Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
52ceeedb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
52ceeedb
编写于
8月 13, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add col2vol and vol2col CPU funtion
上级
23cf0c61
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
199 addition
and
0 deletion
+199
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+135
-0
paddle/math/Matrix.h
paddle/math/Matrix.h
+64
-0
未找到文件。
paddle/math/Matrix.cpp
浏览文件 @
52ceeedb
...
...
@@ -1389,6 +1389,52 @@ void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
output_d
,
grad_d
,
mat_d
,
height_
,
width_
);
}
void
GpuMatrix
::
vol2Col
(
real
*
data
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
)
{
hl_matrix_vol2Col
(
data
,
channels
,
depth
,
height
,
width
,
filterD
,
filterH
,
filterW
,
strideD
,
strideH
,
strideW
,
paddingD
,
paddingH
,
paddingW
,
getData
());
}
void
GpuMatrix
::
col2Vol
(
real
*
trg
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
,
real
alpha
,
real
beta
)
{
hl_matrix_col2Vol
(
trg
,
channels
,
depth
,
height
,
width
,
filterD
,
filterH
,
filterW
,
strideD
,
strideH
,
strideW
,
paddingD
,
paddingH
,
paddingW
,
getData
(),
alpha
,
beta
);
}
/**
* CpuMatrix
*/
...
...
@@ -3975,6 +4021,95 @@ void CpuMatrix::bilinearBackward(const Matrix& out,
}
}
void
CpuMatrix
::
vol2Col
(
real
*
data
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
)
{
real
*
outData
=
getData
();
int
outHeight
=
(
height
+
2
*
paddingH
-
filterH
)
/
strideH
+
1
;
int
outWidth
=
(
width
+
2
*
paddingW
-
filterW
)
/
strideW
+
1
;
int
outDepth
=
(
depth
+
2
*
paddingD
-
filterD
)
/
strideD
+
1
;
int
channelsCol
=
channels
*
filterD
*
filterH
*
filterW
;
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
wOffset
=
c
%
filterW
;
int
hOffset
=
(
c
/
filterW
)
%
filterH
;
int
dOffset
=
(
c
/
filterW
/
filterH
)
%
filterD
;
int
cIn
=
c
/
filterW
/
filterH
/
filterD
;
for
(
int
d
=
0
;
d
<
outDepth
;
++
d
)
{
for
(
int
h
=
0
;
h
<
outHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outWidth
;
++
w
)
{
int
dPad
=
d
*
strideD
-
paddingD
+
dOffset
;
int
hPad
=
h
*
strideH
-
paddingH
+
hOffset
;
int
wPad
=
w
*
strideW
-
paddingW
+
wOffset
;
if
(
hPad
>=
0
&&
hPad
<
height
&&
wPad
>=
0
&&
wPad
<
width
&&
dPad
>=
0
&&
dPad
<
depth
)
outData
[((
c
*
outDepth
+
d
)
*
outHeight
+
h
)
*
outWidth
+
w
]
=
data
[((
cIn
*
depth
+
dPad
)
*
height
+
hPad
)
*
width
+
wPad
];
else
outData
[((
c
*
outDepth
+
d
)
*
outHeight
+
h
)
*
outWidth
+
w
]
=
0
;
}
}
}
}
}
void
CpuMatrix
::
col2Vol
(
real
*
trg
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
,
real
alpha
,
real
beta
)
{
real
*
src
=
getData
();
int
outDepth
=
(
depth
+
2
*
paddingH
-
filterD
)
/
strideD
+
1
;
int
outHeight
=
(
height
+
2
*
paddingH
-
filterH
)
/
strideH
+
1
;
int
outWidth
=
(
width
+
2
*
paddingW
-
filterW
)
/
strideW
+
1
;
int
channelsCol
=
channels
*
filterD
*
filterH
*
filterW
;
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
wOffset
=
c
%
filterW
;
int
hOffset
=
(
c
/
filterW
)
%
filterH
;
int
dOffset
=
(
c
/
filterW
/
filterH
)
%
filterD
;
int
cIm
=
c
/
filterW
/
filterH
/
filterD
;
for
(
int
d
=
0
;
d
<
outDepth
;
++
d
)
{
for
(
int
h
=
0
;
h
<
outHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outWidth
;
++
w
)
{
int
dPad
=
d
*
strideD
-
paddingD
+
dOffset
;
int
hPad
=
h
*
strideH
-
paddingH
+
hOffset
;
int
wPad
=
w
*
strideW
-
paddingW
+
wOffset
;
if
(
hPad
>=
0
&&
hPad
<
height
&&
wPad
>=
0
&&
wPad
<
width
&&
dPad
>=
0
&&
dPad
<
depth
)
trg
[((
cIm
*
depth
+
dPad
)
*
height
+
hPad
)
*
width
+
wPad
]
=
alpha
*
src
[((
c
*
outDepth
+
d
)
*
outHeight
+
h
)
*
outWidth
+
w
]
+
beta
*
trg
[((
cIm
*
depth
+
dPad
)
*
height
+
hPad
)
*
width
+
wPad
];
}
}
}
}
}
////////////////////////////////////////////////////////////////
// functions executed via cpu //
////////////////////////////////////////////////////////////////
...
...
paddle/math/Matrix.h
浏览文件 @
52ceeedb
...
...
@@ -1039,6 +1039,42 @@ public:
LOG
(
FATAL
)
<<
"Not implemented"
;
}
virtual
void
vol2Col
(
real
*
data
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
virtual
void
col2Vol
(
real
*
trg
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
,
real
alpha
,
real
beta
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
virtual
void
bilinearForward
(
const
Matrix
&
in
,
const
size_t
inImgH
,
const
size_t
inImgW
,
...
...
@@ -1374,6 +1410,20 @@ public:
const
real
ratioH
,
const
real
ratioW
);
void
vol2Col
(
real
*
data
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
);
void
col2Vol
(
real
*
trg
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
,
real
alpha
,
real
beta
);
void
multiBinaryLabelCrossEntropy
(
Matrix
&
output
,
Matrix
&
label
);
void
multiBinaryLabelCrossEntropyBp
(
Matrix
&
output
,
Matrix
&
label
);
...
...
@@ -1715,6 +1765,20 @@ public:
const
real
ratioH
,
const
real
ratioW
);
void
vol2Col
(
real
*
data
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
);
void
col2Vol
(
real
*
trg
,
int
channels
,
int
depth
,
int
height
,
int
width
,
int
filterD
,
int
filterH
,
int
filterW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
,
real
alpha
,
real
beta
);
template
<
typename
ExpressionType
>
void
operator
=
(
const
ExpressionType
&
expr
)
{
TensorCpuApply
<
real
>
(
*
this
,
expr
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录