set_feature(int idx, std::string str) {}
virtual void set_feature_size(int size) {}
virtual int get_feature_size() { return 0; }
virtual size_t get_neighbor_size() { return 0; }
protected:
uint64_t id;
......@@ -70,6 +71,7 @@ class GraphNode : public Node {
}
virtual uint64_t get_neighbor_id(int idx) { return edges->get_id(idx); }
virtual float get_neighbor_weight(int idx) { return edges->get_weight(idx); }
virtual size_t get_neighbor_size() { return edges->size(); }
protected:
Sampler *sampler;
......
......@@ -37,6 +37,8 @@ REGISTER_PSCORE_CLASS(Table, CommonDenseTable);
REGISTER_PSCORE_CLASS(Table, CommonSparseTable);
#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_CLASS(Table, SSDSparseTable);
REGISTER_PSCORE_CLASS(GraphSampler, CompleteGraphSampler);
REGISTER_PSCORE_CLASS(GraphSampler, BasicBfsGraphSampler);
#endif
REGISTER_PSCORE_CLASS(Table, SparseGeoTable);
REGISTER_PSCORE_CLASS(Table, BarrierTable);
......
......@@ -24,6 +24,9 @@ cc_test(graph_node_test SRCS graph_node_test.cc DEPS graph_py_service scope serv
set_source_files_properties(graph_node_split_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(graph_node_split_test SRCS graph_node_split_test.cc DEPS graph_py_service scope server client communicator ps_service boost table ps_framework_proto ${COMMON_DEPS})
set_source_files_properties(graph_table_sample_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(graph_table_sample_test SRCS graph_table_sample_test.cc DEPS scope server communicator ps_service boost table ps_framework_proto ${COMMON_DEPS})
set_source_files_properties(feature_value_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(feature_value_test SRCS feature_value_test.cc DEPS ${COMMON_DEPS} boost table)
......
......@@ -236,7 +236,7 @@ void RunGraphSplit() {
sleep(2);
std::map<uint64_t, std::vector<paddle::distributed::Region>> dense_regions;
dense_regions.insert(
std::pair<uint64_t, std::vector<paddle::distributed::Region>>(0, {}));
std::pair<int64_t, std::vector<paddle::distributed::Region>>(0, {}));
auto regions = dense_regions[0];
RunClient(dense_regions, 0, pserver_ptr_->get_service());
......@@ -250,16 +250,16 @@ void RunGraphSplit() {
worker_ptr_->load(0, std::string(edge_file_name), std::string("e>"));
srand(time(0));
pull_status.wait();
std::vector<std::vector<uint64_t>> _vs;
std::vector<std::vector<int64_t>> _vs;
std::vector<std::vector<float>> vs;
pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 10240001024), 4, _vs, vs, true);
0, std::vector<int64_t>(1, 10240001024), 4, _vs, vs, true);
pull_status.wait();
ASSERT_EQ(0, _vs[0].size());
_vs.clear();
vs.clear();
pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 97), 4, _vs, vs, true);
0, std::vector<int64_t>(1, 97), 4, _vs, vs, true);
pull_status.wait();
ASSERT_EQ(3, _vs[0].size());
std::remove(edge_file_name);
......
......@@ -48,10 +48,10 @@ namespace distributed = paddle::distributed;
void testSampleNodes(
std::shared_ptr<paddle::distributed::GraphBrpcClient>& worker_ptr_) {
std::vector<uint64_t> ids;
std::vector<int64_t> ids;
auto pull_status = worker_ptr_->random_sample_nodes(0, 0, 6, ids);
std::unordered_set<uint64_t> s;
std::unordered_set<uint64_t> s1 = {37, 59};
std::unordered_set<int64_t> s;
std::unordered_set<int64_t> s1 = {37, 59};
pull_status.wait();
for (auto id : ids) s.insert(id);
ASSERT_EQ(true, s.size() == s1.size());
......@@ -106,14 +106,14 @@ void testFeatureNodeSerializeFloat64() {
void testSingleSampleNeighboor(
std::shared_ptr<paddle::distributed::GraphBrpcClient>& worker_ptr_) {
std::vector<std::vector<uint64_t>> vs;
std::vector<std::vector<int64_t>> vs;
std::vector<std::vector<float>> vs1;
auto pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 37), 4, vs, vs1, true);
0, std::vector<int64_t>(1, 37), 4, vs, vs1, true);
pull_status.wait();
std::unordered_set<uint64_t> s;
std::unordered_set<uint64_t> s1 = {112, 45, 145};
std::unordered_set<int64_t> s;
std::unordered_set<int64_t> s1 = {112, 45, 145};
for (auto g : vs[0]) {
s.insert(g);
}
......@@ -126,7 +126,7 @@ void testSingleSampleNeighboor(
vs.clear();
vs1.clear();
pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 96), 4, vs, vs1, true);
0, std::vector<int64_t>(1, 96), 4, vs, vs1, true);
pull_status.wait();
s1 = {111, 48, 247};
for (auto g : vs[0]) {
......@@ -147,30 +147,30 @@ void testAddNode(
std::shared_ptr<paddle::distributed::GraphBrpcClient>& worker_ptr_) {
worker_ptr_->clear_nodes(0);
int total_num = 270000;
uint64_t id;
std::unordered_set<uint64_t> id_set;
int64_t id;
std::unordered_set<int64_t> id_set;
for (int i = 0; i < total_num; i++) {
while (id_set.find(id = rand()) != id_set.end())
;
id_set.insert(id);
}
std::vector<uint64_t> id_list(id_set.begin(), id_set.end());
std::vector<int64_t> id_list(id_set.begin(), id_set.end());
std::vector<bool> weight_list;
auto status = worker_ptr_->add_graph_node(0, id_list, weight_list);
status.wait();
std::vector<uint64_t> ids[2];
std::vector<int64_t> ids[2];
for (int i = 0; i < 2; i++) {
auto sample_status =
worker_ptr_->random_sample_nodes(0, i, total_num, ids[i]);
sample_status.wait();
}
std::unordered_set<uint64_t> id_set_check(ids[0].begin(), ids[0].end());
std::unordered_set<int64_t> id_set_check(ids[0].begin(), ids[0].end());
for (auto x : ids[1]) id_set_check.insert(x);
ASSERT_EQ(id_set.size(), id_set_check.size());
for (auto x : id_set) {
ASSERT_EQ(id_set_check.find(x) != id_set_check.end(), true);
}
std::vector<uint64_t> remove_ids;
std::vector<int64_t> remove_ids;
for (auto p : id_set_check) {
if (remove_ids.size() == 0)
remove_ids.push_back(p);
......@@ -187,7 +187,7 @@ void testAddNode(
worker_ptr_->random_sample_nodes(0, i, total_num, ids[i]);
sample_status.wait();
}
std::unordered_set<uint64_t> id_set_check1(ids[0].begin(), ids[0].end());
std::unordered_set<int64_t> id_set_check1(ids[0].begin(), ids[0].end());
for (auto x : ids[1]) id_set_check1.insert(x);
ASSERT_EQ(id_set_check1.size(), id_set_check.size());
for (auto x : id_set_check1) {
......@@ -196,14 +196,14 @@ void testAddNode(
}
void testBatchSampleNeighboor(
std::shared_ptr<paddle::distributed::GraphBrpcClient>& worker_ptr_) {
std::vector<std::vector<uint64_t>> vs;
std::vector<std::vector<int64_t>> vs;
std::vector<std::vector<float>> vs1;
std::vector<std::uint64_t> v = {37, 96};
std::vector<std::int64_t> v = {37, 96};
auto pull_status =
worker_ptr_->batch_sample_neighbors(0, v, 4, vs, vs1, false);
pull_status.wait();
std::unordered_set<uint64_t> s;
std::unordered_set<uint64_t> s1 = {112, 45, 145};
std::unordered_set<int64_t> s;
std::unordered_set<int64_t> s1 = {112, 45, 145};
for (auto g : vs[0]) {
s.insert(g);
}
......@@ -417,7 +417,7 @@ void RunBrpcPushSparse() {
std::map<uint64_t, std::vector<paddle::distributed::Region>> dense_regions;
dense_regions.insert(
std::pair<uint64_t, std::vector<paddle::distributed::Region>>(0, {}));
std::pair<int64_t, std::vector<paddle::distributed::Region>>(0, {}));
auto regions = dense_regions[0];
RunClient(dense_regions, 0, pserver_ptr_->get_service());
......@@ -427,14 +427,14 @@ void RunBrpcPushSparse() {
worker_ptr_->load(0, std::string(edge_file_name), std::string("e>"));
srand(time(0));
pull_status.wait();
std::vector<std::vector<uint64_t>> _vs;
std::vector<std::vector<int64_t>> _vs;
std::vector<std::vector<float>> vs;
testSampleNodes(worker_ptr_);
sleep(5);
testSingleSampleNeighboor(worker_ptr_);
testBatchSampleNeighboor(worker_ptr_);
pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 10240001024), 4, _vs, vs, true);
0, std::vector<int64_t>(1, 10240001024), 4, _vs, vs, true);
pull_status.wait();
ASSERT_EQ(0, _vs[0].size());
paddle::distributed::GraphTable* g =
......@@ -445,14 +445,14 @@ void RunBrpcPushSparse() {
while (round--) {
vs.clear();
pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 37), 1, _vs, vs, false);
0, std::vector<int64_t>(1, 37), 1, _vs, vs, false);
pull_status.wait();
for (int i = 0; i < ttl; i++) {
std::vector<std::vector<uint64_t>> vs1;
std::vector<std::vector<int64_t>> vs1;
std::vector<std::vector<float>> vs2;
pull_status = worker_ptr_->batch_sample_neighbors(
0, std::vector<uint64_t>(1, 37), 1, vs1, vs2, false);
0, std::vector<int64_t>(1, 37), 1, vs1, vs2, false);
pull_status.wait();
ASSERT_EQ(_vs[0].size(), vs1[0].size());
......@@ -540,7 +540,7 @@ void RunBrpcPushSparse() {
// Test Pull by step
std::unordered_set<uint64_t> count_item_nodes;
std::unordered_set<int64_t> count_item_nodes;
// pull by step 2
for (int test_step = 1; test_step < 4; test_step++) {
count_item_nodes.clear();
......@@ -558,18 +558,18 @@ void RunBrpcPushSparse() {
ASSERT_EQ(count_item_nodes.size(), 12);
}
std::pair<std::vector<std::vector<uint64_t>>, std::vector<float>> res;
std::pair<std::vector<std::vector<int64_t>>, std::vector<float>> res;
res = client1.batch_sample_neighbors(
std::string("user2item"), std::vector<uint64_t>(1, 96), 4, true, false);
std::string("user2item"), std::vector<int64_t>(1, 96), 4, true, false);
ASSERT_EQ(res.first[0].size(), 3);
std::vector<uint64_t> node_ids;
std::vector<int64_t> node_ids;
node_ids.push_back(96);
node_ids.push_back(37);
res = client1.batch_sample_neighbors(std::string("user2item"), node_ids, 4,
true, false);
ASSERT_EQ(res.first[1].size(), 1);
std::vector<uint64_t> nodes_ids = client2.random_sample_nodes("user", 0, 6);
std::vector<int64_t> nodes_ids = client2.random_sample_nodes("user", 0, 6);
ASSERT_EQ(nodes_ids.size(), 2);
ASSERT_EQ(true, (nodes_ids[0] == 59 && nodes_ids[1] == 37) ||
(nodes_ids[0] == 37 && nodes_ids[1] == 59));
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <unistd.h>
#include <condition_variable> // NOLINT
#include <fstream>
#include <iomanip>
#include <string>
#include <thread> // NOLINT
#include <unordered_set>
#include <vector>
#include "google/protobuf/text_format.h"
#include <chrono>
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/ps/service/env.h"
#include "paddle/fluid/distributed/ps/service/sendrecv.pb.h"
#include "paddle/fluid/distributed/ps/table/common_graph_table.h"
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace framework = paddle::framework;
namespace platform = paddle::platform;
namespace operators = paddle::operators;
namespace memory = paddle::memory;
namespace distributed = paddle::distributed;
std::vector<std::string> edges = {
std::string("37\t45\t0.34"), std::string("37\t145\t0.31"),
std::string("37\t112\t0.21"), std::string("96\t48\t1.4"),
std::string("96\t247\t0.31"), std::string("96\t111\t1.21"),
std::string("59\t45\t0.34"), std::string("59\t145\t0.31"),
std::string("59\t122\t0.21"), std::string("97\t48\t0.34"),
std::string("97\t247\t0.31"), std::string("97\t111\t0.21")};
// odd id:96 48 122 112
char edge_file_name[] = "edges.txt";
std::vector<std::string> nodes = {
std::string("user\t37\ta 0.34\tb 13 14\tc hello\td abc"),
std::string("user\t96\ta 0.31\tb 15 10\tc 96hello\td abcd"),
std::string("user\t59\ta 0.11\tb 11 14"),
std::string("user\t97\ta 0.11\tb 12 11"),
std::string("item\t45\ta 0.21"),
std::string("item\t145\ta 0.21"),
std::string("item\t112\ta 0.21"),
std::string("item\t48\ta 0.21"),
std::string("item\t247\ta 0.21"),
std::string("item\t111\ta 0.21"),
std::string("item\t46\ta 0.21"),
std::string("item\t146\ta 0.21"),
std::string("item\t122\ta 0.21"),
std::string("item\t49\ta 0.21"),
std::string("item\t248\ta 0.21"),
std::string("item\t113\ta 0.21")};
char node_file_name[] = "nodes.txt";
void prepare_file(char file_name[], std::vector<std::string> data) {
std::ofstream ofile;
ofile.open(file_name);
for (auto x : data) {
ofile << x << std::endl;
}
ofile.close();
}
void testGraphSample() {
#ifdef PADDLE_WITH_HETERPS
::paddle::distributed::GraphParameter table_proto;
table_proto.set_gpups_mode(true);
table_proto.set_gpups_mode_shard_num(127);
table_proto.set_gpu_num(2);
distributed::GraphTable graph_table, graph_table1;
graph_table.initialize(table_proto);
prepare_file(edge_file_name, edges);
graph_table.load(std::string(edge_file_name), std::string("e>"));
std::vector<paddle::framework::GpuPsCommGraph> res;
std::promise<int> prom;
std::future<int> fut = prom.get_future();
graph_table.set_graph_sample_callback(
[&res, &prom](std::vector<paddle::framework::GpuPsCommGraph> &res0) {
res = res0;
prom.set_value(0);
});
graph_table.start_graph_sampling();
fut.get();
graph_table.end_graph_sampling();
ASSERT_EQ(2, res.size());
// 37 59 97
for (int i = 0; i < (int)res[1].node_size; i++) {
std::cout << res[1].node_list[i].node_id << std::endl;
}
ASSERT_EQ(3, res[1].node_size);
::paddle::distributed::GraphParameter table_proto1;
table_proto1.set_gpups_mode(true);
table_proto1.set_gpups_mode_shard_num(127);
table_proto1.set_gpu_num(2);
table_proto1.set_gpups_graph_sample_class("BasicBfsGraphSampler");
table_proto1.set_gpups_graph_sample_args("5,5,1,1");
graph_table1.initialize(table_proto1);
graph_table1.load(std::string(edge_file_name), std::string("e>"));
std::vector<paddle::framework::GpuPsCommGraph> res1;
std::promise<int> prom1;
std::future<int> fut1 = prom1.get_future();
graph_table1.set_graph_sample_callback(
[&res1, &prom1](std::vector<paddle::framework::GpuPsCommGraph> &res0) {
res1 = res0;
prom1.set_value(0);
});
graph_table1.start_graph_sampling();
fut1.get();
graph_table1.end_graph_sampling();
// distributed::BasicBfsGraphSampler *sampler1 =
// (distributed::BasicBfsGraphSampler *)graph_table1.get_graph_sampler();
// sampler1->start_graph_sampling();
// std::this_thread::sleep_for (std::chrono::seconds(1));
// std::vector<paddle::framework::GpuPsCommGraph> res1;// =
// sampler1->fetch_sample_res();
ASSERT_EQ(2, res1.size());
// odd id:96 48 122 112
for (int i = 0; i < (int)res1[0].node_size; i++) {
std::cout << res1[0].node_list[i].node_id << std::endl;
}
ASSERT_EQ(4, res1[0].node_size);
#endif
}
TEST(testGraphSample, Run) { testGraphSample(); }
......@@ -24,7 +24,7 @@
#include "paddle/fluid/platform/errors.h"
#include "glog/logging.h"
DECLARE_bool(retain_grad_for_all_tensor);
namespace egr {
static void CopyOrAddTensor(paddle::experimental::Tensor* tensor,
......@@ -39,8 +39,8 @@ static void CopyOrAddTensor(paddle::experimental::Tensor* tensor,
}
std::vector<std::vector<paddle::experimental::Tensor>> GradNodeAccumulation::
operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads) {
operator()(const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph) {
VLOG(3) << "Running Eager Backward Node: GradNodeAccumulation";
PADDLE_ENFORCE(grads.size() == 1,
paddle::platform::errors::Fatal(
......@@ -62,7 +62,7 @@ operator()(
grad_out = grads[0][0];
}
if (!weak_grad_.expired()) {
if (!weak_grad_.expired() && FLAGS_retain_grad_for_all_tensor) {
auto grad = weak_grad_.lock();
CopyOrAddTensor(grad.get(), grad_out);
}
......
......@@ -35,8 +35,15 @@ class GradNodeAccumulation : public GradNodeBase {
// Functor: perform backward computations
virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads)
override;
const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph = false) override;
void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }
bool IsTensorWrappersCleared() override {
VLOG(6) << "Do nothing here now";
return false;
}
std::string name() { return "GradNodeAccumulation"; }
......
......@@ -145,8 +145,8 @@ void GradNodeScale::SetTensorWrappers_X(
void GradNodeScale::SetAttributes_scale(float scale) { scale_ = scale; }
std::vector<std::vector<paddle::experimental::Tensor>> GradNodeScale::
operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads) {
operator()(const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph) {
// 1. Check Output Size
PADDLE_ENFORCE(
((grads.size() == 1) && (grads[0].size() == 1)),
......
......@@ -39,8 +39,15 @@ class GradNodeScale : public GradNodeBase {
// Functor: perform backward computations
virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads)
override;
const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph = false) override;
void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }
bool IsTensorWrappersCleared() override {
VLOG(6) << "Do nothing here now";
return false;
}
void SetTensorWrappers_X(
const std::vector<paddle::experimental::Tensor>& tensors);
......
......@@ -2074,7 +2074,8 @@ static std::string GenerateGradNodeCCContents(
const char* GRAD_FUNCTION_TEMPLATE =
"std::vector<std::vector<paddle::experimental::Tensor>> "
"GradNode%s::operator()(const "
"std::vector<std::vector<paddle::experimental::Tensor>>& grads) {\n%s\n}";
"std::vector<std::vector<paddle::experimental::Tensor>>& grads, "
"bool create_graph) {\n%s\n}";
std::string grad_function_str = paddle::string::Sprintf(
GRAD_FUNCTION_TEMPLATE, fwd_op_type, generated_grad_function_body);
......@@ -2109,18 +2110,28 @@ static std::string GenerateGradNodeHeaderContents(
"\n"
" virtual std::vector<std::vector<paddle::experimental::Tensor>> "
"operator()(const "
"std::vector<std::vector<paddle::experimental::Tensor>>& grads) "
"std::vector<std::vector<paddle::experimental::Tensor>>& grads, const "
"bool create_graph = false) "
"override;\n"
"\n"
" void ClearTensorWrappers() override { \n"
"%s\n"
" is_tensor_wrappers_cleared = true;\n"
" }\n"
" std::string name() override { return \" GradNode%s \"; } \n "
"\n"
" // SetX, SetY, ...\n"
"%s\n"
" // SetAttrMap\n"
"%s\n"
" bool IsTensorWrappersCleared() override { \n"
" return is_tensor_wrappers_cleared;\n"
" }\n"
" private:\n"
" // TensorWrappers\n"
"%s\n"
" bool is_tensor_wrappers_cleared = false;\n"
"\n"
" // Attribute Map\n"
"%s\n"
"};";
......@@ -2154,6 +2165,7 @@ static std::string GenerateGradNodeHeaderContents(
std::string set_tensor_wrappers_str = "";
std::string tensor_wrapper_members_str = "";
std::string clear_tensor_wrappers_str = "";
for (const auto& iter : op_base_infos) {
const std::map<std::string, std::string>& grad_ins_fwd_slotname_map =
iter.GetGradInsFwdSlotnameMap();
......@@ -2185,6 +2197,13 @@ static std::string GenerateGradNodeHeaderContents(
SET_TENSOR_WRAPPER_BODY_TEMPLATE, tensor_wrapper_name,
struct_tensor_wrapper_name);
const char* CLEAR_TENSOR_WRAPPER_TEMPLATE =
"for (auto tw: %s) {\n"
" tw.clear();\n"
" }\n";
clear_tensor_wrappers_str += paddle::string::Sprintf(
CLEAR_TENSOR_WRAPPER_TEMPLATE, struct_tensor_wrapper_name);
} else {
const char* ATTR_TENSOR_WRAPPER_ARG_TEMPLATE =
"const paddle::experimental::Tensor& %s";
......@@ -2197,10 +2216,14 @@ static std::string GenerateGradNodeHeaderContents(
TENSOR_WRAPPER_MEMBER_TEMPLATE, struct_tensor_wrapper_name);
const char* SET_TENSOR_WRAPPER_BODY_TEMPLATE =
"%s = egr::TensorWrapper(%s, %s /*full_reserved*/);";
"%s = egr::TensorWrapper(%s, %s /*full_reserved*/);\n";
tensor_wrapper_body_str = paddle::string::Sprintf(
SET_TENSOR_WRAPPER_BODY_TEMPLATE, struct_tensor_wrapper_name,
tensor_wrapper_name, full_reserved_str);
const char* CLEAR_TENSOR_WRAPPER_TEMPLATE = " %s.clear();\n";
clear_tensor_wrappers_str += paddle::string::Sprintf(
CLEAR_TENSOR_WRAPPER_TEMPLATE, struct_tensor_wrapper_name);
}
std::string full_reserved_signature_str = "bool full_reserved";
const char* SET_TENSOR_WRAPPER_TEMPLATE =
......@@ -2215,8 +2238,8 @@ static std::string GenerateGradNodeHeaderContents(
std::string grad_node_str = paddle::string::Sprintf(
GRAD_NODE_TEMPLATE, op_type, op_type, op_type, op_type, op_type, op_type,
op_type, op_type, set_tensor_wrappers_str, set_attr_map_str,
tensor_wrapper_members_str, attr_members_str);
op_type, clear_tensor_wrappers_str, op_type, set_tensor_wrappers_str,
set_attr_map_str, tensor_wrapper_members_str, attr_members_str);
return grad_node_str;
}
......
......@@ -213,7 +213,8 @@ def ParseYamlArgs(string):
default_value = m.group(3).split("=")[1].strip() if len(
m.group(3).split("=")) > 1 else None
assert arg_type in yaml_types_mapping.keys(), arg_type
assert arg_type in yaml_types_mapping.keys(
), f"The argument type {arg_type} in yaml config is not supported in yaml_types_mapping."
arg_type = yaml_types_mapping[arg_type]
arg_name = RemoveSpecialSymbolsInName(arg_name)
......@@ -248,7 +249,8 @@ def ParseYamlReturns(string):
else:
ret_type = ret.strip()
assert ret_type in yaml_types_mapping.keys(), ret_type
assert ret_type in yaml_types_mapping.keys(
), f"The return type {ret_type} in yaml config is not supported in yaml_types_mapping."
ret_type = yaml_types_mapping[ret_type]
assert "Tensor" in ret_type
......@@ -477,6 +479,7 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map,
# SetTensorWrapper Methods & TensorWrapper Members
set_tensor_wrapper_methods_str = ""
tensor_wrapper_members_str = ""
clear_tensor_wrapper_str = ""
for tname, (ttype, is_fwd_input, _) in backward_fwd_input_map.items():
if tname in no_need_buffer_set:
no_need_buffer = "true"
......@@ -498,6 +501,13 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map,
"""
tensor_wrapper_members_str += PLAIN_TENSOR_MEMBER_TEMPLATE.format(
tensor_wrapper_name)
CLEAR_TENSOR_WRAPPERS_TEMPLATE = """
{}.clear();
"""
clear_tensor_wrapper_str += CLEAR_TENSOR_WRAPPERS_TEMPLATE.format(
tensor_wrapper_name)
else:
assert IsVectorTensorType(ttype)
SET_VECTOR_TENSOR_WRAPPER_TEMPLATE = """
......@@ -515,6 +525,15 @@ def GenerateNodeDeclaration(fwd_api_name, backward_fwd_input_map,
"""
tensor_wrapper_members_str += VECTOR_TENSOR_MEMBER_TEMPLATE.format(
tensor_wrapper_name)
CLEAR_TENSOR_WRAPPERS_TEMPLATE = """
for (auto tw: {}) {
tw.clear();
};
"""
clear_tensor_wrapper_str += CLEAR_TENSOR_WRAPPERS_TEMPLATE.format(
tensor_wrapper_name)
# End: SetTensorWrapper Methods & TensorWrapper Members
# SetAttributes & Attribute Members
......@@ -554,25 +573,37 @@ class {} : public egr::GradNodeBase {{
~{}() override = default;
virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads) override;
const std::vector<std::vector<paddle::experimental::Tensor>>& grads, bool create_graph = false) override;
std::string name() override {{ return \" {} \"; }}
void ClearTensorWrappers() override {{
{}
is_tensor_wrappers_cleared = true;
}}
// SetTensorWrapperX, SetTensorWrapperY, ...
{}
// SetAttributes
{}
bool IsTensorWrappersCleared() override {{
return is_tensor_wrappers_cleared;
}}
private:
// TensorWrappers
{}
bool is_tensor_wrappers_cleared = false;
// Attributes
{}
}};
"""
node_declaration_str = NODE_DECLARATION_TEMPLATE.format(
grad_node_name, grad_node_name, grad_node_name, grad_node_name,
grad_node_name, set_tensor_wrapper_methods_str,
set_attribute_methods_str, tensor_wrapper_members_str,
attribute_members_str)
grad_node_name, clear_tensor_wrapper_str,
set_tensor_wrapper_methods_str, set_attribute_methods_str,
tensor_wrapper_members_str, attribute_members_str)
return node_declaration_str
......@@ -636,7 +667,7 @@ def GenerateNodeDefinition(fwd_api_name, bwd_api_name, backward_fwd_input_map,
grad_api_namespace = f"paddle::experimental"
FUNCTION_TEMPLATE = """
std::vector<std::vector<paddle::experimental::Tensor>> {}::operator()(const std::vector<std::vector<paddle::experimental::Tensor>>& grads) {{
std::vector<std::vector<paddle::experimental::Tensor>> {}::operator()(const std::vector<std::vector<paddle::experimental::Tensor>>& grads, bool create_graph) {{
// Call grad_api function
auto grad_api_returns = {}::{}({});
{}
......
......@@ -25,7 +25,7 @@ atype_to_parsing_function = {
"std::string": "CastPyArg2String",
"int64_t": "CastPyArg2Long",
"float": "CastPyArg2Float",
"string": "CastPyArg2String",
"std::string": "CastPyArg2String",
"std::vector<bool>": "CastPyArg2Booleans",
"std::vector<int>": "CastPyArg2Ints",
"std::vector<long>": "CastPyArg2Longs",
......
......@@ -39,12 +39,21 @@ std::unordered_map<GradNodeBase*, int> getInDegreeMap(
// Copy nodes
std::queue<GradNodeBase*> queue = init_queue;
std::unordered_set<GradNodeBase*> visited;
size_t potential_startup_ops_cnt = queue.size();
size_t cnt = 0;
// Visit each node exactly once in any order
while (!queue.empty()) {
GradNodeBase* node = queue.front();
queue.pop();
if (cnt < potential_startup_ops_cnt) {
if (!node_in_degree_map.count(node)) {
node_in_degree_map[node] = 0;
}
cnt += 1;
}
if (visited.count(node)) {
continue;
}
......@@ -76,23 +85,248 @@ std::unordered_map<GradNodeBase*, int> getInDegreeMap(
return node_in_degree_map;
}
void RunBackward(const std::vector<paddle::experimental::Tensor>& tensors,
const std::vector<paddle::experimental::Tensor>& grad_tensors,
bool retain_graph) {
paddle::platform::RecordEvent backward_record_event(
"backward", paddle::platform::TracerEventType::Operator, 1);
// Remove some nodes those doesn't need to be
// stored in potential_stop_nodes、potential_startup_nodes
void UpdateGraphInfo(
std::unordered_map<GradNodeBase*, AutogradMeta*>*
target_nodes_inputmeta_map,
std::unordered_map<GradNodeBase*, std::unordered_set<GradNodeBase*>>*
depending_nodes,
std::unordered_set<GradNodeBase*>* potential_stop_nodes,
std::unordered_set<GradNodeBase*>* potential_startup_nodes) {
// Updated potential_sotp_nodes by depending_nodes,
// make sure the path from root to target_node is ok
std::unordered_set<GradNodeBase*> _startup_ops;
VLOG(6) << "Running in UpdateGraphInfo";
std::queue<GradNodeBase*> queue;
for (auto& target_nodes_inputmeta_pair : *target_nodes_inputmeta_map) {
queue.emplace(target_nodes_inputmeta_pair.first);
}
while (!queue.empty()) {
auto* target_node = queue.front();
queue.pop();
if (!(*depending_nodes)[target_node].empty()) {
auto precedding_nodes = (*depending_nodes)[target_node];
for (auto pre_nodes : precedding_nodes) {
queue.emplace(pre_nodes);
if (potential_stop_nodes->find(pre_nodes) !=
potential_stop_nodes->end()) {
potential_stop_nodes->erase(pre_nodes);
}
}
} else { // startup_ops have no precedding nodes
VLOG(6) << "Emplace _startup_ops";
_startup_ops.emplace(target_node);
}
}
// Purify potential_startup_nodes again, remove some
// potential startup_nodes that unreach to input target nodes
if (!_startup_ops.empty()) {
std::unordered_set<GradNodeBase*> potential_startup_nodes_to_be_erased;
for (auto node : *potential_startup_nodes) {
if (_startup_ops.count(node) == 0) {
VLOG(6) << "Set up potential_startup_nodes_to_be_erased";
potential_startup_nodes_to_be_erased.emplace(node);
}
}
if (!potential_startup_nodes_to_be_erased.empty()) {
for (auto node : potential_startup_nodes_to_be_erased) {
VLOG(6) << "Erase nodes in potential_startup_nodes_to_be_erased";
potential_startup_nodes->erase(node);
}
}
}
}
// Get Graph Info Betweent input target gradnode and outputs,
// record depending_nodes、 potential_stop_nodes、potential_startup_nodes
void GetGraphInfoBetweenTargets(
const std::queue<GradNodeBase*>& init_queue,
std::unordered_map<GradNodeBase*, AutogradMeta*>*
input_target_nodes_inputmeta_map,
std::unordered_map</*child node*/ GradNodeBase*,
/*father nodes*/ std::unordered_set<GradNodeBase*>>*
depending_nodes,
std::unordered_set<GradNodeBase*>* potential_stop_nodes,
std::unordered_set<GradNodeBase*>* potential_startup_nodes) {
if (input_target_nodes_inputmeta_map->empty()) return;
VLOG(6) << "Runing In GetGraphInfoBetweenTargets";
// Calculate in_degree for each node
std::unordered_map<GradNodeBase*, int> node_in_degree_map;
// Copy nodes
std::queue<GradNodeBase*> queue = init_queue;
std::unordered_set<GradNodeBase*> visited;
// Visit each node exactly once in any order
while (!queue.empty()) {
GradNodeBase* node = queue.front();
queue.pop();
if (visited.count(node)) {
continue;
}
visited.insert(node);
// Check node is target_nodes or not, if node is not target_node,
// all the next_node will be marked in potential_stop_nodes
bool is_potential_stop_nodes =
input_target_nodes_inputmeta_map->count(node);
// Find and append next nodes
const std::vector<std::vector<Edge>>& edges = node->GetEdges();
for (const auto& edge_list : edges) {
for (const Edge& edge : edge_list) {
GradNodeBase* next_node = edge.GetMutableGradNode().get();
// Next node could be nullptr if it is leaf tensor with no
// AccumulationNode attached
// Or it could also originated from dispensable inputs
if (!next_node) continue;
// if node not in input_target_nodes,
// all the next_nodes of current node will be inserted to
// potential_stop_node
if (is_potential_stop_nodes) {
potential_stop_nodes->emplace(next_node);
}
// Update in_degree
if (!node_in_degree_map.count(next_node))
node_in_degree_map[next_node] = 0;
node_in_degree_map[next_node]++;
// Record depending relationship
(*depending_nodes)[next_node].emplace(node);
queue.push(next_node);
}
}
}
// Update Graph Info, remove some stop_node in potential_stop_nodes
UpdateGraphInfo(input_target_nodes_inputmeta_map, depending_nodes,
potential_stop_nodes, potential_startup_nodes);
}
void GetTargetNodesInfo(const std::vector<paddle::experimental::Tensor>& inputs,
std::unordered_map<GradNodeBase*, AutogradMeta*>*
target_nodes_inputmeta_map) {
VLOG(6) << "Running in GetTargetNodesInfo";
if (!inputs.empty()) {
VLOG(6) << "Inputs are not empty";
size_t num_inputs = inputs.size();
for (size_t i = 0; i < num_inputs; i++) {
AutogradMeta* auto_grad_meta =
EagerUtils::unsafe_autograd_meta(inputs[i]);
auto target_node = auto_grad_meta->GetMutableGradNode().get();
PADDLE_ENFORCE_NOT_NULL(target_node,
paddle::platform::errors::Fatal(
"There is no grad op for input:%d or it's"
"stop_gradient=True",
i));
(*target_nodes_inputmeta_map)[target_node] = auto_grad_meta;
}
}
}
std::vector<paddle::experimental::Tensor> GetResults(
const std::vector<paddle::experimental::Tensor>& inputs,
std::unordered_map<GradNodeBase*, paddle::experimental::Tensor>*
results_map,
bool allow_unused, bool create_graph) {
VLOG(6) << "Running in GetResults";
if (inputs.empty()) return {};
std::vector<paddle::experimental::Tensor> results;
results.reserve(inputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
auto& input = inputs[i];
AutogradMeta* auto_grad_meta = EagerUtils::unsafe_autograd_meta(input);
auto target_node = auto_grad_meta->GetMutableGradNode().get();
auto iter = results_map->find(target_node);
if (iter != results_map->end()) {
// set StopGradient = !create_graph
AutogradMeta* tensor_auto_grad_meta =
EagerUtils::autograd_meta(&(iter->second));
tensor_auto_grad_meta->SetStopGradient(!create_graph);
results.emplace_back(iter->second);
} else {
PADDLE_ENFORCE_EQ(allow_unused, true,
paddle::platform::errors::InvalidArgument(
"The %d-th input does not appear in the backward "
"graph. Please check the input variable or set "
"allow_unused=True to get None result.",
i));
results.emplace_back();
}
}
return results;
}
// Enforce GradNode has TensorWrappers as Input
void EnforceGradNodeHasInput(GradNodeBase* node) {
VLOG(6) << "Running in EnforceGradNodeHasInput";
PADDLE_ENFORCE_NE(
node->IsTensorWrappersCleared(), true,
paddle::platform::errors::Fatal(
"The TensorWrappers of %s do not exist. This may be because:\n"
"You calculate backward twice for the same subgraph without "
"setting retain_graph=True. Please set retain_graph=True in the "
"first backward/grad call.\n",
node->name()));
}
// Purify potential_startup_nodes, remove nodes those are the same as
// input_target_nodes
void PurifyPotentialStartUpNodes(
std::unordered_set<GradNodeBase*>* potential_startup_nodes,
std::unordered_map<GradNodeBase*, AutogradMeta* /* InputMeta */>*
input_target_nodes_inputmeta_map) {
VLOG(6) << "Running in PurifyPotentialStartUpNodes";
if (input_target_nodes_inputmeta_map->empty()) return;
std::unordered_set<GradNodeBase*> potential_startup_nodes_to_be_erased;
for (auto startup_op : *potential_startup_nodes) {
auto iter = input_target_nodes_inputmeta_map->find(startup_op);
if (iter != input_target_nodes_inputmeta_map->end()) {
potential_startup_nodes_to_be_erased.emplace(iter->first);
}
}
if (!potential_startup_nodes_to_be_erased.empty()) {
for (auto nodes : potential_startup_nodes_to_be_erased) {
potential_startup_nodes->erase(nodes);
}
}
}
std::vector<paddle::experimental::Tensor> RunBackward(
const std::vector<paddle::experimental::Tensor>& tensors, // output
const std::vector<paddle::experimental::Tensor>& grad_tensors,
bool retain_graph, bool create_graph = false,
const std::vector<paddle::experimental::Tensor>& inputs = {},
bool allow_unused = false,
const std::vector<paddle::experimental::Tensor>& no_grad_vars = {}) {
VLOG(6) << "Start Backward";
// *Gradient Hook should happen at node-level
// *Inplace version check should perform at node-level
// *Cross-batch accumulation happens at forward pass
std::unordered_map<GradNodeBase*, AutogradMeta*>
no_grad_var_nodes_inputmeta_map;
// Get no_grad_vars's GradNodes and InputMeta Info
GetTargetNodesInfo(no_grad_vars, &no_grad_var_nodes_inputmeta_map);
/* --- Initialization --- */
// 1. Init queue with starting nodes
// 2. Prepare initial input buffers
std::queue<GradNodeBase*> queue;
std::unordered_map<GradNodeBase*, std::unique_ptr<GradTensorHolder>>
node_input_buffers_dict;
std::unordered_set<GradNodeBase*> potential_startup_nodes;
for (size_t i = 0; i < tensors.size(); i++) {
const paddle::experimental::Tensor& tensor = tensors[i];
......@@ -132,8 +366,17 @@ void RunBackward(const std::vector<paddle::experimental::Tensor>& tensors,
"size = 0 or same size as tensors"));
// Feed given tensor if it's provided
VLOG(6) << "Fill grad input tensor " << i << "with give grad tensor";
if (grad_tensors[i].is_initialized()) {
// Deep copy
paddle::experimental::Tensor tmp_tensor;
tmp_tensor.copy_(grad_tensors[i], grad_tensors[i].inner_place(), true);
node_input_buffers_dict[grad_node]->add(input_info.first,
input_info.second, tmp_tensor);
} else {
node_input_buffers_dict[grad_node]->add(
input_info.first, input_info.second, grad_tensors[i]);
}
} else {
VLOG(6) << "Fill grad input tensor " << i << " with 1.0";
......@@ -146,8 +389,9 @@ void RunBackward(const std::vector<paddle::experimental::Tensor>& tensors,
input_info.first, input_info.second, tensor, true /*fill_one=true*/);
}
// Prepare queue
// Prepare queue, potential startup_nodes
queue.push(grad_node);
potential_startup_nodes.emplace(grad_node);
}
VLOG(6) << "Update In degree Map for backward";
......@@ -155,25 +399,74 @@ void RunBackward(const std::vector<paddle::experimental::Tensor>& tensors,
std::unordered_map<GradNodeBase*, int> node_in_degree_map =
getInDegreeMap(queue);
// Get input's GradNodes and InputMeta Info
std::unordered_map<GradNodeBase*, AutogradMeta* /* InputMeta */>
input_target_nodes_inputmeta_map;
GetTargetNodesInfo(inputs, &input_target_nodes_inputmeta_map);
// Purify potential_startup_ops, remove those nodes that are the same as
// input_target_nodes
PurifyPotentialStartUpNodes(&potential_startup_nodes,
&input_target_nodes_inputmeta_map);
// Get Graph Info Betweent input target gradnode and outputs
// Record the depending_nodes and potential_stop_nodes
std::unordered_map<GradNodeBase* /* child node */,
std::unordered_set<GradNodeBase*> /* father node */>
depending_nodes;
std::unordered_set<GradNodeBase*> potential_stop_nodes;
// std::unordered_set<GradNodeBase*> startup_ops;
GetGraphInfoBetweenTargets(queue, &input_target_nodes_inputmeta_map,
&depending_nodes, &potential_stop_nodes,
&potential_startup_nodes);
// ready_queue store all startup nodes
std::queue<GradNodeBase*> ready_queue;
// startup op's indegree should be 0
for (auto node : potential_startup_nodes) {
if (node_in_degree_map[node] == 0) {
ready_queue.emplace(node);
}
}
VLOG(1) << " startup_ops' size is :" << ready_queue.size();
std::unordered_map<GradNodeBase*, paddle::experimental::Tensor> results_map;
// read_queue is empty only when 1.input equals to output. 2.input can not
// reach to output.
if (ready_queue.size() == 0) {
for (auto input_target_node : input_target_nodes_inputmeta_map) {
// out rank_info of forward op
auto rank_info = input_target_node.second->OutRankInfo();
if (node_input_buffers_dict[input_target_node.first]) {
auto& target_result =
node_input_buffers_dict[input_target_node.first]
->Buffers()[rank_info.first][rank_info.second];
// save the target result
results_map[input_target_node.first] = target_result;
}
}
}
/* --- Topological Visit --- */
// 1. Pop queue
// 2. Run node
// |- Check and capture target result
// |- node(grads)
// |- Prepare for next node
// 3. Update queue
VLOG(6) << "Run Backward";
while (!queue.empty()) {
GradNodeBase* node = queue.front();
while (!ready_queue.empty()) {
GradNodeBase* node = ready_queue.front();
VLOG(6) << "Running GradNode:" << node->name();
ready_queue.pop();
paddle::platform::RecordEvent node_record_event(
std::string(typeid(*node).name()) + " grad_node",
paddle::platform::TracerEventType::Operator, 1);
if (queue.size() > 1 && node_in_degree_map[node] != 0) {
queue.pop();
continue;
}
queue.pop();
// Run node: This is where Hook happens
PADDLE_ENFORCE(
node_input_buffers_dict.count(node),
......@@ -184,10 +477,45 @@ void RunBackward(const std::vector<paddle::experimental::Tensor>& tensors,
std::unique_ptr<GradTensorHolder> node_input_buffer =
std::move(node_input_buffers_dict[node]);
// get target grad_var from node_input_buffer by inputmeta
if (input_target_nodes_inputmeta_map.find(node) !=
input_target_nodes_inputmeta_map.end()) {
VLOG(6) << "Get target result by by inputmeta";
// out rank_info of forward op
auto rank_info = input_target_nodes_inputmeta_map[node]->OutRankInfo();
// rank_info is a pair, first means slot_id, second means rank.
auto& target_result =
node_input_buffer->Buffers()[rank_info.first][rank_info.second];
// save the target result
results_map[node] = target_result;
}
// no_grad_vars
if (no_grad_var_nodes_inputmeta_map.find(node) !=
no_grad_var_nodes_inputmeta_map.end()) {
VLOG(6) << "Change the input buffer[slot][rank] by Zeros";
auto rank_info = no_grad_var_nodes_inputmeta_map[node]->OutRankInfo();
node_input_buffer->SetBufferSlotRankZeros(rank_info.first,
rank_info.second);
}
VLOG(6) << "Running GradNode:" << node->name();
// check input
EnforceGradNodeHasInput(node);
VLOG(6) << "Run Backward Kernel with GradTensorHolder";
// Run Pre Backward Node and get outputs
std::vector<std::vector<paddle::experimental::Tensor>> grad_output_tensors =
(*node)(node_input_buffer->Buffers());
(*node)(node_input_buffer->Buffers(), create_graph);
// retain_grad or not
if (!retain_graph) {
VLOG(6)
<< "retain_graph is false, need to clear the TensorWrapper of nodes.";
node->ClearTensorWrappers();
}
// TODO(jiabin): Should we erase it or find a more efficient way.
node_input_buffers_dict.erase(node);
......@@ -252,18 +580,44 @@ void RunBackward(const std::vector<paddle::experimental::Tensor>& tensors,
// Update queue
node_in_degree_map[next_node]--;
PADDLE_ENFORCE(
node_in_degree_map[next_node] >= 0,
paddle::platform::errors::Fatal(
"Detected in-degree value smaller than zero. For Node: %s"
"Node's in-degree cannot be negative",
next_node->name()));
if (node_in_degree_map[next_node] == 0) {
queue.emplace(std::move(next_node));
bool is_potential_stop_node = potential_stop_nodes.count(next_node);
if (node_in_degree_map[next_node] == 0 && !is_potential_stop_node) {
ready_queue.emplace(std::move(next_node));
}
}
}
}
return GetResults(inputs, &results_map, allow_unused, create_graph);
}
void Backward(
const std::vector<paddle::experimental::Tensor>& tensors, // output
const std::vector<paddle::experimental::Tensor>& grad_tensors,
bool retain_graph) {
VLOG(6) << "Run in Backward";
paddle::platform::RecordEvent backward_record_event(
"backward", paddle::platform::TracerEventType::Operator, 1);
RunBackward(tensors, grad_tensors, retain_graph);
}
std::vector<paddle::experimental::Tensor> Grad(
const std::vector<paddle::experimental::Tensor>& tensors, // output
const std::vector<paddle::experimental::Tensor>& inputs,
const std::vector<paddle::experimental::Tensor>& grad_tensors,
bool retain_graph, bool create_graph, bool only_inputs, bool allow_unused,
const std::vector<paddle::experimental::Tensor>& no_grad_vars) {
VLOG(6) << "Run in Grad";
return RunBackward(tensors, grad_tensors, retain_graph, create_graph, inputs,
allow_unused, no_grad_vars);
}
} // namespace egr
......@@ -19,13 +19,21 @@
namespace egr {
// run_backward():
// Backward():
// tensors corresponds to those lived in the backward graph
// each grad_tensors[i] keeps the value for its corresponding tensors[i]
void RunBackward(const std::vector<paddle::experimental::Tensor> &tensors,
const std::vector<paddle::experimental::Tensor> &grad_tensors,
void Backward(const std::vector<paddle::experimental::Tensor>& tensors,
const std::vector<paddle::experimental::Tensor>& grad_tensors,
bool retain_graph = false);
std::vector<paddle::experimental::Tensor> Grad(
const std::vector<paddle::experimental::Tensor>& tensors,
const std::vector<paddle::experimental::Tensor>& inputs,
const std::vector<paddle::experimental::Tensor>& grad_tensors = {},
bool retain_graph = false, bool create_graph = false,
bool only_inputs = false, bool allow_unused = false,
const std::vector<paddle::experimental::Tensor>& no_grad_vars = {});
// Reserved for gradient()
} // namespace egr
......@@ -20,8 +20,8 @@
namespace egr {
std::vector<std::vector<paddle::experimental::Tensor>> RunCustomOpNode::
operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads) {
operator()(const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph) {
paddle::CustomOpKernelContext ctx;
auto grad_inputs_name = paddle::framework::OpMetaInfoHelper::GetInputs(
egr::Controller::Instance().GetOpMetaInfoMap().at(op_type_)[1]);
......
......@@ -37,8 +37,8 @@ class RunCustomOpNode : public GradNodeBase {
// Functor: perform backward computations
virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads)
override;
const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph) override;
std::string name() {
return paddle::string::Sprintf("RunCustomOpNode: %s_grad", op_type_);
......@@ -62,6 +62,12 @@ class RunCustomOpNode : public GradNodeBase {
return res;
}
void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }
bool IsTensorWrappersCleared() override {
VLOG(6) << "Do nothing here now";
return false;
}
void SetAttrs(const std::vector<paddle::any>& attr) { attrs_ = attr; }
public:
......
......@@ -95,8 +95,12 @@ class GradNodeBase {
* is better choice to fit this format.
* **/
virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads) = 0;
const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph = false) = 0;
virtual void ClearTensorWrappers() = 0;
virtual bool IsTensorWrappersCleared() = 0;
/**
* AddEdges is designed to set input tensors' backward Node as current
* node's Edges.
......
......@@ -21,6 +21,11 @@
namespace egr {
void GradTensorHolder::SetBufferSlotRankZeros(size_t slot_id, size_t rank) {
buffer_[slot_id][rank] =
paddle::experimental::zeros_like(buffer_[slot_id][rank]);
}
void GradTensorHolder::add(size_t slot_id, size_t rank,
const paddle::experimental::Tensor& t,
bool fill_one) {
......
......@@ -56,6 +56,8 @@ class GradTensorHolder {
return buffer_;
}
void SetBufferSlotRankZeros(size_t slot_id, size_t rank);
private:
std::vector<std::vector<paddle::experimental::Tensor>> buffer_;
};
......
......@@ -98,6 +98,8 @@ class TensorWrapper {
}
}
void clear() { intermidiate_tensor_.reset(); }
private:
bool full_reserved_ = false;
std::pair<size_t, size_t> out_rank_info_;
......
......@@ -17,6 +17,14 @@
#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(copy_sr, CPU, ALL_LAYOUT);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(copy, GPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(copy_sr, GPU, ALL_LAYOUT);
#endif
namespace eager_test {
using AbstractAutogradMeta = paddle::experimental::AbstractAutogradMeta;
......@@ -151,5 +159,50 @@ TEST(EagerVariable, Constructor) {
CHECK_EQ(dt3_tmp_ptr[1], 10.0f);
t4.reset();
CHECK(t4.defined() == false);
VLOG(6) << "Check Tensor Copy_";
std::vector<int64_t> rows = {1, 2};
std::vector<int64_t> dims = {2};
paddle::experimental::Tensor t7(std::make_shared<phi::SelectedRows>(rows, 2));
std::dynamic_pointer_cast<phi::SelectedRows>(t7.impl())
->mutable_value()
->Resize(phi::make_ddim(dims));
auto* dt7_tmp_ptr = std::dynamic_pointer_cast<phi::SelectedRows>(t7.impl())
->mutable_value()
->mutable_data<float>(paddle::platform::CPUPlace());
dt7_tmp_ptr[0] = 6.0f;
dt7_tmp_ptr[1] = 11.0f;
paddle::experimental::Tensor t8;
paddle::experimental::Tensor t5;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
paddle::experimental::Tensor t6;
paddle::experimental::Tensor t9;
VLOG(6) << "Check Tensor Copy_ Selected Rows";
t8.copy_(t7, paddle::platform::CUDAPlace(0), true);
t9.copy_(t8, paddle::platform::CPUPlace(), true);
auto* dt9_tmp_ptr = std::dynamic_pointer_cast<phi::SelectedRows>(t9.impl())
->value()
.data<float>();
CHECK_EQ(dt9_tmp_ptr[0], 6.0f);
CHECK_EQ(dt9_tmp_ptr[1], 11.0f);
CHECK_EQ(std::dynamic_pointer_cast<phi::SelectedRows>(t9.impl())->height(),
2);
VLOG(6) << "Check Tensor Copy_ Dense Tensor";
t5.copy_(t3, paddle::platform::CUDAPlace(0), true);
t6.copy_(t5, paddle::platform::CPUPlace(), true);
auto* dt6_tmp_ptr =
std::dynamic_pointer_cast<phi::DenseTensor>(t6.impl())->data<float>();
CHECK_EQ(dt6_tmp_ptr[0], 5.0f);
CHECK_EQ(dt6_tmp_ptr[1], 10.0f);
#else
t5.copy_(t3, paddle::platform::CPUPlace(), true);
auto* dt5_tmp_ptr =
std::dynamic_pointer_cast<phi::DenseTensor>(t5.impl())->data<float>();
CHECK_EQ(dt5_tmp_ptr[0], 5.0f);
CHECK_EQ(dt5_tmp_ptr[1], 10.0f);
#endif
VLOG(6) << "Finish";
}
......@@ -32,8 +32,8 @@ class GradTestNode : public egr::GradNodeBase {
GradTestNode() : GradNodeBase() { val_ = 1.0; }
std::string name() override { return "GradTestNode"; }
std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>>& grads)
override {
const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
bool create_graph = false) override {
val_ = std::dynamic_pointer_cast<phi::DenseTensor>(grads[0][0].impl())
->data<float>()[0];
phi::DenseTensorMeta meta =
......@@ -49,6 +49,11 @@ class GradTestNode : public egr::GradNodeBase {
std::vector<std::vector<paddle::experimental::Tensor>> res = {{et1}};
return res;
}
void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }
bool IsTensorWrappersCleared() override {
VLOG(6) << "Do nothing here now";
return false;
}
float val_;
};
} // namespace eager_test
......@@ -58,7 +58,7 @@ void benchmark_eager_scale(const paddle::experimental::Tensor& tensor,
}
std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor};
RunBackward(target_tensors, {});
Backward(target_tensors, {});
if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 10)
......@@ -80,7 +80,7 @@ void benchmark_eager_matmul(const paddle::experimental::Tensor& X,
}
std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor0};
RunBackward(target_tensors, {});
Backward(target_tensors, {});
if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 2)
......@@ -106,7 +106,7 @@ void benchmark_eager_intermediate_matmul(const paddle::experimental::Tensor& X,
}
std::vector<paddle::experimental::Tensor> target_tensors = {input_tensor0};
RunBackward(target_tensors, {});
Backward(target_tensors, {});
if (accuracy_check) {
// Examine Forward Grad (w.r.t max_num_runs = 2)
......@@ -137,7 +137,7 @@ void benchmark_eager_intermediate_mlp(
reduce_sum_dygraph_function(input0, {{"reduce_all", true}});
std::vector<paddle::experimental::Tensor> target_tensors = {Out};
RunBackward(target_tensors, {});
Backward(target_tensors, {});
if (accuracy_check) {
std::unordered_map<std::string, float> result =
......
......@@ -5,6 +5,7 @@ cc_test(test_egr_task_backward SRCS backward_test.cc DEPS ${eager_deps} ${fluid_
cc_test(test_egr_task_hook SRCS hook_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node)
cc_test(test_egr_task_cross_batch SRCS cross_batch_accumulation_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node)
cc_test(test_egr_task_fwd_bwd_joint SRCS fwd_bwd_joint_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node)
cc_test(test_egr_task_grad SRCS grad_test.cc DEPS ${eager_deps} ${fluid_deps} eager_scale scale_node)
if(NOT ((NOT WITH_PYTHON) AND ON_INFER))
cc_test(test_egr_task_hook_intermidiate SRCS hook_test_intermidiate.cc DEPS ${eager_deps} ${fluid_deps} ${generated_deps} dygraph_node)
......
......@@ -33,6 +33,7 @@
#include "paddle/phi/core/kernel_registry.h"
PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT);
namespace egr {
......@@ -79,7 +80,7 @@ TEST(Backward, SingleNodeEmptyGrad) {
}
std::vector<paddle::experimental::Tensor> outs = {target_tensor};
// Run Backward
RunBackward(outs, {});
Backward(outs, {});
// Check Output Value
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 5.0);
......@@ -138,7 +139,7 @@ TEST(Backward, SingleNodeCustomGrad) {
}
// Run Backward
RunBackward(target_tensors, grad_tensors);
Backward(target_tensors, grad_tensors);
// Check Output Value
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 50.0);
......@@ -211,7 +212,7 @@ TEST(Backward, LinearNodes) {
}
// Use Empty Grad Tensor
RunBackward(target_tensors, {});
Backward(target_tensors, {});
// Check Output Value
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 50.0);
......@@ -315,7 +316,7 @@ TEST(Backward, WithAccumulation) {
node2_ptr->AddEdges(&res2, 0);
}
RunBackward(target_tensors, grad_tensors);
Backward(target_tensors, grad_tensors);
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 2500.0);
}
......
......@@ -71,12 +71,12 @@ TEST(CrossBatchAccumulation, SingleScaleNode) {
std::vector<egr::AutogradMeta*> res = {meta};
scale_node_ptr->AddEdges(&res, 0);
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(target_tensor, 1.0);
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 5.0);
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(target_tensor, 1.0);
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 10.0);
......
......@@ -86,7 +86,7 @@ TEST(FwdBwdJoint, SingleNode) {
std::vector<paddle::experimental::Tensor> outs = {out};
// 4. Run Backward
RunBackward(outs, {});
Backward(outs, {});
VLOG(7) << "Target Grad is: "
<< std::static_pointer_cast<phi::DenseTensor>(
......@@ -137,7 +137,7 @@ TEST(FwdBwdJoint, LinearNodes) {
std::vector<paddle::experimental::Tensor> outs = {out1};
// 4. Run Backward
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
eager_test::CompareGradTensorWithValue<float>(tensor, 10.0);
......@@ -203,7 +203,7 @@ TEST(FwdBwdJoint, BranchedNodes) {
// 4. Run Backward
std::vector<paddle::experimental::Tensor> outs = {out1, out2};
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
eager_test::CompareGradTensorWithValue<float>(tensor, 30.0);
......@@ -260,7 +260,7 @@ TEST(FwdBwdJoint, GradientHook) {
// 4. Run Backward
std::vector<paddle::experimental::Tensor> outs = {out1, out2};
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
// leaf grad
......@@ -318,13 +318,13 @@ TEST(FwdBwdJoint, CrossBatchAccumulation) {
// 4. Run Backward
std::vector<paddle::experimental::Tensor> outs = {out1, out2};
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
eager_test::CompareGradTensorWithValue<float>(tensor, 30.0);
// Cross Batch Accumulation
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
eager_test::CompareGradTensorWithValue<float>(tensor, 60.0);
......@@ -356,7 +356,7 @@ TEST(FwdBwdJoint, SingleNodeCUDA) {
std::vector<paddle::experimental::Tensor> outs = {out};
// 4. Run Backward
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
eager_test::CompareGradTensorWithValue<float>(tensor, 2.0);
......@@ -412,7 +412,7 @@ TEST(FwdBwdJoint, BranchedNodesCUDA) {
// TODO(jiabin): fix this with add functor
// 4. Run Backward
std::vector<paddle::experimental::Tensor> outs = {out1, out2};
RunBackward(outs, {});
Backward(outs, {});
// Examine Backward Grad
eager_test::CompareGradTensorWithValue<float>(tensor, 30.0);
......
......@@ -57,7 +57,7 @@ TEST(Generated, Sigmoid) {
std::vector<paddle::experimental::Tensor> target_tensors = {output_tensor};
VLOG(6) << "Runing Backward";
RunBackward(target_tensors, {});
Backward(target_tensors, {});
VLOG(6) << "Finish Backward";
eager_test::CompareGradTensorWithValue<float>(tensor, 0.25);
......@@ -89,7 +89,7 @@ TEST(Generated, Matmul_v2) {
eager_test::CompareTensorWithValue<float>(output_tensor, 96);
std::vector<paddle::experimental::Tensor> target_tensors = {output_tensor};
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(X, 2.0 * 20);
eager_test::CompareGradTensorWithValue<float>(Y, 3.0 * 4);
......@@ -120,7 +120,7 @@ TEST(Generated, ElementwiseAdd) {
eager_test::CompareTensorWithValue<float>(output_tensor, 5);
std::vector<paddle::experimental::Tensor> target_tensors = {output_tensor};
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(X, 1.0);
eager_test::CompareGradTensorWithValue<float>(Y, 1.0);
......@@ -128,6 +128,6 @@ TEST(Generated, ElementwiseAdd) {
} // namespace egr
USE_OP(sigmoid);
USE_OP_ITSELF(sigmoid);
USE_OP_ITSELF(elementwise_add);
USE_OP_ITSELF(matmul_v2);
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/generated/eager_generated/backwards/scale_node.h"
#include "paddle/fluid/eager/api/utils/tensor_utils.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/tests/test_utils.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(copy, CPU, ALL_LAYOUT);
namespace egr {
TEST(Grad, SingleNodeEmptyGrad) {
// Prepare Device Contexts
eager_test::InitEnv(paddle::platform::CPUPlace());
// Prepare Inputs
paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32});
// Create Target Tensor (output)
paddle::experimental::Tensor output_tensor =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
// Create input tensor
const paddle::experimental::Tensor leaf_tensor =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, true /*is_leaf*/);
{
// Create Scale Node
auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
node0_ptr->SetAttributes_scale(5.0 /*scale*/);
// Set grad in/out meta
node0_ptr->SetDefaultGradInOutMeta();
// Output_tensor set GradNode、OutRank、StopGradient propertis
AutogradMeta* auto_grad_meta = EagerUtils::autograd_meta(&output_tensor);
auto_grad_meta->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta->SetStopGradient(false);
// Get autograd_meta from input tensor
AutogradMeta* auto_grad_meta1 =
EagerUtils::unsafe_autograd_meta(leaf_tensor);
// Connect Tensor and AccumulationNode via AutoGradMeta
auto acc_node_ptr =
std::make_shared<egr::GradNodeAccumulation>(auto_grad_meta1);
// input tensor set GradNode、OutRank、StopGradient propertis
auto_grad_meta1->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta1->SetStopGradient(false);
// grad_node Add Edges
std::vector<egr::AutogradMeta*> res = {auto_grad_meta1};
node0_ptr->AddEdges(&res, 0);
}
std::vector<paddle::experimental::Tensor> outs = {output_tensor};
// Run Grad
auto result = Grad(outs, {leaf_tensor}, {});
// Check Output Value
eager_test::CompareTensorWithValue<float>(result[0], 5.0);
}
TEST(Grad, SingleNodeCustomGrad) {
// Prepare Device Contexts
eager_test::InitEnv(paddle::platform::CPUPlace());
// Prepare Inputs
std::vector<paddle::experimental::Tensor> target_tensors;
paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32});
// Create Target Tensor
paddle::experimental::Tensor tensor = egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
target_tensors.emplace_back(std::move(tensor));
std::vector<paddle::experimental::Tensor> grad_tensors;
// Create Grad Tensor
paddle::experimental::Tensor grad_tensor =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/);
grad_tensors.emplace_back(std::move(grad_tensor));
paddle::experimental::Tensor leaf_tensor =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, true /*is_leaf*/);
{
// Create Scale Node
auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
node0_ptr->SetAttributes_scale(5.0 /*scale*/);
// Set grad in/out meta
node0_ptr->SetDefaultGradInOutMeta();
// Connect Tensor and Node via AutoGradMeta
AutogradMeta* auto_grad_meta =
EagerUtils::autograd_meta(&(target_tensors[0]));
auto_grad_meta->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta->SetStopGradient(false);
AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor);
// Connect Tensor and AccumulationNode via AutoGradMeta
auto acc_node_ptr =
std::make_shared<egr::GradNodeAccumulation>(auto_grad_meta1);
auto_grad_meta1->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta1->SetStopGradient(false);
std::vector<egr::AutogradMeta*> res = {auto_grad_meta1};
node0_ptr->AddEdges(&res, 0);
}
auto result = Grad(target_tensors, {leaf_tensor}, grad_tensors);
// Check Output Value
eager_test::CompareTensorWithValue<float>(result[0], 50.0);
}
/*
Node1
|
Node0
|
{ } // empty grad tensor
*/
TEST(Grad, LinearNodes) {
// Prepare Device Contexts
eager_test::InitEnv(paddle::platform::CPUPlace());
// Prepare Target Tensor
std::vector<paddle::experimental::Tensor> target_tensors;
paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32});
// Create Target Tensor
paddle::experimental::Tensor tensor = egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
target_tensors.emplace_back(std::move(tensor));
paddle::experimental::Tensor leaf_tensor =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, true /*is_leaf*/);
{
// Create Node0
auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
node0_ptr->SetAttributes_scale(5.0 /*scale*/);
// Set grad in/out meta for node0
node0_ptr->SetDefaultGradInOutMeta();
// Create Node1
auto node1_ptr = std::make_shared<GradNodeScale>(1, 1);
node1_ptr->SetAttributes_scale(10.0 /*scale*/);
// Set grad in/out meta for node1
node1_ptr->SetDefaultGradInOutMeta();
// Connect Input Tensor and Node0 via AutoGradMeta
AutogradMeta* auto_grad_meta =
EagerUtils::autograd_meta(&(target_tensors[0]));
auto_grad_meta->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
auto_grad_meta->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta->SetStopGradient(false);
// Connect Node0 -> Node1 via Edge
auto meta0 = egr::AutogradMeta();
meta0.SetStopGradient(false);
meta0.SetSingleOutRankWithSlot(0, 0);
meta0.SetGradNode(node1_ptr);
std::vector<egr::AutogradMeta*> res0 = {&meta0};
node0_ptr->AddEdges(&res0, 0);
AutogradMeta* auto_grad_meta1 = EagerUtils::autograd_meta(&leaf_tensor);
// Connect Tensor and AccumulationNode via AutoGradMeta
auto acc_node_ptr =
std::make_shared<egr::GradNodeAccumulation>(auto_grad_meta1);
auto_grad_meta1->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta1->SetStopGradient(false);
std::vector<egr::AutogradMeta*> res1 = {auto_grad_meta1};
node1_ptr->AddEdges(&res1, 0);
}
// Use Empty Grad Tensor
auto result = Grad(target_tensors, {leaf_tensor}, {});
// Check Output Value
eager_test::CompareTensorWithValue<float>(result[0], 50.0);
}
/*
Node2
| |
Node0 Node1
| |
in0 in1
*/
TEST(Grad, WithAccumulation) {
// Prepare Device Contexts
eager_test::InitEnv(paddle::platform::CPUPlace());
// Prepare Inputs
paddle::framework::DDim ddim = phi::make_ddim({4, 16, 16, 32});
// Create Target Tensor
std::vector<paddle::experimental::Tensor> target_tensors;
paddle::experimental::Tensor tensor0 = egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
paddle::experimental::Tensor tensor1 = egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 1.0 /*value*/, false /*is_leaf*/);
target_tensors.emplace_back(std::move(tensor0));
target_tensors.emplace_back(std::move(tensor1));
// Create Grad Tensor
std::vector<paddle::experimental::Tensor> grad_tensors;
paddle::experimental::Tensor grad_tensor0 =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 5.0 /*value*/, false /*is_leaf*/);
paddle::experimental::Tensor grad_tensor1 =
egr_utils_api::CreateTensorWithValue(
ddim, paddle::platform::CPUPlace(), phi::DataType::FLOAT32,
phi::DataLayout::NCHW, 10.0 /*value*/, false /*is_leaf*/);
grad_tensors.emplace_back(std::move(grad_tensor0));
grad_tensors.emplace_back(std::move(grad_tensor1));
paddle::experimental::Tensor leaf_tensor;
{
// Create Node0
auto node0_ptr = std::make_shared<GradNodeScale>(1, 1);
node0_ptr->SetAttributes_scale(5.0 /*scale*/);
node0_ptr->SetDefaultGradInOutMeta();
// Create Node1
auto node1_ptr = std::make_shared<GradNodeScale>(1, 1);
node1_ptr->SetAttributes_scale(10.0 /*scale*/);
node1_ptr->SetDefaultGradInOutMeta();
// Create Node2
auto node2_ptr = std::make_shared<GradNodeScale>(1, 1);
node2_ptr->SetAttributes_scale(20.0 /*scale*/);
node2_ptr->SetDefaultGradInOutMeta();
// Connect Inp0 and Node0 via AutoGradMeta
AutogradMeta* auto_grad_meta0 =
EagerUtils::autograd_meta(&(target_tensors[0]));
auto_grad_meta0->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(node0_ptr));
auto_grad_meta0->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta0->SetStopGradient(false);
// Connect Inp1 and Node1 via AutoGradMeta
AutogradMeta* auto_grad_meta1 =
EagerUtils::autograd_meta(&(target_tensors[1]));
auto_grad_meta1->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(node1_ptr));
auto_grad_meta1->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta1->SetStopGradient(false);
// Connect Node0 -> Node2 via Edge
auto meta0 = egr::AutogradMeta();
meta0.SetStopGradient(false);
meta0.SetSingleOutRankWithSlot(0, 0);
meta0.SetGradNode(node2_ptr);
std::vector<egr::AutogradMeta*> res0 = {&meta0};
node0_ptr->AddEdges(&res0, 0);
// Connect Node1 -> Node2 via Edge
auto meta1 = egr::AutogradMeta();
meta1.SetStopGradient(false);
meta1.SetSingleOutRankWithSlot(0, 0);
meta1.SetGradNode(node2_ptr);
std::vector<egr::AutogradMeta*> res1 = {&meta1};
node1_ptr->AddEdges(&res1, 0);
AutogradMeta* auto_grad_meta2 = EagerUtils::autograd_meta(&leaf_tensor);
// Connect Tensor and AccumulationNode via AutoGradMeta
auto acc_node_ptr =
std::make_shared<egr::GradNodeAccumulation>(auto_grad_meta2);
auto_grad_meta2->SetGradNode(
std::dynamic_pointer_cast<GradNodeBase>(acc_node_ptr));
auto_grad_meta2->SetSingleOutRankWithSlot(0, 0);
auto_grad_meta2->SetStopGradient(false);
std::vector<egr::AutogradMeta*> res2 = {auto_grad_meta2};
node2_ptr->AddEdges(&res2, 0);
}
auto result = Grad(target_tensors, {leaf_tensor}, grad_tensors);
eager_test::CompareTensorWithValue<float>(result[0], 2500.0);
}
} // namespace egr
......@@ -132,7 +132,7 @@ TEST(RetainGrad, HookBeforeRetainGrad) {
leaf_tensor); // result: 4.0*5.0 + 3.0 = 23.0
}
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(target_tensor, 4.0);
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 23.0);
......@@ -199,7 +199,7 @@ TEST(RetainGrad, HookAfterRetainGrad) {
leaf_tensor, std::make_shared<egr::CppTensorHook>(hook_function));
}
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(target_tensor, 1.0);
eager_test::CompareGradTensorWithValue<float>(leaf_tensor, 23.0);
}
......
......@@ -108,7 +108,7 @@ void test_sigmoid(bool is_remove_gradient_hook) {
}
VLOG(6) << "Runing Backward";
RunBackward(target_tensors, {});
Backward(target_tensors, {});
VLOG(6) << "Finish Backward";
eager_test::CompareGradTensorWithValue<float>(
......@@ -166,7 +166,7 @@ void test_elementwiseAdd(bool is_remove_gradient_hook) {
grad_node_tmp->RemoveGradientHook(hook_id);
}
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(X, 1.0);
eager_test::CompareGradTensorWithValue<float>(
......@@ -224,7 +224,7 @@ void test_matmul(bool is_remove_gradient_hook) {
grad_node_tmp->RemoveGradientHook(hook_id);
}
RunBackward(target_tensors, {});
Backward(target_tensors, {});
eager_test::CompareGradTensorWithValue<float>(X, 2.0 * 20);
eager_test::CompareGradTensorWithValue<float>(
......@@ -255,6 +255,6 @@ TEST(Hook_intermidiate, Matmul_v2) {
}
} // namespace egr
USE_OP(sigmoid);
USE_OP_ITSELF(sigmoid);
USE_OP_ITSELF(elementwise_add);
USE_OP_ITSELF(matmul_v2);
......@@ -370,8 +370,8 @@ class GradNodeRunProgram : public egr::GradNodeBase {
~GradNodeRunProgram() override = default;
// Functor: perform backward computations
virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
const std::vector<std::vector<paddle::experimental::Tensor>> &grads)
override {
const std::vector<std::vector<paddle::experimental::Tensor>> &grads,
bool create_graph) override {
VLOG(3) << "Running Eager Backward Node: GradNodeRunProgram";
PADDLE_ENFORCE_EQ(
grads.size(), 1,
......@@ -415,6 +415,12 @@ class GradNodeRunProgram : public egr::GradNodeBase {
// return {x_grad, details::DereferenceTensors(params_grad_ptr)};
}
void ClearTensorWrappers() override { VLOG(6) << "Do nothing here now"; }
bool IsTensorWrappersCleared() override {
VLOG(6) << "Do nothing here now";
return false;
}
// SetAttrMap
void SetAttrMap(const paddle::framework::AttributeMap &attrs) {
attrs_ = attrs;
......
......@@ -10,8 +10,9 @@ IF(WITH_GPU)
nv_library(heter_comm SRCS heter_comm.h feature_value.h heter_resource.cc heter_resource.h hashtable.h mem_pool.h DEPS ${HETERPS_DEPS})
nv_test(test_heter_comm SRCS feature_value.h DEPS heter_comm)
nv_library(heter_ps SRCS heter_ps.cu DEPS heter_comm)
nv_library(graph_gpu_ps SRCS graph_gpu_ps_table.h DEPS heter_comm)
nv_library(graph_gpu_ps SRCS graph_gpu_ps_table.h DEPS heter_comm table)
nv_test(test_graph_comm SRCS test_graph.cu DEPS graph_gpu_ps)
nv_test(test_cpu_graph_sample SRCS test_cpu_graph_sample.cu DEPS graph_gpu_ps)
ENDIF()
IF(WITH_ROCM)
hip_library(heter_comm SRCS heter_comm.h feature_value.h heter_resource.cc heter_resource.h hashtable.h DEPS cub device_context)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef PADDLE_WITH_HETERPS
namespace paddle {
namespace framework {
struct GpuPsGraphNode {
int64_t node_id;
int neighbor_size, neighbor_offset;
// this node's neighbor is stored on [neighbor_offset,neighbor_offset +
// neighbor_size) of int64_t *neighbor_list;
};
struct GpuPsCommGraph {
int64_t *neighbor_list;
GpuPsGraphNode *node_list;
int neighbor_size, node_size;
// the size of neighbor array and graph_node_list array
GpuPsCommGraph()
: neighbor_list(NULL), node_list(NULL), neighbor_size(0), node_size(0) {}
GpuPsCommGraph(int64_t *neighbor_list_, GpuPsGraphNode *node_list_,
int neighbor_size_, int node_size_)
: neighbor_list(neighbor_list_),
node_list(node_list_),
neighbor_size(neighbor_size_),
node_size(node_size_) {}
};
/*
suppose we have a graph like this
0----3-----5----7
\ |\ |\
17 8 9 1 2
we save the nodes in arbitrary order,
in this example,the order is
[0,5,1,2,7,3,8,9,17]
let us name this array u_id;
we record each node's neighbors:
0:3,17
5:3,7
1:7
2:7
7:1,2,5
3:0,5,8,9
8:3
9:3
17:0
by concatenating each node's neighbor_list in the order we save the node id.
we get [3,17,3,7,7,7,1,2,5,0,5,8,9,3,3,0]
this is the neighbor_list of GpuPsCommGraph
given this neighbor_list and the order to save node id,
we know,
node 0's neighbors are in the range [0,1] of neighbor_list
node 5's neighbors are in the range [2,3] of neighbor_list
node 1's neighbors are in the range [4,4] of neighbor_list
node 2:[5,5]
node 7:[6,6]
node 3:[9,12]
node 8:[13,13]
node 9:[14,14]
node 17:[15,15]
...
by the above information,
we generate a node_list:GpuPsGraphNode *graph_node_list in GpuPsCommGraph
of size 9,
where node_list[i].id = u_id[i]
then we have:
node_list[0]-> node_id:0, neighbor_size:2, neighbor_offset:0
node_list[1]-> node_id:5, neighbor_size:2, neighbor_offset:2
node_list[2]-> node_id:1, neighbor_size:1, neighbor_offset:4
node_list[3]-> node_id:2, neighbor_size:1, neighbor_offset:5
node_list[4]-> node_id:7, neighbor_size:3, neighbor_offset:6
node_list[5]-> node_id:3, neighbor_size:4, neighbor_offset:9
node_list[6]-> node_id:8, neighbor_size:1, neighbor_offset:13
node_list[7]-> node_id:9, neighbor_size:1, neighbor_offset:14
node_list[8]-> node_id:17, neighbor_size:1, neighbor_offset:15
*/
struct NeighborSampleResult {
int64_t *val;
int *actual_sample_size, sample_size, key_size;
NeighborSampleResult(int _sample_size, int _key_size)
: sample_size(_sample_size), key_size(_key_size) {
actual_sample_size = NULL;
val = NULL;
};
~NeighborSampleResult() {
if (val != NULL) cudaFree(val);
if (actual_sample_size != NULL) cudaFree(actual_sample_size);
}
};
struct NodeQueryResult {
int64_t *val;
int actual_sample_size;
NodeQueryResult() {
val = NULL;
actual_sample_size = 0;
};
~NodeQueryResult() {
if (val != NULL) cudaFree(val);
}
};
}
};
#endif
......@@ -14,114 +14,25 @@
#pragma once
#include "heter_comm.h"
#include "paddle/fluid/distributed/ps/table/common_graph_table.h"
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_HETERPS
namespace paddle {
namespace framework {
struct GpuPsGraphNode {
int64_t node_id;
int neighbor_size, neighbor_offset;
// this node's neighbor is stored on [neighbor_offset,neighbor_offset +
// neighbor_size) of int64_t *neighbor_list;
};
struct GpuPsCommGraph {
int64_t *neighbor_list;
GpuPsGraphNode *node_list;
int neighbor_size, node_size;
// the size of neighbor array and graph_node_list array
GpuPsCommGraph()
: neighbor_list(NULL), node_list(NULL), neighbor_size(0), node_size(0) {}
GpuPsCommGraph(int64_t *neighbor_list_, GpuPsGraphNode *node_list_,
int neighbor_size_, int node_size_)
: neighbor_list(neighbor_list_),
node_list(node_list_),
neighbor_size(neighbor_size_),
node_size(node_size_) {}
};
/*
suppose we have a graph like this
0----3-----5----7
\ |\ |\
17 8 9 1 2
we save the nodes in arbitrary order,
in this example,the order is
[0,5,1,2,7,3,8,9,17]
let us name this array u_id;
we record each node's neighbors:
0:3,17
5:3,7
1:7
2:7
7:1,2,5
3:0,5,8,9
8:3
9:3
17:0
by concatenating each node's neighbor_list in the order we save the node id.
we get [3,17,3,7,7,7,1,2,5,0,5,8,9,3,3,0]
this is the neighbor_list of GpuPsCommGraph
given this neighbor_list and the order to save node id,
we know,
node 0's neighbors are in the range [0,1] of neighbor_list
node 5's neighbors are in the range [2,3] of neighbor_list
node 1's neighbors are in the range [4,4] of neighbor_list
node 2:[5,5]
node 7:[6,6]
node 3:[9,12]
node 8:[13,13]
node 9:[14,14]
node 17:[15,15]
...
by the above information,
we generate a node_list:GpuPsGraphNode *graph_node_list in GpuPsCommGraph
of size 9,
where node_list[i].id = u_id[i]
then we have:
node_list[0]-> node_id:0, neighbor_size:2, neighbor_offset:0
node_list[1]-> node_id:5, neighbor_size:2, neighbor_offset:2
node_list[2]-> node_id:1, neighbor_size:1, neighbor_offset:4
node_list[3]-> node_id:2, neighbor_size:1, neighbor_offset:5
node_list[4]-> node_id:7, neighbor_size:3, neighbor_offset:6
node_list[5]-> node_id:3, neighbor_size:4, neighbor_offset:9
node_list[6]-> node_id:8, neighbor_size:1, neighbor_offset:13
node_list[7]-> node_id:9, neighbor_size:1, neighbor_offset:14
node_list[8]-> node_id:17, neighbor_size:1, neighbor_offset:15
*/
struct NeighborSampleResult {
int64_t *val;
int *actual_sample_size, sample_size, key_size;
NeighborSampleResult(int _sample_size, int _key_size)
: sample_size(_sample_size), key_size(_key_size) {
actual_sample_size = NULL;
val = NULL;
};
~NeighborSampleResult() {
if (val != NULL) cudaFree(val);
if (actual_sample_size != NULL) cudaFree(actual_sample_size);
}
};
struct NodeQueryResult {
int64_t *val;
int actual_sample_size;
NodeQueryResult() {
val = NULL;
actual_sample_size = 0;
};
~NodeQueryResult() {
if (val != NULL) cudaFree(val);
}
};
class GpuPsGraphTable : public HeterComm<int64_t, int, int> {
public:
GpuPsGraphTable(std::shared_ptr<HeterPsResource> resource)
: HeterComm<int64_t, int, int>(1, resource) {
load_factor_ = 0.25;
rw_lock.reset(new pthread_rwlock_t());
cpu_table_status = -1;
}
~GpuPsGraphTable() {
if (cpu_table_status != -1) {
end_graph_sampling();
}
}
void build_graph_from_cpu(std::vector<GpuPsCommGraph> &cpu_node_list);
NodeQueryResult *graph_node_sample(int gpu_id, int sample_size);
......@@ -134,9 +45,19 @@ class GpuPsGraphTable : public HeterComm<int64_t, int, int> {
int *h_right,
int64_t *src_sample_res,
int *actual_sample_size);
int init_cpu_table(const paddle::distributed::GraphParameter &graph);
int load(const std::string &path, const std::string &param);
virtual int32_t end_graph_sampling() {
return cpu_graph_table->end_graph_sampling();
}
private:
std::vector<GpuPsCommGraph> gpu_graph_list;
std::shared_ptr<paddle::distributed::GraphTable> cpu_graph_table;
std::shared_ptr<pthread_rwlock_t> rw_lock;
mutable std::mutex mutex_;
std::condition_variable cv_;
int cpu_table_status;
};
}
};
......
......@@ -14,6 +14,7 @@
#pragma once
#ifdef PADDLE_WITH_HETERPS
//#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h"
namespace paddle {
namespace framework {
/*
......@@ -45,6 +46,33 @@ __global__ void neighbor_sample_example(GpuPsCommGraph graph, int* index,
}
}
int GpuPsGraphTable::init_cpu_table(
const paddle::distributed::GraphParameter& graph) {
cpu_graph_table.reset(new paddle::distributed::GraphTable);
cpu_table_status = cpu_graph_table->initialize(graph);
if (cpu_table_status != 0) return cpu_table_status;
std::function<void(std::vector<GpuPsCommGraph>&)> callback =
[this](std::vector<GpuPsCommGraph>& res) {
pthread_rwlock_wrlock(this->rw_lock.get());
this->clear_graph_info();
this->build_graph_from_cpu(res);
pthread_rwlock_unlock(this->rw_lock.get());
cv_.notify_one();
};
cpu_graph_table->set_graph_sample_callback(callback);
return cpu_table_status;
}
int GpuPsGraphTable::load(const std::string& path, const std::string& param) {
int status = cpu_graph_table->load(path, param);
if (status != 0) {
return status;
}
std::unique_lock<std::mutex> lock(mutex_);
cpu_graph_table->start_graph_sampling();
cv_.wait(lock);
return 0;
}
/*
comment 1
......@@ -68,6 +96,7 @@ __global__ void neighbor_sample_example(GpuPsCommGraph graph, int* index,
that's what fill_dvals does.
*/
void GpuPsGraphTable::move_neighbor_sample_result_to_source_gpu(
int gpu_id, int gpu_num, int sample_size, int* h_left, int* h_right,
int64_t* src_sample_res, int* actual_sample_size) {
......@@ -258,7 +287,7 @@ NeighborSampleResult* GpuPsGraphTable::graph_neighbor_sample(int gpu_id,
auto d_shard_keys = memory::Alloc(place, len * sizeof(int64_t));
int64_t* d_shard_keys_ptr = reinterpret_cast<int64_t*>(d_shard_keys->ptr());
auto d_shard_vals = memory::Alloc(place, len * sizeof(int64_t));
auto d_shard_vals = memory::Alloc(place, sample_size * len * sizeof(int64_t));
int64_t* d_shard_vals_ptr = reinterpret_cast<int64_t*>(d_shard_vals->ptr());
auto d_shard_actual_sample_size = memory::Alloc(place, len * sizeof(int));
int* d_shard_actual_sample_size_ptr =
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_HETERPS
//#include "paddle/fluid/framework/fleet/heter_ps/heter_comm.h"
#include <queue>
namespace paddle {
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_ps_table.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_comm.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
using namespace paddle::framework;
void prepare_file(char file_name[], std::vector<std::string> data) {
std::ofstream ofile;
ofile.open(file_name);
for (auto x : data) {
ofile << x << std::endl;
}
ofile.close();
}
char edge_file_name[] = "edges.txt";
TEST(TEST_FLEET, graph_sample) {
std::vector<std::string> edges;
int gpu_count = 3;
std::vector<int> dev_ids;
dev_ids.push_back(0);
dev_ids.push_back(1);
dev_ids.push_back(2);
std::shared_ptr<HeterPsResource> resource =
std::make_shared<HeterPsResource>(dev_ids);
resource->enable_p2p();
GpuPsGraphTable g(resource);
int node_count = 10;
std::vector<std::vector<int64_t>> neighbors(node_count);
int ind = 0;
int64_t node_id = 0;
// std::vector<GpuPsCommGraph> graph_list(gpu_count);
while (ind < node_count) {
int neighbor_size = ind + 1;
while (neighbor_size--) {
edges.push_back(std::to_string(ind) + "\t" + std::to_string(node_id) +
"\t1.0");
node_id++;
}
ind++;
}
/*
gpu 0:
0,3,6,9
gpu 1:
1,4,7
gpu 2:
2,5,8
query(2,6) returns nodes [6,9,1,4,7,2]
*/
::paddle::distributed::GraphParameter table_proto;
table_proto.set_gpups_mode(true);
table_proto.set_gpups_mode_shard_num(127);
table_proto.set_gpu_num(3);
table_proto.set_gpups_graph_sample_class("BasicBfsGraphSampler");
table_proto.set_gpups_graph_sample_args("5,5,1,1");
prepare_file(edge_file_name, edges);
g.init_cpu_table(table_proto);
g.load(std::string(edge_file_name), std::string("e>"));
/*
node x's neighbor list = [(1+x)*x/2,(1+x)*x/2 + 1,.....,(1+x)*x/2 + x]
so node 6's neighbors are [21,22...,27]
node 7's neighbors are [28,29,..35]
node 0's neighbors are [0]
query([7,0,6],sample_size=3) should return [28,29,30,0,x,x,21,22,23]
6 --index-->2
0 --index--->0
7 --index-->2
*/
int64_t cpu_key[3] = {7, 0, 6};
void *key;
cudaMalloc((void **)&key, 3 * sizeof(int64_t));
cudaMemcpy(key, cpu_key, 3 * sizeof(int64_t), cudaMemcpyHostToDevice);
auto neighbor_sample_res = g.graph_neighbor_sample(0, (int64_t *)key, 3, 3);
int64_t *res = new int64_t[9];
cudaMemcpy(res, neighbor_sample_res->val, 72, cudaMemcpyDeviceToHost);
std::sort(res, res + 3);
std::sort(res + 6, res + 9);
int64_t expected_sample_val[] = {28, 29, 30, 0, -1, -1, 21, 22, 23};
for (int i = 0; i < 9; i++) {
if (expected_sample_val[i] != -1) {
ASSERT_EQ(res[i], expected_sample_val[i]);
}
}
delete[] res;
delete neighbor_sample_res;
}
......@@ -78,6 +78,11 @@ class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
return var_types[0] == proto::VarType::SELECTED_ROWS;
}
bool IsDenseTensorVectorInput(const std::string& name) const override {
auto var_types = ctx_.GetInputsVarType(name);
return var_types[0] == proto::VarType::LOD_TENSOR_ARRAY;
}
bool IsDenseTensorOutput(const std::string& name) const override {
auto var_types = ctx_.GetOutputsVarType(name);
return var_types[0] == proto::VarType::LOD_TENSOR;
......@@ -125,9 +130,14 @@ class CompatMetaTensor : public phi::MetaTensor {
return var->Get<phi::DenseTensor>().dims();
} else if (var->IsType<phi::SelectedRows>()) {
return var->Get<phi::SelectedRows>().dims();
} else if (var->IsType<framework::LoDTensorArray>()) {
// use tensor array size as dims
auto& tensor_array = var->Get<framework::LoDTensorArray>();
return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently, only can get dims from DenseTensor or SelectedRows."));
"Currently, only can get dims from DenseTensor or SelectedRows or "
"DenseTensorArray."));
}
} else {
auto* var = BOOST_GET_CONST(VarDesc*, var_);
......@@ -144,6 +154,10 @@ class CompatMetaTensor : public phi::MetaTensor {
return var->Get<phi::DenseTensor>().dtype();
} else if (var->IsType<phi::SelectedRows>()) {
return var->Get<phi::SelectedRows>().dtype();
} else if (var->IsType<framework::LoDTensorArray>()) {
// NOTE(chenweihang): do nothing
// Unsupported get dtype from LoDTensorArray now
return phi::DataType::UNDEFINED;
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently, only can get dtype from DenseTensor or SelectedRows."));
......@@ -157,7 +171,19 @@ class CompatMetaTensor : public phi::MetaTensor {
DataLayout layout() const override {
if (is_runtime_) {
auto* var = BOOST_GET_CONST(Variable*, var_);
return var->Get<LoDTensor>().layout();
if (var->IsType<phi::DenseTensor>()) {
return var->Get<phi::DenseTensor>().layout();
} else if (var->IsType<phi::SelectedRows>()) {
return var->Get<phi::SelectedRows>().layout();
} else if (var->IsType<framework::LoDTensorArray>()) {
// NOTE(chenweihang): do nothing
// Unsupported get layout from LoDTensorArray now
return phi::DataLayout::UNDEFINED;
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently, only can get layout from DenseTensor or "
"SelectedRows."));
}
} else {
// NOTE(chenweihang): do nothing
// Unsupported get layout for VarDesc now
......@@ -174,6 +200,16 @@ class CompatMetaTensor : public phi::MetaTensor {
} else if (var->IsType<phi::SelectedRows>()) {
auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
} else if (var->IsType<framework::LoDTensorArray>()) {
auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
// Note: Here I want enforce `tensor_array->size() == 0UL`, because
// inplace using on LoDTensorArray is dangerous, but the unittest
// `test_list` contains this behavior
PADDLE_ENFORCE_EQ(dims.size(), 1UL,
platform::errors::InvalidArgument(
"LoDTensorArray can only have one dimension."));
// only set the array size for LoDTensorArray input
tensor_array->resize(dims[0]);
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently, only can set dims from DenseTensor or SelectedRows."));
......@@ -193,6 +229,9 @@ class CompatMetaTensor : public phi::MetaTensor {
} else if (var->IsType<phi::SelectedRows>()) {
auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
} else if (var->IsType<framework::LoDTensorArray>()) {
// NOTE(chenweihang): do nothing
// Unsupported set dtype for LoDTensorArray now
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently, only can set dtype from DenseTensor or SelectedRows."));
......@@ -206,10 +245,20 @@ class CompatMetaTensor : public phi::MetaTensor {
void set_layout(DataLayout layout) override {
if (is_runtime_) {
auto* var = BOOST_GET(Variable*, var_);
LoDTensor* tensor = var->GetMutable<LoDTensor>();
phi::DenseTensorUtils::GetMutableMeta(
static_cast<phi::DenseTensor*>(tensor))
->layout = layout;
if (var->IsType<phi::DenseTensor>()) {
auto* tensor = var->GetMutable<phi::DenseTensor>();
phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
} else if (var->IsType<phi::SelectedRows>()) {
auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
} else if (var->IsType<framework::LoDTensorArray>()) {
// NOTE(chenweihang): do nothing
// Unsupported set dtype for LoDTensorArray now
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Currently, only can set layout from DenseTensor or "
"SelectedRows."));
}
} else {
// NOTE(chenweihang): do nothing
// Unsupported set layout for VarDesc now
......@@ -251,9 +300,7 @@ class CompatMetaTensor : public phi::MetaTensor {
void share_meta(const MetaTensor& meta_tensor) override {
share_dims(meta_tensor);
set_dtype(meta_tensor.dtype());
// VarDesc doesn't contains layout, so we cannot share layout
// set_layout(meta_tensor.layout());
set_layout(meta_tensor.layout());
// special case: share lod of LoDTensor
share_lod(meta_tensor);
}
......@@ -442,6 +489,51 @@ phi::InferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
attr_name, infershape_input.size()));
}
}
} else if (attr_defs[i].type_index ==
std::type_index(typeid(std::vector<phi::Scalar>))) {
auto& attr = attr_reader.GetAttr(attr_name);
if (std::type_index(attr.type()) ==
std::type_index(typeid(std::vector<int32_t>))) {
const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
std::vector<phi::Scalar> scalar_list;
scalar_list.reserve(vec.size());
for (const auto& val : vec) {
scalar_list.emplace_back(val);
}
infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
} else if (std::type_index(attr.type()) ==
std::type_index(typeid(std::vector<int64_t>))) {
const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
std::vector<phi::Scalar> scalar_list;
scalar_list.reserve(vec.size());
for (const auto& val : vec) {
scalar_list.emplace_back(val);
}
infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
} else if (std::type_index(attr.type()) ==
std::type_index(typeid(std::vector<float>))) {
const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
std::vector<phi::Scalar> scalar_list;
scalar_list.reserve(vec.size());
for (const auto& val : vec) {
scalar_list.emplace_back(val);
}
infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
} else if (std::type_index(attr.type()) ==
std::type_index(typeid(std::vector<double>))) {
const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
std::vector<phi::Scalar> scalar_list;
scalar_list.reserve(vec.size());
for (const auto& val : vec) {
scalar_list.emplace_back(val);
}
infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Unsupported cast op attribute `%s` to vector<Scalar> when "
"construct InferMetaContext.",
attr_names[i]));
}
} else if (ctx->HasAttr(attr_name)) {
// Emplace Back Attr according to the type of attr.
auto& attr = attr_reader.GetAttr(attr_name);
......
......@@ -97,6 +97,7 @@ pass_library(layer_norm_fuse_pass inference)
pass_library(add_support_int8_pass inference)
pass_library(matmul_scale_fuse_pass inference)
pass_library(gpu_cpu_map_matmul_to_mul_pass inference)
pass_library(mixed_precision_configure_pass inference)
pass_library(generate_pass DEPS pass_desc_proto)
target_link_libraries(generate_pass pass_desc_proto)
......
......@@ -2052,18 +2052,19 @@ PDNode *patterns::Pool::operator()() {
return output_var;
}
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
->assert_is_op("elementwise_add");
x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
auto out_var = pattern->NewNode(elementwise_add_out_repr())
PDNode *patterns::Elementwise::operator()(PDNode *x_var, PDNode *y_var,
const std::string elementwise_type) {
auto elementwise_op =
pattern->NewNode(elementwise_op_repr())->assert_is_op(elementwise_type);
x_var->AsInput()->assert_is_op_input(elementwise_type, "X");
y_var->AsInput()->assert_is_op_input(elementwise_type, "Y");
auto out_var = pattern->NewNode(elementwise_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add", "Out");
->assert_is_op_output(elementwise_type, "Out");
elementwise_add_op->LinksFrom({x_var, y_var});
elementwise_add_op->LinksTo({out_var});
elementwise_op->LinksFrom({x_var, y_var});
elementwise_op->LinksTo({out_var});
return out_var;
}
......
......@@ -1016,20 +1016,20 @@ struct Pool : public PatternBase {
PATTERN_DECL_NODE(pool_output);
};
// ElementwiseAdd used in residual connections.
// y_var is used and convolution output.
// The operator is removed, when residual
// connection fusion is on.
struct ElementwiseAdd : public PatternBase {
ElementwiseAdd(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "elementwise_add") {}
PDNode* operator()(PDNode* x_var, PDNode* y_var);
PATTERN_DECL_NODE(elementwise_add_op);
PATTERN_DECL_NODE(elementwise_add_x);
PATTERN_DECL_NODE(elementwise_add_y);
PATTERN_DECL_NODE(elementwise_add_out);
// Elementwise ops
// Forward pass for element-wise operators (add, mul)
// elementwise_mul_out is the result of the operator
struct Elementwise : public PatternBase {
Elementwise(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "elementwise") {}
PDNode* operator()(PDNode* x_var, PDNode* y_var,
const std::string elementwise_type);
PATTERN_DECL_NODE(elementwise_op);
PATTERN_DECL_NODE(elementwise_x);
PATTERN_DECL_NODE(elementwise_y);
PATTERN_DECL_NODE(elementwise_out);
};
// Transpose op
......
......@@ -73,8 +73,10 @@ static void ShareVarInfoToCinnLaunch(
varinfo_maps.at(cinn_launch_op->GetScopeIdx());
// collect all MemOptVarInfos of external variables
// that would be eager deleted after the cinn_launch subgraph executed,
// and store them as attribute of the subgraph
// that were eager deleted after the cinn_launch subgraph executed,
// and we will delete them in advance among eager_deletion_ops
// inside cinn_launch subgraph, so store them as attribute of the subgraph
// to pass to the inner eager_deletion_ops.
for (const auto& var_name : vars_to_delete) {
auto it = src_varinfo_map.find(var_name);
PADDLE_ENFORCE_NE(it, src_varinfo_map.end(),
......@@ -82,6 +84,8 @@ static void ShareVarInfoToCinnLaunch(
"MemOptVarInfo of var[%s] not found", var_name));
dst_varinfo_map.emplace(var_name, it->second);
}
// skip running of the followed eager_deletion_op
followed_eager_deletion_op->SetSkipRunning(true);
}
static void TakeVarInfoFromMainGraph(
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mixed_precision_configure_pass.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace paddle {
namespace framework {
namespace ir {
void MixedPrecisionConfigurePass::InsertCastOps(
Graph* graph, const StringSet& blacklist) const {
VLOG(3) << "Insert the cast op before and after the kernel that does not "
"supports fp16 precision";
auto update_cast_desc = [&](
framework::OpDesc& desc, const std::string& x_name,
const std::string& out_name, const int in_dtype, const int out_dtype) {
desc.SetType("cast");
desc.SetInput("X", {x_name});
desc.SetOutput("Out", {out_name});
desc.SetAttr("in_dtype", in_dtype);
desc.SetAttr("out_dtype", out_dtype);
desc.SetAttr("use_mkldnn", false);
desc.SetAttr("with_quant_attr", false);
desc.Flush();
};
auto cast_input = [&](Graph* graph, Node* op_node,
const StringSet& cast_list) {
auto inlinks = op_node->inputs;
for (auto* pre_node : inlinks) {
if (pre_node->IsVar()) {
const auto is_persistable = pre_node->Var()->Persistable();
const auto is_float =
pre_node->Var()->GetDataType() == proto::VarType::FP16 ||
pre_node->Var()->GetDataType() == proto::VarType::FP32 ||
pre_node->Var()->GetDataType() == proto::VarType::FP64;
if (!is_persistable && is_float) {
int suffix = 0;
for (auto* pre_node_input : pre_node->inputs) {
if (!pre_node_input->IsOp()) continue;
const auto& type = pre_node_input->Op()->Type();
if (!cast_list.count(type) && type != "cast") {
std::string old_name = pre_node->Name();
std::string new_name =
old_name + "_cast.tmp_" + std::to_string(suffix);
suffix++;
framework::OpDesc new_op_desc(op_node->Op()->Block());
// 4 for fp16, 5 for fp32
update_cast_desc(new_op_desc, old_name, new_name, 4, 5);
auto* new_op = graph->CreateOpNode(&new_op_desc);
VarDesc out_var(new_name);
out_var.SetPersistable(false);
auto* node_var = graph->CreateVarNode(&out_var);
op_node->Op()->RenameInput(old_name, new_name);
IR_NODE_LINK_TO(pre_node, new_op);
IR_NODE_LINK_TO(new_op, node_var);
IR_NODE_LINK_TO(node_var, op_node);
}
}
}
}
}
};
auto cast_output = [&](Graph* graph, Node* op_node,
const StringSet& cast_list) {
auto outlinks = op_node->outputs;
for (auto* next_node : outlinks) {
if (next_node->IsVar()) {
const auto is_persistable = next_node->Var()->Persistable();
const auto is_float =
next_node->Var()->GetDataType() == proto::VarType::FP16 ||
next_node->Var()->GetDataType() == proto::VarType::FP32 ||
next_node->Var()->GetDataType() == proto::VarType::FP64;
if (!is_persistable && is_float) {
int suffix = 0;
for (auto* next_node_output : next_node->outputs) {
if (!next_node_output->IsOp()) continue;
const auto& type = next_node_output->Op()->Type();
if (!cast_list.count(type) && type != "cast") {
std::string old_name = next_node->Name();
std::string new_name =
old_name + "_cast.tmp_" + std::to_string(suffix);
suffix++;
framework::OpDesc new_op_desc(op_node->Op()->Block());
// 4 for fp16, 5 for fp32
update_cast_desc(new_op_desc, old_name, new_name, 5, 4);
auto* new_op = graph->CreateOpNode(&new_op_desc);
VarDesc out_var(new_name);
out_var.SetPersistable(false);
auto* node_var = graph->CreateVarNode(&out_var);
next_node_output->Op()->RenameInput(old_name, new_name);
IR_NODE_LINK_TO(next_node, new_op);
IR_NODE_LINK_TO(new_op, node_var);
IR_NODE_LINK_TO(node_var, next_node_output);
}
}
}
}
}
};
for (auto* op_node :
ir::TopologyVarientSort(*graph, static_cast<ir::SortKind>(0))) {
if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
op_node->Op()->Type() == "fetch")
continue;
const auto& type = op_node->Op()->Type();
if (blacklist.count(type)) {
cast_input(graph, op_node, blacklist);
cast_output(graph, op_node, blacklist);
}
}
}
void MixedPrecisionConfigurePass::ApplyImpl(Graph* graph) const {
const auto blacklist =
Get<std::unordered_set<std::string>>("gpu_fp16_disabled_op_types");
InsertCastOps(graph, blacklist);
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(mixed_precision_configure_pass,
paddle::framework::ir::MixedPrecisionConfigurePass);
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace paddle {
namespace framework {
namespace ir {
using StringSet = std::unordered_set<std::string>;
class MixedPrecisionConfigurePass : public FusePassBase {
public:
MixedPrecisionConfigurePass() = default;
virtual ~MixedPrecisionConfigurePass() {}
protected:
void ApplyImpl(Graph* graph) const override;
private:
void InsertCastOps(Graph* graph, const StringSet& blacklist) const;
};
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -145,10 +145,10 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsX(
patterns::Conv conv_pattern{pattern, name_scope};
auto conv_output = conv_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope};
elementwise_add_pattern(
conv_output,
pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));
patterns::Elementwise elementwise_pattern{pattern, name_scope};
elementwise_pattern(
conv_output, pattern->NewNode(elementwise_pattern.elementwise_y_repr()),
"elementwise_add");
conv_output->AsIntermediate();
int found_conv_as_x_count = 0;
......@@ -160,16 +160,16 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsX(
GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_identity, elementwise_add_y,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_op, elementwise_op,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_identity, elementwise_y,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out,
elementwise_pattern);
if (FindFuseOption(*conv_op, *elementwise_add_op) != FUSE_MKLDNN) return;
if (FindFuseOption(*conv_op, *elementwise_op) != FUSE_MKLDNN) return;
if (!IsReachable(g, elementwise_add_identity, conv_output)) return;
if (!IsReachable(g, elementwise_identity, conv_output)) return;
if (HasFusedActivation(conv_op)) return;
......@@ -179,14 +179,14 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsX(
return;
}
conv_op->Op()->SetInput("ResidualData", {elementwise_add_identity->Name()});
conv_op->Op()->SetOutput("Output", {elementwise_add_out->Name()});
conv_op->Op()->SetInput("ResidualData", {elementwise_identity->Name()});
conv_op->Op()->SetOutput("Output", {elementwise_out->Name()});
conv_op->Op()->SetAttr("fuse_residual_connection", true);
GraphSafeRemoveNodes(g, {conv_output, elementwise_add_op});
GraphSafeRemoveNodes(g, {conv_output, elementwise_op});
IR_NODE_LINK_TO(elementwise_add_identity, conv_op);
IR_NODE_LINK_TO(conv_op, elementwise_add_out);
IR_NODE_LINK_TO(elementwise_identity, conv_op);
IR_NODE_LINK_TO(conv_op, elementwise_out);
found_conv_as_x_count++;
};
......@@ -212,10 +212,10 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsY(
patterns::Conv conv_pattern{pattern, name_scope};
auto conv_output = conv_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope};
elementwise_add_pattern(
pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
conv_output);
patterns::Elementwise elementwise_pattern{pattern, name_scope};
elementwise_pattern(
pattern->NewNode(elementwise_pattern.elementwise_x_repr()), conv_output,
"elementwise_add");
conv_output->AsIntermediate();
int found_conv_as_y_count = 0;
......@@ -227,16 +227,16 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsY(
GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_op, elementwise_op,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_x, elementwise_x,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out,
elementwise_pattern);
if (FindFuseOption(*conv_op, *elementwise_add_op) != FUSE_MKLDNN) return;
if (FindFuseOption(*conv_op, *elementwise_op) != FUSE_MKLDNN) return;
if (!IsReachable(g, elementwise_add_x, conv_output)) return;
if (!IsReachable(g, elementwise_x, conv_output)) return;
if (HasFusedActivation(conv_op)) return;
......@@ -246,14 +246,14 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseConvAsY(
return;
}
conv_op->Op()->SetInput("ResidualData", {elementwise_add_x->Name()});
conv_op->Op()->SetOutput("Output", {elementwise_add_out->Name()});
conv_op->Op()->SetInput("ResidualData", {elementwise_x->Name()});
conv_op->Op()->SetOutput("Output", {elementwise_out->Name()});
conv_op->Op()->SetAttr("fuse_residual_connection", true);
GraphSafeRemoveNodes(g, {conv_output, elementwise_add_op});
GraphSafeRemoveNodes(g, {conv_output, elementwise_op});
IR_NODE_LINK_TO(elementwise_add_x, conv_op);
IR_NODE_LINK_TO(conv_op, elementwise_add_out);
IR_NODE_LINK_TO(elementwise_x, conv_op);
IR_NODE_LINK_TO(conv_op, elementwise_out);
found_conv_as_y_count++;
};
......@@ -282,8 +282,8 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseProjectionConv(
patterns::Conv conv_y_pattern{pattern, name_scope};
auto conv_y_output = conv_y_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope};
elementwise_add_pattern(conv_x_output, conv_y_output);
patterns::Elementwise elementwise_pattern{pattern, name_scope};
elementwise_pattern(conv_x_output, conv_y_output, "elementwise_add");
conv_x_output->AsIntermediate();
conv_y_output->AsIntermediate();
......@@ -301,10 +301,10 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseProjectionConv(
GET_IR_NODE_FROM_SUBGRAPH(conv_y_filter, conv_filter, conv_y_pattern);
GET_IR_NODE_FROM_SUBGRAPH(conv_y_output, conv_output, conv_y_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_op, elementwise_op,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out,
elementwise_pattern);
if (!IsCompat(subgraph, g)) {
LOG(WARNING)
......@@ -312,8 +312,8 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseProjectionConv(
return;
}
if (FindFuseOption(*conv_x_op, *elementwise_add_op) != FUSE_MKLDNN) return;
if (FindFuseOption(*conv_y_op, *elementwise_add_op) != FUSE_MKLDNN) return;
if (FindFuseOption(*conv_x_op, *elementwise_op) != FUSE_MKLDNN) return;
if (FindFuseOption(*conv_y_op, *elementwise_op) != FUSE_MKLDNN) return;
Node* projection_node;
Node* residual_conv_op;
......@@ -333,14 +333,14 @@ GraphWithStats ResidualConnectionMKLDNNFusePass::FuseProjectionConv(
if (HasFusedActivation(residual_conv_op)) return;
residual_conv_op->Op()->SetInput("ResidualData", {projection_node->Name()});
residual_conv_op->Op()->SetOutput("Output", {elementwise_add_out->Name()});
residual_conv_op->Op()->SetOutput("Output", {elementwise_out->Name()});
residual_conv_op->Op()->SetAttr("fuse_residual_connection", true);
GraphSafeRemoveNodes(g, {residual_conv_output, elementwise_add_op});
GraphSafeRemoveNodes(g, {residual_conv_output, elementwise_op});
IR_NODE_LINK_TO(projection_node, residual_conv_op);
IR_NODE_LINK_TO(residual_conv_op, elementwise_add_out);
IR_NODE_LINK_TO(residual_conv_op, elementwise_out);
found_projection_conv_count++;
};
......
......@@ -807,74 +807,74 @@ void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
PrettyLogDetail("--- quantized %d matmul ops", quantize_matmul_count);
}
void CPUQuantizePass::QuantizeElementwiseAdd(Graph* graph) const {
void CPUQuantizePass::QuantizeElementwise(
Graph* graph, const std::string elementwise_type) const {
GraphPatternDetector gpd;
auto pattern = gpd.mutable_pattern();
patterns::ElementwiseAdd elementwise_add_pattern{pattern, name_scope_};
patterns::Elementwise elementwise_pattern{pattern, name_scope_};
elementwise_add_pattern(
pattern->NewNode(elementwise_add_pattern.elementwise_add_x_repr()),
pattern->NewNode(elementwise_add_pattern.elementwise_add_y_repr()));
elementwise_pattern(
pattern->NewNode(elementwise_pattern.elementwise_x_repr()),
pattern->NewNode(elementwise_pattern.elementwise_y_repr()),
elementwise_type);
int quantize_elementwise_add_count = 0;
int quantize_elementwise_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "Quantize elementwise_add op";
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_op, elementwise_add_op,
elementwise_add_pattern);
VLOG(4) << "Quantize " + elementwise_type + " op";
GET_IR_NODE_FROM_SUBGRAPH(elementwise_op, elementwise_op,
elementwise_pattern);
// skip if should not be quantized
if (!platform::HasOpINT8DataType(elementwise_add_op->Op())) {
LogQuantizationDisabled(elementwise_add_op);
if (!platform::HasOpINT8DataType(elementwise_op->Op())) {
LogQuantizationDisabled(elementwise_op);
return;
}
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_x, elementwise_add_x,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_y, elementwise_add_y,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add_out, elementwise_add_out,
elementwise_add_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_x, elementwise_x,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_y, elementwise_y,
elementwise_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out,
elementwise_pattern);
if (!AreScalesPresentForNodes(
{elementwise_add_x, elementwise_add_y, elementwise_add_out})) {
LogCannotQuantizeOp(elementwise_add_op,
{elementwise_x, elementwise_y, elementwise_out})) {
LogCannotQuantizeOp(elementwise_op,
"No scale available for the operator");
return;
}
bool is_x_unsigned{false}, is_y_unsigned{false};
auto input_x_scale =
GetScaleValueForNode(elementwise_add_x, &is_x_unsigned);
auto input_y_scale =
GetScaleValueForNode(elementwise_add_y, &is_y_unsigned);
auto input_x_scale = GetScaleValueForNode(elementwise_x, &is_x_unsigned);
auto input_y_scale = GetScaleValueForNode(elementwise_y, &is_y_unsigned);
// TODO(sfraczek): add support for different signness
if (is_x_unsigned != is_y_unsigned) {
LogCannotQuantizeOp(elementwise_add_op,
"ElementwiseAdd inputs must be of the same type.");
LogCannotQuantizeOp(elementwise_op,
"Elementwise inputs must be of the same type.");
return;
}
QuantizeInput(g, elementwise_add_op, elementwise_add_x, "X", input_x_scale,
QuantizeInput(g, elementwise_op, elementwise_x, "X", input_x_scale,
is_x_unsigned, "Scale_x");
QuantizeInput(g, elementwise_add_op, elementwise_add_y, "Y", input_y_scale,
QuantizeInput(g, elementwise_op, elementwise_y, "Y", input_y_scale,
is_y_unsigned, "Scale_y");
bool is_output_unsigned{false};
auto output_scale =
GetScaleValueForNode(elementwise_add_out, &is_output_unsigned);
GetScaleValueForNode(elementwise_out, &is_output_unsigned);
DequantizeOutput(g, elementwise_add_op, elementwise_add_out, "Out",
output_scale, is_output_unsigned, "Scale_out");
DequantizeOutput(g, elementwise_op, elementwise_out, "Out", output_scale,
is_output_unsigned, "Scale_out");
++quantize_elementwise_add_count;
++quantize_elementwise_count;
};
gpd(graph, handler);
AddStatis(quantize_elementwise_add_count);
AddStatis(quantize_elementwise_count);
PrettyLogDetail("--- quantized %d elementwise_add ops",
quantize_elementwise_add_count);
PrettyLogDetail("--- quantized %d %s ops", quantize_elementwise_count,
elementwise_type);
}
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
......@@ -1146,7 +1146,8 @@ void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
QuantizeFc(graph);
QuantizeReshape(graph);
QuantizeMatmul(graph);
QuantizeElementwiseAdd(graph);
QuantizeElementwise(graph, "elementwise_add");
QuantizeElementwise(graph, "elementwise_mul");
QuantizeFusionGru(graph);
QuantizeMultiGru(graph);
QuantizeFusionLSTM(graph);
......
......@@ -57,7 +57,8 @@ class CPUQuantizePass : public FusePassBase {
void QuantizeTranspose(Graph* graph) const;
void QuantizeReshape(Graph* graph) const;
void QuantizeMatmul(Graph* graph) const;
void QuantizeElementwiseAdd(Graph* graph) const;
void QuantizeElementwise(Graph* graph,
const std::string elementwise_type) const;
void QuantizeFusionGru(Graph* graph) const;
void QuantizeMultiGru(Graph* graph) const;
void QuantizeFusionLSTM(Graph* graph) const;
......
......@@ -90,7 +90,7 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
op->SetAttr("Scale_x", 1.0f);
op->SetAttr("Scale_y", 1.0f);
op->SetAttr("Scale_out", 1.0f);
} else if (type == "elementwise_add") {
} else if (type == "elementwise_add" || type == "elementwise_mul") {
op->SetInput("X", {inputs[0]});
if (inputs.size() > 1) op->SetInput("Y", {inputs[1]});
op->SetOutput("Out", {outputs[0]});
......@@ -167,7 +167,8 @@ void CheckScales(const OpDesc* op, float scale, float shift) {
scale);
scale_names.push_back("Scale_in");
scale_names.push_back("Scale_out");
} else if (type == "matmul" || type == "elementwise_add") {
} else if (type == "matmul" || type == "elementwise_add" ||
type == "elementwise_mul") {
scale_names.push_back("Scale_x");
scale_names.push_back("Scale_y");
scale_names.push_back("Scale_out");
......@@ -546,46 +547,77 @@ TEST(CpuQuantizePass, matmul_not_quantized) {
expected_operators, added_nodes, 1.0f);
}
static const std::initializer_list<std::string> variable_names_elementwise_add =
{"a", "b", "c", "d", "e", "f"};
static const std::initializer_list<std::string> variable_names_elementwise = {
"a", "b", "c", "d", "e", "f"};
ProgramDesc BuildProgramDescElementwiseAdd() {
ProgramDesc BuildProgramDescElementwise(const std::string elementwise_type,
const std::string elementwise_name) {
ProgramDesc prog;
for (auto& v : variable_names_elementwise_add) {
for (auto& v : variable_names_elementwise) {
prog.MutableBlock(0)->Var(v);
}
SetOp(&prog, "dequantize", "Dequantize1", {"a"}, {"b"}, true);
SetOp(&prog, "dequantize", "Dequantize2", {"c"}, {"d"}, true);
SetOp(&prog, "elementwise_add", "ElementwiseAdd", {"b", "d"}, {"e"}, true,
SetOp(&prog, elementwise_type, elementwise_name, {"b", "d"}, {"e"}, true,
"int8");
SetOp(&prog, "dropout", "Dropout", {"e"}, {"f"}, true, "float32");
return prog;
}
TEST(CpuQuantizePass, elementwise_add) {
void TestElementwise(const std::string elementwise_type,
const std::string elementwise_name) {
// 2 Quant + 2 IN + 1 DeQuant + 1 OUT
int added_nodes = 6;
std::unordered_map<std::string, int> expected_operators = {
{"elementwise_add", 1}, {"quantize", 2}, {"dequantize", 3}};
MainTest(BuildProgramDescElementwiseAdd(), variable_names_elementwise_add,
expected_operators, added_nodes, SCALE * S8_MAX);
{elementwise_type, 1}, {"quantize", 2}, {"dequantize", 3}};
MainTest(BuildProgramDescElementwise(elementwise_type, elementwise_name),
variable_names_elementwise, expected_operators, added_nodes,
SCALE * S8_MAX);
}
TEST(CpuQuantizePass, elementwise_add_output_scale_missing) {
void TestElementwiseOutputScaleMissing(const std::string elementwise_type,
const std::string elementwise_name) {
int added_nodes = 0;
std::unordered_map<std::string, int> expected_operators = {
{"elementwise_add", 1}, {"quantize", 0}, {"dequantize", 2}};
MainTest(BuildProgramDescElementwiseAdd(), variable_names_elementwise_add,
expected_operators, added_nodes, 1.f, 1.f, "e");
{elementwise_type, 1}, {"quantize", 0}, {"dequantize", 2}};
MainTest(BuildProgramDescElementwise(elementwise_type, elementwise_name),
variable_names_elementwise, expected_operators, added_nodes, 1.f,
1.f, "e");
}
TEST(CpuQuantizePass, elementwise_add_unsigned_and_signed_input) {
void TestElementwiseUnsignedAndSignedInput(const std::string elementwise_type,
const std::string elementwise_name) {
int added_nodes = 0;
std::unordered_map<std::string, int> expected_operators = {
{"elementwise_add", 1}, {"quantize", 0}, {"dequantize", 2}};
MainTest(BuildProgramDescElementwiseAdd(), variable_names_elementwise_add,
expected_operators, added_nodes, 1.f, 1.f, "", "b");
{elementwise_type, 1}, {"quantize", 0}, {"dequantize", 2}};
MainTest(BuildProgramDescElementwise(elementwise_type, elementwise_name),
variable_names_elementwise, expected_operators, added_nodes, 1.f,
1.f, "", "b");
}
TEST(CpuQuantizePass, elementwise_add) {
TestElementwise("elementwise_add", "ElementwiseAdd");
}
TEST(CpuQuantizePass, elementwise_add_output_scale_missing) {
TestElementwiseOutputScaleMissing("elementwise_add", "ElementwiseAdd");
}
TEST(CpuQuantizePass, elementwise_add_unsigned_and_signed_input) {
TestElementwiseUnsignedAndSignedInput("elementwise_add", "ElementwiseAdd");
}
TEST(CpuQuantizePass, elementwise_mul) {
TestElementwise("elementwise_mul", "ElementwiseMul");
}
TEST(CpuQuantizePass, elementwise_mul_output_scale_missing) {
TestElementwiseOutputScaleMissing("elementwise_mul", "ElementwiseMul");
}
TEST(CpuQuantizePass, elementwise_mul_unsigned_and_signed_input) {
TestElementwiseUnsignedAndSignedInput("elementwise_mul", "ElementwiseMul");
}
const std::vector<std::string> churn_out_vars(ProgramDesc* prog,
......
......@@ -26,10 +26,10 @@ void CPUQuantizePlacementPass::ApplyImpl(ir::Graph* graph) const {
VLOG(3) << "Marks operators which are to be quantized.";
std::unordered_set<std::string> supported_op_types =
std::unordered_set<std::string>(
{"concat", "conv2d", "depthwise_conv2d", "elementwise_add", "fc",
"matmul", "nearest_interp", "nearest_interp_v2", "pool2d",
"prior_box", "reshape2", "transpose2", "fusion_gru", "fusion_lstm",
"multi_gru", "slice"});
{"concat", "conv2d", "depthwise_conv2d", "elementwise_add",
"elementwise_mul", "fc", "matmul", "nearest_interp",
"nearest_interp_v2", "pool2d", "prior_box", "reshape2", "transpose2",
"fusion_gru", "fusion_lstm", "multi_gru", "slice"});
const auto& excluded_ids_list =
Get<std::unordered_set<int>>("quantize_excluded_op_ids");
const auto& op_types_list =
......
......@@ -31,7 +31,7 @@ USE_OP(slice);
USE_OP(concat);
USE_OP(matmul);
USE_OP_ITSELF(elementwise_add);
USE_OP(sigmoid);
USE_OP_ITSELF(sigmoid);
USE_OP_ITSELF(tanh);
USE_OP(elementwise_mul);
USE_OP(softmax_with_cross_entropy);
......@@ -47,7 +47,7 @@ USE_OP(square);
USE_OP(transpose2_grad);
USE_OP(concat_grad);
USE_OP_ITSELF(elementwise_mul_grad);
USE_OP(sigmoid_grad);
USE_OP_ITSELF(sigmoid_grad);
USE_OP_ITSELF(tanh_grad);
USE_OP(sum);
USE_OP(slice_grad);
......
......@@ -2103,16 +2103,25 @@ void OperatorWithKernel::BuildPhiKernelContext(
auto* var = ins_vector[offset];
if (var->IsType<framework::LoDTensor>()) {
tensor_in = &(var->Get<framework::LoDTensor>());
pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
} else if (var->IsType<phi::SelectedRows>()) {
tensor_in = &(var->Get<phi::SelectedRows>());
pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
} else if (var->IsType<framework::LoDTensorArray>()) {
paddle::SmallVector<const phi::TensorBase*> tensor_vector;
auto& tensor_array = var->Get<framework::LoDTensorArray>();
for (auto& t : tensor_array) {
tensor_vector.emplace_back(&t);
}
pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
end_idx += tensor_array.size() - 1;
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Unsupported input `%s` type when call pt kernel.",
framework::ToTypeName(var->Type())));
}
pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
}
// Note: here cannot deal with vector<LoDTensorArray> input
pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
}
VLOG(4) << "Done inputs";
......@@ -2140,22 +2149,33 @@ void OperatorWithKernel::BuildPhiKernelContext(
for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
phi::TensorBase* tensor_out = nullptr;
auto* var = outs_vector[offset];
if (var) {
if (var->template IsType<framework::LoDTensor>()) {
tensor_out = var->template GetMutable<framework::LoDTensor>();
pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
} else if (var->template IsType<phi::SelectedRows>()) {
tensor_out = var->template GetMutable<phi::SelectedRows>();
pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
} else if (var->template IsType<framework::LoDTensorArray>()) {
paddle::SmallVector<phi::TensorBase*> tensor_vector;
auto* tensor_array =
var->template GetMutable<framework::LoDTensorArray>();
// Note: If the input LoDTensorArray size is 0, the output
// LoDTensorArray is also 0
for (auto& t : *tensor_array) {
tensor_vector.emplace_back(&t);
}
pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
end_idx += tensor_array->size() - 1;
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Unsupported output `%s` type when call pt kernel.",
framework::ToTypeName(var->Type())));
}
}
} else {
pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
}
}
pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
}
VLOG(4) << "Done outputs";
......
......@@ -483,6 +483,10 @@ class ExecutionArgumentMappingContext : public phi::ArgumentMappingContext {
return ctx_.InputVar(name)->IsType<phi::SelectedRows>();
}
bool IsDenseTensorVectorInput(const std::string& name) const override {
return ctx_.InputVar(name)->IsType<framework::LoDTensorArray>();
}
bool IsDenseTensorOutput(const std::string& name) const override {
return ctx_.OutputVar(name)->IsType<framework::LoDTensor>();
}
......
......@@ -423,7 +423,7 @@ void TensorAdd(const VarType& src, VarType* dst) {
}
if (data_type == framework::proto::VarType::BF16) {
if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_CUDA)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
return TensorAddImpl<platform::CUDADeviceContext, platform::bfloat16>(
src_tensor, dst_tensor, place);
#else
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册